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Let X be a CW-complex. To obtain the Atiyah-Hirzebruch spectral sequence
computing the topological K-theory of X :

Ei,j
2 = Hi−j(X,Z(−j)) = πj−i[X,HZ(−j)] =⇒ Ktop

−i−j(X) = π−i−j [X,KU ],

one can, instead of using the skeletal filtration on X, use the double speed Post-
nikov filtration on the K-theory spectrum KU (recall that the n-th Postnikov
section τ<nT of a spectrum T is obtained by killing all homotopy groups of T
above dimension n by attaching cells ; the n-th piece of the Postnikov filtration is
the homotopy fiber of the map T → τ<nT , which is the n-connective cover of T ).

The goal of the talk is, following [2], to construct a similar – but more involved –
filtration, the BMS filtration (called the motivic filtration by the authors of [2]), on
THH, TC−, TP and TC over quasi-syntomic rings over a characteristic p perfect
ring. If A is such a ring, n ∈ Z, and

Zp(n)(A) := grnTC(A)[−2n]

is the (shifted) n-th graded piece of TC(A) for the BMS filtration, one has a
spectral sequence :

Ei,j
2 = πj−i(Zp(−j)(A)) =⇒ π−i−jTC(A),

resembling the above Atiyah-Hirzebruch spectral sequence or the spectral sequence
deduced from the filtration of algebraic K-theory by motivic cohomology. For the
comparison with classical p-adic cohomology theories (as crystalline cohomology),
the case of (quasi-)smooth rings over a perfect ring is probably the most inter-
esting and doing the construction for general quasi-syntomic rings may seem like
unnecessary generality ; it is actually a crucial feature of the argument.

The talk has two parts. We first introduce quasi-syntomic rings and state
some properties of the quasi-syntomic site. Then we explain how to construct the
filtrations, by combining some explicit computations with a descent argument. It
follows very closely [2, §4, §6, §7].

1. The quasi-syntomic site

1.1. Quasi-syntomic rings. In the following, we will restrict to characteristic p,
p being a fixed prime, though, as explained in [2], all the constructions extend to
the mixed characteristic case.

Definition 1.1. Let A be a commutative ring, M ∈ D(A) (the derived category
of A-modules). If a, b ∈ Z ∪ {±∞}, one says that M has Tor-amplitude in [a, b]
if for every A-module N , N ⊗L M ∈ D[a,b](A). One says that M is flat if it has
Tor-amplitude in [0, 0] (by definition, this means that M is concentrated in degree
0 and flat in the usual sense).
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Definition 1.2. Let A be an Fp-algebra.
(1) The Fp-algebra A is quasi-syntomic if the cotangent complex LA/Z ∈ D(A)

has Tor-amplitude in [−1, 0]. Let QSyn denote the category of all quasi-syntomic
Fp-algebras.

Let A→ B be a morphism of Fp-algebras.
(2) One says that A → B is a quasi-smooth map (resp. a quasi-smooth cover)

if it is flat (resp. faithfully flat) and if LB/A ∈ D(B) is flat.
(3) One says that A → B is a quasi-syntomic map (resp. a quasi-syntomic

cover) if it is flat (resp. faithfully flat) and if LB/A ∈ D(B) has Tor-amplitude in
[−1, 0].

We endow the category QSynop with the topology defined by quasi-syntomic
covers.

Remark 1.3. A theorem of Avramov says that a Noetherian ring A is a local
complete intersection ring if and only if LA/Z has Tor-amplitude in [−1, 0]. There-
fore, the above definition extends the classical definition of a syntomic ring to the
non-Noetherian setting.

Example 1.4. Any perfect Fp-algebra R is a (usually non-Noetherian !) quasi-
syntomic ring : the cotangent complex LR/Z has Tor-amplitude in [−1,−1] and is
isomorphic to R[1]. Indeed, the composition Z→ Fp → R gives rise to a triangle

R⊗L
Fp
LFp/Z → LR/Z → LR/Fp

.

Because Fp = Z/p, LFp/Z is simply pZ/p2Z[1] ' Fp[1]. Hence it suffices to show
that

LR/Fp
= 0.

To see this, choose a simplicial resolution R• of R by polynomial Fp-algebras.
The assumption that R is perfect implies that the Frobenius map ΦR• induces
an isomorphism LR/Fp

' LΦ∗R/Fp
. But for any k, if one identifies Rk with a

polynomial algebra Fp[X1, X2, . . . ], ΦRk
sends Xi to Xp

i , thus is the zero map on
differentials. This proves the claim.

Lemma 1.5. The category QSynop with the quasi-syntomic topology forms a site.

The only non trivial thing to check is that pull-backs of covers exist ; this is an
easy exercise.

1.2. Quasi-regular semi-perfect rings. Once again, we restrict to the charac-
teristic p setting.

Definition 1.6. An Fp-algebra S is quasi-regular semi-perfect if S ∈ QSyn and
if there exists a surjective morphism R → S, with R perfect (in particular, S is
semi-perfect, i.e. Frobenius is surjective). We denote by QRSPerf the category of
quasi-regular semi-perfect Fp-algebras and endow QRSPerfop with the topology
defined by quasi-syntomic covers.
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Remarks 1.7. (a) If S ∈ QRSPerf, LS/Z actually has Tor-amplitude in degrees

[−1,−1]. Indeed, as S is semi-perfect, L0
S/Z = Ω1

S/Z is zero.

(b) Any perfect ring lies in QRSPerf. Two other interesting examples are
S = OCp/p and S = Fp[T 1/p∞ ]/(T − 1).

(c) The category QRSPerfop with the quasi-syntomic topology forms a site
(once again, only the existence of pull-backs is non obvious).

The following key result shows that quasi-regular semi-perfect rings form a basis
of the quasi-syntomic topology on QSynop.

Proposition 1.8. An Fp-algebra A lies in QSyn if and only if there exists a
quasi-syntomic cover A → S, with S ∈ QRSPerf. Moreover, if A → S is a
quasi-syntomic cover with S ∈ QRSPerf, all terms

Si := S ⊗A S ⊗A · · · ⊗A S (i− times)

of the Čech nerve S• lie in QRSPerf.

Proof. If there exists a quasi-syntomic cover A → S, with S ∈ QRSPerf, the
transitivity triangle :

LA/Z ⊗L
A S → LS/Z → LS/A

shows that LA/Z ⊗L
A S has Tor-amplitude in [−1, 1], as the other two terms

have Tor-amplitude in [−1, 0] (because S ∈ QSyn and because A → S is quasi-
syntomic). By connectivity of the cotangent complex, this improves to [−1, 0]. As
A→ S is faithfully flat, we get that A ∈ QSyn.

Conversely, choose a surjective ring morphism :

F = Fp[{xi}i∈I ]→ A,

for some big enough index set I. Adjoining to F all p-power roots of the xi, i ∈ I,
one gets a perfect Fp-algebra F∞. Base changing F → F∞ along F → A gives a
map

A→ S := F∞ ⊗F A.

The map A → S is a quasi-syntomic cover, being the base change of the quasi-
syntomic cover F → F∞. This easily implies (using the transitivity triangle for
Z→ A→ S) that S ∈ QSyn. Moreover F∞ is perfect and surjects onto S.

The last assertion is left to the reader. �

The proposition implies that the restriction along the natural map

u : QRSPerfop → QSynop

induces an equivalence between sheaves on QRSPerfop and sheaves on QSynop with
values in any reasonable1 category C. If F is a C-valued sheaf on QRSPerfop, we
call the associated sheaf on QSynop the unfolding of F . It is explicitely computed
as follows : if A ∈ QSyn, choose a quasi-syntomic cover A→ S, with S ∈ QRSPerf,
and compute the totalization of the cosimplicial object F(S•) in C.

1In technical terms : any presentable ∞-category.
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Remark 1.9. In what follows, we will work with the category QSynR, for some
fixed perfect ring R, formed by maps R→ A, with A ∈ QSyn, and similarly with
QRSPerfR. One can check that if A ∈ QSynR, LA/R has Tor-amplitude in [−1, 0].

2. Construction of the filtrations on THH and its variants

Let R be a characteristic p perfect ring, fixed from now on. Let A ∈ QSynR.
The goal is to endow THH(A), TC−(A), TP(A) and TC(A) with complete ex-
haustive decreasing Z-indexed multiplicative filtrations Fil∗THH(A), Fil∗TC−(A),
Fil∗TP(A) and Fil∗TC(A) (the BMS filtrations) such that

∆̂A := gr0TC−(A) = gr0TP(A)

comes equipped with a complete decreasing N-indexed multiplicative filtration
N≥∗∆̂A (the Nygaard filtration), with graded pieces N ∗∆̂A, together with natural
isomorphisms :

grnTHH(A) = Nn∆̂A[2n] ; grnTC−(A) = N≥n∆̂A[2n] ; grnTP(A) = ∆̂A[2n]

and :
Zp(n)(A) := grnTC(A) = hofib(ϕ− can : N≥n∆̂A → ∆̂A).

Remarks 2.1. (a) The graded pieces Zp(n)(A) are a priori spectra, but since Zp(0)
is the constant sheaf given by the Eilenberg-McLane spectrum of Zp and since
all these graded pieces are module spectra over Zp(0)(A), these spectra can be
represented, non-canonically, by chain complexes.

(b) This filtration gives rise to the spectral sequence

Ei,j
2 = πj−i(Zp(−j)(A)) =⇒ π−i−jTC(A)

alluded to in the introduction. The sheaves Zp(n) are related the more classical
logarithmic de Rham-Witt sheaves, as will be explained in the next talks.

The strategy to construct these filtrations is quite simple : one defines them
explicitely at the level of quasi-regular semi-perfect rings ; one then uses quasi-
syntomic descent to treat the case of general quasi-syntomic rings. In both cases,
this remarkably reduces by some dévissages to understanding properties of the
cotangent complex.

2.1. Computations for quasi-regular semi-perfect rings. We start by ana-
lyzing things for R itself.

Proposition 2.2. Let R be a perfect Fp-algebra. Then π∗THH(R) ' R[u] is a
polynomial algebra, with u ∈ π2THH(R).

Proof. We first prove that for any R→ R′, with R,R′ perfect, the natural map

THH(R)⊗L
R R

′ → THH(R′)

is an isomorphism. It is enough to check this after tensoring by Z over THH(Z)
(because one can then argue by induction for ⊗THH(Z)τ≤nTHH(Z)). Thus one
needs to prove that :

HH(R)⊗L
R R

′ ' HH(R′).
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Using the Hochschild-Kostant-Rosenberg filtration (HKR filtration), this amounts
to prove that :

∧iRLR/Z ⊗L
R R

′ ' ∧iR′LR′/Z,

which is easily deduced from Example 1.4. This base change property reduces us
to prove the proposition for R = Fp ; in this case, this is the content of Bökstedt’s
theorem. �

Proposition 2.3. One can find generators u ∈ π2TC−(R), v ∈ π−2TC−(R) and
σ ∈ π2TP(R) such that :

π∗TC−(R) 'W (R)[u, v]/(uv − p) ; π∗TP(R) 'W (R)[σ, σ−1]

and such that the map induced on homotopy groups by

ϕhT : TC−(R) = THH(R)hT → TP(R) = (THH(R)tCp)hT

is the ϕW (R)-linear map sending u to σ and v to pσ−1, and such that the map
induced on homotopy groups by

can : TC−(R)→ TP(R)

is the linear map sending u to pσ and v to σ−1.

Proof. We simply describe π0TC−(R), which is the hardest part, and refer the
reader to [2, §6] for the rest. Because π∗THH(R) is concentrated in even degrees
and has trivial T-action, the homotopy fixed point spectral sequence :

Ei,j
2 = Hi(T, π−jTHH(R)) =⇒ π−i−jTC−(R)

degenerates. In particular, one can lift u ∈ π2THH(R) to an element (still de-
noted) u ∈ π2TC−(R) and the natural generator of H2(T, π0THH(R)) to v ∈
π−2TC−(R). The degeneracy of the spectral sequences also provides a descending
complete N-indexed multiplicative filtration on π0TC−(R) such that

griTC−(R) = π2iTHH(R) ' R,

for i ≥ 0. In particular, the map

π0TC−(R)→ π0THH(R) = R

makes π0TC−(R) a pro-infinitesimal thickening of R. By the universal property
of W (R), this gives a unique map W (R)→ π0TC−(R), with

im(pW (R)) ⊂ Fil1π0TC−(R) = ker(π0TC−(R)→ R).

By multiplicativity of the filtration, one has

im(piW (R)) ⊂ Filiπ0TC−(R),

for all i ≥ 1. Proving that the map W (R) → π0TC−(R) is an isomorphism
can thus be checked on graded pieces, i.e. by showing that certain maps from R
to R are isomorphisms, which readily reduces by base change to the case R =
Fp. In this case, we know by [1, Lem. IV.4.7] that the images of p and uv in
H2(T, π2THH(Fp)) are the same. By multiplicativity, the images of pi and uivi in
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H2i(T, π2iTHH(Fp)) are the same. Hence all the graded maps are isomorphisms.

Up to modifying u by a unit, we can also arrange that uv = p in π0TC−(R). �

Now we can turn to quasi-regular semi-perfect rings.

Theorem 2.4. Let S ∈ QRSPerfR. Then :
(1) π∗THH(S) only lives in even degrees.
(2) Let i ∈ Z. Multiplication by u ∈ π2THH(R) gives an injective map :

π2i−2THH(S)→ π2iTHH(S)

and this endows π2iTHH(S) with a functorial finite increasing filtration with graded

pieces ∧jSLS/R[−j], for 0 ≤ j ≤ i in increasing order.

Proof. We start by noting for any R-algebra A, we have a T-equivariant fiber
sequence

THH(A)[2]→ THH(A)→ HH(A/R) (∗)
(see [2, Th. 6.7]). We will first apply this when A is a quasi-smooth R-algebra.
Then, by the universal property of the de Rham complex, the natural antisym-
metrisation map

Ω1
A/R = Ω1

A/Z → π1HH(A) = π1THH(A)

(the first equality comes from the fact that R is perfect) extends to a map of graded
A-algebras Ω∗A/R → π∗THH(A). Using the HKR filtration, one sees that the

composite of this map with the map π∗THH(A)→ π∗HH(A/R) is an isomorphism.
Thus the long exact sequence on homotopy groups induced by the fiber sequence
(∗) splits in short exact sequences, for all i :

0→ πi−2THH(A)→ πiTHH(A)→ πiHH(A/R) ' Ωi
A/R → 0.

Therefore, the natural map

Ω∗A/R ⊗R π∗THH(R)→ π∗THH(A)

has to be an isomorphism. This proves that on the category of quasi-smooth
algebras over R, the Postnikov filtration on THH is a complete decreasing N-
indexed multiplicative filtration Fil∗P with graded pieces

grnP THH(−) '
⊕

0≤i≤n,i−n even

Ωi
−/R[n].

By left Kan extension, we get a complete decreasing N-indexed multiplicative
filtration Fil∗P on THH over the category of all R-algebras, with graded pieces

grnP THH(−) '
⊕

0≤i≤n,i−n even

∧iL−/R[n].

Now we apply this to our quasi-regular semi-perfect ring S over R. By Remark
1.7 (a) and induction on i, ∧iLS/R has Tor-amplitude in [−i,−i] and thus lives
in homological degree i. Hence, for any n, grnP THH(S) only lives in even degrees.
This implies (1), by completeness of the filtration.
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To prove (2), we use the fiber sequence (∗) for A = S. As the homotopy
groups of all terms are in even degrees (we just proved it for THH(S) and it is
easily verified for HH(S/R) using the HKR filtration), the long exact sequence on
homotopy groups splits in short exact sequences :

0→ π2i−2THH(S)→ π2iTHH(S)→ π2iHH(S/R)→ 0,

for all i. This provides the desired filtration on π2iTHH(S), as (by the HKR
filtration), π2iHH(S/R) = ∧iSLS/R[−i]. �

Remark 2.5. The filtration Fil∗P was only introduced as an auxiliary tool ; as
we will see, the interesting filtration is the one defined by (2) of the proposition,
which comes from the (double speed) Postnikov filtration. That they differ is
explained by the fact that the Postnikov filtration on THH over QRSPerf is not
(the restriction to QRSPerf of) the left Kan extension of the Postnikov filtration
on THH over quasi-smooth R-algebras.

Theorem 2.6. Let S ∈ QRSPerfR.
(1) The homotopy fixed point and Tate spectral sequences computing TC−(S)

and TP(S) degenerate. Both π∗TC−(S) and π∗TP(S) live in even degrees.
(2) The degenerate homotopy fixed point and Tate spectral sequences endow

∆̂S := π0TC−(S) '
can

π0TP(S)

with the same descending complete N-indexed filtration N≥∗∆̂S, with graded pieces
denoted by N ∗∆̂S.

(3) One has, for any n, natural identifications :

π2nTHH(S) = Nn∆̂S ; π2nTC−(S) = N≥n∆̂S ; π2nTP(S) = ∆̂S .

(4) One has a natural isomorphism of R-algebras

∆̂S/p ' L̂ΩS/R

(the right hand side is the Hodge-completed derived de Rham complex of S over

R) and ∆̂S is p-torsion free.

Proof. As π∗THH(S) only lives in even degrees, the first three points are easy.
The proof of (4) relies on the fiber sequence used in the proof of Theorem 2.4 and
the identification of π0HC−(S) as the Hodge-completed derived de Rham complex

L̂ΩS/R (whose proof uses quite subtle arguments about filtered derived categories
and is given in [2, Prop. 5.14]). �

2.2. The filtrations. We start by reminding the reader that the cotangent com-
plex (and its wedge powers), the Hodge-completed derived de Rham complex,
THH, TC−, TP and TC are all fpqc sheaves. This was proved in the last talk by
reduction to the case of the cotangent complex and will be crucial for us.

We first explain the construction of the BMS filtration for THH on quasi-
syntomic rings. As promised, this is done in two steps. By Theorem 2.4, if
S ∈ QRSPerfR and i ∈ Z, π2iTHH(S) has a functorial finite increasing filtration
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with graded pieces ∧jSLS/R[−j], for 0 ≤ j ≤ i in increasing order. In other words,
if S ∈ QRSPerfR, the double speed Postnikov filtration endows the spectrum
THH(S) with a functorial complete descending Z-indexed T-equvariant filtration
Fil∗THH(S) such that griTHH(S) is canonically an S-module spectrum (with triv-
ial T-action) admitting a finite increasing filtration with graded pieces given by

∧jSLS/R[2i− j], 0 ≤ j ≤ i. This is our BMS filtration on QRSPerfR, and the end
of the first step.

The second step is quasi-syntomic descent. We recalled that THH on QSynop
R

is the unfolding of its restriction to QRSPerfop
R . The last paragraph demonstrates

that the double speed Postnikov filtration on THH over QRSPerfop
R and the filtra-

tion on its graded pieces unfold to QSynop
R : indeed, wedge powers of the cotangent

complex satisfy descent. Therefore, we see that for any A ∈ QSynR, the spectrum
THH(A) admits a functorial complete descending Z-indexed T-equvariant filtra-
tion Fil∗THH(A) such that griTHH(A) is canonically an A-module spectrum (with
trivial T-action) admitting a finite increasing filtration with graded pieces given

by ∧jALA/R[2i− j], 0 ≤ j ≤ i.

The same game can be played with Theorem 2.6, to construct the Nygaard fil-
tration : the sheaf ∆̂− and its filtration N≥∗∆̂− on QRSPerfop

R unfold2 to QSynop
R ,

since by Theorem 2.6, one has, for all S ∈ QRSPerfR and all n,

Nn∆̂S ' π2nTHH(S)[−2n],

and we just checked that the right hand side unfolds to a sheaf on QSynop.
This unfolding defines (∆̂−,N≥∗∆̂−) on QSynop

R , and one has, for all A ∈
QSynR and all n,

Nn∆̂A ' π2nTHH(A)[−2n],

as well as a natural identification of E∞-R-algebras ∆̂A/p ' L̂ΩA/R.
The same kind of arguments apply to construct the sought after filtrations on

TC−, TP and TC on QSynR : cf. [2, Prop. 7.13].
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2The most economic way to do this is to see them as defining a sheaf with values in the

complete filtered derived category of W (R)-modules.
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