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PRISMATIC DIEUDONNÉ THEORY

JOHANNES ANSCHÜTZ AND ARTHUR-CÉSAR LE BRAS

Abstract. We define, for each quasi-syntomic ring R (in the sense of Bhatt-
Morrow-Scholze), a category DF(R) of filtered prismatic Dieudonné crystals
over R and a functor from p-divisible groups over R to DF(R). We prove that
this functor is an antiequivalence when moreover R is flat over Z/pn for some
n > 0 or over Zp. Our main cohomological tool is the prismatic formalism
recently developed by Bhatt and Scholze.
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5.2. Comparison over OK 82
5.3. Filtered prismatic Dieudonné crystals and displays 90
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1. Introduction

Let p be a prime number. The goal of the present paper is to establish clas-
sification theorems for p-divisible groups over quasi-syntomic rings. This class of
rings is a non-Noetherian generalization of the class of p-complete locally complete
intersection rings and contains also big rings, such as perfectoid rings. Our main
theorem is as follows.

Theorem. Let R be a quasi-syntomic ring. There is a natural functor from the
category of p-divisible groups over R to the category DF(R) of filtered prismatic
Dieudonné crystals over R. If moreover R is flat over Z/pn (for some n) or Zp,
this functor is an antiequivalence.

A more precise version of this statement and a detailed explanation will be given
later in this introduction. For now, let us just say that the category DF(R) is
formed by objects of semi-linear algebraic nature.

The problem of classifying p-divisible groups and finite locally free group schemes
by semi-linear algebraic structures has a long history, going back to the work of
Dieudonné on formal groups over characteristic p perfect fields. In characteristic
p, as envisionned by Grothendieck, and later developed by Messing ([42]), Mazur-
Messing ([41]), Berthelot-Breen-Messing ([5], [6]), the formalism of crystalline co-
homology provides a natural way to attach such invariants to p-divisible groups.
This theory goes by the name of crystalline Dieudonné theory and leads to classifi-
cation theorems for p-divisible groups over a characteristic p base in a wide variety
of situations, which we will not try to survey but for which we refer the reader, for
instance, to [37]. In mixed characteristic, the existing results have been more lim-
ited. Fontaine ([23]) obtained complete results when the base is the ring of integers
of a finite totally ramified extension K of the ring of Witt vectorsW (k) of a perfect
field k of characteristic p, with ramification index e < p − 1. This ramification
hypothesis was later removed by Breuil ([15]) for p > 2, who also conjectured an
alternative reformulation of his classification in [14], simpler and likely to hold even
for p = 2, which was proved by Kisin ([30], for odd p, and extended by Kim ([29]),
Lau ([35]) and Liu ([38]) to all p. Zink gave a classification of formal p-divisible
groups over very general bases using his theory of displays ([50]). More recently,
p-divisible groups have been classified over perfectoid rings ([36], [47, Appendix to
Lecture XVII]).

The main interest of our approach is that it gives a uniform and geometric con-
struction of the classifying functor on quasi-syntomic rings. This is made possible
by the recent spectacular work of Bhatt-Scholze on prisms and prismatic cohomol-
ogy ([12], [7]). So far, such a cohomological construction of the functor had been
available only in characteristic p, using the crystalline theory. This led in practice
to some restrictions, when trying to study p-divisible groups in mixed characteris-
tic by reduction to characteristic p, of which Breuil-Kisin theory is a prototypical
example : there, no direct definition of the functor was available when p = 2 ! Re-
placing the crystalline formalism by the prismatic formalism, we give a definition
of the classifying functor very close in spirit to the one used by Berthelot-Breen-
Messing ([5]) and which now makes sense without the limitation to characteristic
p. Over a quasi-syntomic ring R, our functor takes values in the category of filtered
prismatic Dieudonné crystals over R (cf. Definition 4.1.6). As the name suggests,
prismatic Dieudonné crystals are prismatic analogues of the classical notion of a
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Dieudonné crystal on the crystalline site. The adjective filtered is here to indi-
cate that one needs to add the datum of some kind of admissible filtration on the
prismatic Dieudonné crystal.

Before stating precisely the main results of this paper and explaining the tech-
niques involved, let us note that several natural questions are not addressed in this
paper.

(1) It would be interesting to go beyond quasi-syntomic rings. By analogy
with the characteristic p story, one would expect that the prismatic theory
should also shed light on more general rings. In the general case, filtered
prismatic Dieudonné crystals will not be the right objects to work with.
One should instead define analogues of the divided Dieudonné crystals in-
troduced recently by Lau [37] in characteristic p.

(2) Even for quasi-syntomic rings, our classification is explicit for the so called
quasi-regular semiperfectoid rings or for complete regular local rings with
perfect residue field of characteristic p (cf. Section 5.2), as will be explained
below, but quite abstract in general. Classical Dieudonné crystals can be
described as modules over the p-completion of the PD-envelope of a smooth
presentation, together with a Frobenius and a connection satisfying various
conditions. Is there an analogous concrete description of (filtered) prismatic
Dieudonné crystals ?

(3) Finally, it would also be interesting and useful to study deformation theory
(in the spirit of Grothendieck-Messing theory) for the filtered prismatic
Dieudonné functor.

We now discuss in more detail the content of this paper.

1.1. Quasi-syntomic rings. Let us first define the class of rings over which we
study p-divisible groups.

Definition 1.1.1 (cf. Definition 3.3.1). A ring R is quasi-syntomic if R is p-
complete with bounded p∞-torsion and if the cotangent complex LR/Zp

has p-

complete Tor-amplitude in [−1, 0]1. The category of all quasi-syntomic rings is
denoted by QSyn.

Similarly, a map R → R′ of p-complete rings with bounded p∞-torsion is a
quasi-syntomic morphism if R′ is p-completely flat over R and LR′/R ∈ D(R′) has
p-complete Tor-amplitude in [−1, 0].

Remark 1.1.2. This definition is due to Bhatt-Morrow-Scholze [11] and extends
(in the p-complete world) the usual notion of l.c.i. rings and syntomic morphisms
(flat and l.c.i.) to the non-Noetherian, non finite-type setting. The interest of this
definition, apart from being more general, is that it more clearly shows why this
category of rings is relevant : the key property of (quasi-)syntomic rings is that
they have a well-behaved (p-completed) cotangent complex. The work of Avramov
shows that the cotangent complex is very badly behaved for all other rings, at least
in the Noetherian setting: it is left unbounded (cf. [2]).

Example 1.1.3. Any p-complete l.c.i. Noetherian ring is in QSyn. But there are
also has big rings in QSyn : for example, any (integral) perfectoid ring is in QSyn
(cf. Example 3.3.3). As a consequence of this, the p-completion of a smooth algebra

1This means that the complex M = LR/Zp
⊗L

R R/p ∈ D(R/p) is such that M ⊗L
R N ∈

D[−1,0](R/p) for any R/p-module N .
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over a perfectoid ring is also quasi-syntomic, as well as any bounded p∞-torsion p-
complete ring which can be presented as the quotient of an integral perfectoid ring
by a finite regular sequence. For example, the rings

OC〈T 〉 ; OCp/p ; Fp[T
1/p∞ ]/(T − 1)

are quasi-syntomic.

The category of quasi-syntomic rings is endowed with a natural topology : the
Grothendieck topology for which covers are given by quasi-syntomic covers, i.e.,
morphisms R→ R′ of p-complete rings which are quasi-syntomic and p-completely
faithfully flat.

An important property of the quasi-syntomic topology is that quasi-regular
semiperfectoid rings form a basis of the topology (cf. Proposition 3.3.7).

Definition 1.1.4 (cf. Definition 3.3.5). A ring R is quasi-regular semiperfectoid if
R ∈ QSyn and there exists a perfectoid ring S mapping surjectively to R.

As an example, any perfectoid ring, or any p-complete bounded p∞-torsion quo-
tient of a perfectoid ring by a finite regular sequence, is quasi-regular semiperfectoid.

1.2. Prisms and prismatic cohomology (after Bhatt-Scholze). Our main
tool for studying p-divisible groups over quasi-syntomic rings is the recent prismatic
theory of Bhatt-Scholze [12], [7]. This theory relies on the seemingly simple notions
of δ-rings and prisms. In what follows, all the rings considered are assumed to be
Z(p)-algebras.

A δ-ring is a commutative ring A, together with a map of sets δ : A→ A, with
δ(0) = 0, δ(1) = 0, and satisfying the following identities :

δ(xy) = xpδ(y)+ypδ(x)+pδ(x)δ(y) ; δ(x+y) = δ(x)+δ(y)+
xp + yp − (x+ y)p

p
,

for all x, y ∈ A. For any δ-ring (A, δ), denote by ϕ the map defined by

ϕ(x) = xp + pδ(x).

The identities satisfied by δ are made to make ϕ a ring endomorphism lifting Frobe-
nius modulo p. Conversely, a p-torsion free ring equipped with a lift of Frobenius
gives rise to a δ-ring. A pair (A, I) formed by a δ-ring A and an ideal I ⊂ A is a
prism if I defines a Cartier divisor on Spec(A), if A is (derived) (p, I)-complete and
if I is pro-Zariski locally generated2 by a distinguished element, i.e., an element d
such that δ(d) is a unit.

Example 1.2.1. (1) For any p-complete p-torsion free δ-ringA, the pair (A, (p))
is a prism.

(2) Say that a prism is perfect if the Frobenius ϕ on the undelying δ-ring
is an isomorphism. Then the category of perfect prisms is equivalent to
the category of (integral) perfectoid rings : in one direction, one maps a
perfectoid ringR to the pair (Ainf(R) :=W (R♭), ker(θ)) (here θ : Ainf(R)→
R is Fontaine’s theta map) ; in the other direction, one maps (A, I) to A/I.
Therefore, one sees that, in the words of the authors of [12], prisms are
some kind of ”deperfection” of perfectoid rings.

2In practice, the ideal I is always principal.
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The crucial definition for us is the following. We stick to the affine case for
simplicity, but it admits an immediate extension to p-adic formal schemes.

Definition 1.2.2. Let R be a p-complete ring. The (absolute) prismatic site (R)∆
of R is the opposite of the category of bounded3 prisms (A, I) together with a
map R → A/I, endowed with the Grothendieck topology for which covers are
morphisms of prisms (A, I)→ (B, J), such that the underlying ring map A→ B is
(p, I)-completely faithfully flat.

Bhatt and Scholze prove that the functor O∆ (resp. O∆) on the prismatic
site valued in (p, I)-complete δ-rings (resp. in p-complete R-algebras), sending
(A, I) ∈ (R)∆ to A (resp. A/I), is a sheaf. The sheaf O∆ (resp. O∆) is called the
prismatic structure sheaf (resp. the reduced prismatic structure sheaf ).

From this, one easily deduces that the presheaves I∆ (resp. N≥1O∆) sending

(A, I) to I (resp. N≥1A := ϕ−1(I)) are also sheaves on (R)∆.

Let R be a p-complete ring. One proves the existence of a morphism of topoi :

v : Shv((R)∆)→ Shv((R)qsyn).

Set :

Opris := v∗O∆ ; N≥1Opris := v∗N
≥1O∆ ; Ipris := v∗I∆.

The sheafOpris is endowed with a Frobenius lift ϕ. Moreover, if R is quasi-syntomic,
the quotient sheaf Opris/N≥1Opris is naturally isomorphic to the structure sheaf O
of (R)qsyn.

1.3. Filtered prismatic Dieudonné crystals and modules. We are now in
position to define the category of objects classifying p-divisible groups.

Definition 1.3.1. Let R be a quasi-syntomic ring. A filtered prismatic Dieudonné
crystal over R is a collection (M,FilM, ϕM) consisting of a finite locally free Opris-
moduleM, a Opris-submodule FilM, and a ϕ-linear map ϕM :M→M, satisfying
the following conditions :

(1) ϕM(FilM) ⊂ Ipris.M.
(2) N≥1Opris.M⊂ FilM andM/FilM is a finite locally free O-module.
(3) ϕM(FilM) generates Ipris.M as an Opris-module.

Definition 1.3.2. Let R be a quasi-syntomic ring. We denote by DF(R) the
category of filtered prismatic Dieudonné crystals over R (with morphisms the Opris-
linear morphisms commuting with the Frobenius and respecting the filtration).

For quasi-regular semiperfectoid rings, these abstract objects have a concrete
incarnation. Let R be a quasi-regular semiperfectoid ring. The prismatic site (R)∆
admits a final object (∆R, I). Moreover, one has a natural isomorphism

θ : ∆R/N
≥1∆R ∼= R.

Example 1.3.3. (1) If R is a perfectoid ring, (∆R, I) = (Ainf(R), ker(θ̃)).
(2) If R is quasi-regular semiperfectoid and pR = 0, (∆R, I) ∼= (Acrys(R), (p)).

3A prism (A, I) is bounded if A/I has bounded p∞-torsion.
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Definition 1.3.4. A filtered prismatic Dieudonné module over R is a collection
(M,Fil M,ϕM ) consisting of a finite locally free ∆R-module M , a ∆R-submodule
Fil M , and a ϕ-linear map ϕM :M →M , satisfying the following conditions :

(1) ϕM (Fil M) ⊂ I.M .
(2) N≥1

∆R.M ⊂ Fil M and M/Fil M is a finite locally free R-module.
(3) ϕM (Fil M) generates I.M as a ∆R-module.

Proposition 1.3.5 (Proposition 4.1.13). Let R be a quasi-regular semiperfectoid
ring. The functor of global sections induces an equivalence between the category of
filtered prismatic Dieudonné crystals over R and the category of filtered prismatic
Dieudonné modules over R.

1.4. Statements of the main results. In all this paragraph, R is a quasi-
syntomic ring.

Theorem 1.4.1 (Theorem 4.6.6). Let G be a p-divisible group over R. The triple
(
M∆(G) = Ext

1(G,Opris),FilM∆(G) = Ext
1(G,N≥1Opris), ϕM

∆
(G)

)

where the Ext are Ext-groups of abelian sheaves on (R)qsyn and ϕM∆(G) is the

Frobenius induced by the Frobenius of Opris, is a filtered prismatic Dieudonné crystal
over R, denoted by M∆(G).

Remark 1.4.2. When pR = 0, the crystalline comparison theorem for prismatic
cohomology allows us to prove that this construction coincides with the functor
usually considered in crystalline Dieudonné theory, relying on Berthelot-Breen-
Messing’s constructions ([5]).

Theorem 1.4.3 (Theorem 4.6.9). Assume R is flat over Z/pn (for some n > 0)
or Zp. The filtered prismatic Dieudonné functor

M∆ : G 7→ M∆(G)

induces an antiequivalence between the category BT(R) of p-divisible groups over R
and the category DF(R) of filtered prismatic Dieudonné crystals over R.

Moreover, the prismatic Dieudonné functor :

M∆ : G 7→ M∆(G)

is fully faithful.

Remark 1.4.4. Theorem 1.4.1 (resp. Theorem 1.4.3) immediately extends to p-
divisible groups over a quasi-syntomic formal scheme (resp. to p-divisible groups
over a p-adic formal scheme quasi-syntomic over Spf(Z/pn), n > 0, or Spf(Zp)).

Remark 1.4.5. It is easy to write down a formula for a functor attaching to a
filtered prismatic Dieudonné crystal an abelian sheaf on (R)qsyn, which will be a
quasi-inverse of the filtered prismatic Dieudonné functor : see Remark 4.9.6. But
such a formula does not look very useful.

Remark 1.4.6. As a corollary of the theorem and the comparison with the crys-
talline functor, one obtains that the (contravariant) filtered Dieudonné functor from
crystalline Dieudonné theory is an antiequivalence for quasi-syntomic rings in char-
acteristic p. For excellent l.c.i. rings, fully faithfulness was proved by de Jong-
Messing ; the antiequivalence was proved by Lau for F -finite l.c.i. rings (which are
in particular excellent rings).
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Remark 1.4.7. It is not difficult to prove that if R is perfectoid, filtered prismatic
Dieudonné crystals (or modules) over R are equivalent to minuscule Breuil-Kisin-
Fargues modules for R, in the sense of [10]. Moreover, to prove a classification
theorem over arbitrary perfectoid rings, it is enough to do so for perfectoid rings
which are either p-torsion free or of characteristic p, as explained in [36, Lemma
9.2, (9.2)]. Therefore, Theorem 1.4.3 contains as a special case the results of Lau
and Scholze-Weinstein. But the proof of the theorem actually requires this special
case4 as an input.

Remark 1.4.8. In general, the prismatic Dieudonné functor (without the filtra-
tion) is not essentially surjective, but we prove it is an antiequivalence for p-complete
regular (Noetherian) rings in Proposition 5.2.3.

Moreover, we explain in Section 5.2 how to recover Breuil-Kisin’s classification
(as extended by Kim, Lau and Liu to all p) of p-divisible groups over OK , where K
is a discretely valued extension of Qp with perfect residue field, from Theorem 1.4.3.

Remark 1.4.9. Section 5.3 shows how to extract from the filtered prismatic
Dieudonné functor a functor from BT(R) to the category of displays of Zink over
R. Even though the actual argument is slightly involved for technical reasons, the
main result there ultimately comes from the following fact : if R is a quasi-regular
semiperfectoid ring, the natural morphism θ : ∆R → R gives rise by adjunction to a
morphism of δ-rings ∆R → W (R), mapping N≥1

∆R to the image of Verschiebung
on Witt vectors.

Zink’s classification by displays works on very general bases but is restricted (by
design) to formal p-divisible groups or to odd p ; by contrast, our classification is
limited to quasi-syntomic rings but do not make these restrictions.

Remark 1.4.10. As in Kisin’s article [30], it should be possible to deduce from
Theorem 1.4.3 a classification result for finite locally free group schemes. We only
write this down over a perfectoid ring, in which case it was already known for p > 2
by the work of Lau, [36]. This result is used in forthwoming work of C̆esnavic̆ius
and Scholze [17].

1.5. Overview of the proof and plan of the paper. Section 2 and Section 3
contain some useful basic results concerning prisms and prismatic cohomology, with
special emphasis on the case of quasi-syntomic rings. Most of them are extracted
from [11] and [12], but some are not contained in loc. cit. (for instance, the defini-
tion of the q-logarithm, Section 2.2), or only briefly discussed there (for instance, the
description of truncated Hodge-Tate cohomology, Section 3.2, or µ-torsion-freeness
of prismatic cohomology of some quasi-regular semiperfectoid rings, Section 3.6).

Section 4 is the heart of this paper. We first introduce the category DF(R) of
filtered prismatic Dieudonné crystals over a quasi-syntomic ring R and discuss some
of its abstract properties (Section 4.1). We then introduce a candidate functor from
p-divisible groups over R to DF(R) (Section 4.2). That it indeed takes values in
the category DF(R) is the content of Theorem 1.4.1, which we do not prove imme-
diately. We first relate this functor to other existing functors, for characteristic p
rings or perfectoid rings (Section 4.3). The next three sections are devoted to the
proof of Theorem 1.4.1. This proof follows a road similar to the one of [5, Ch. 2,

4In fact, as observed in [47], only the case of perfectoid valuation rings with algebraically closed
and spherically complete fraction field is needed.



PRISMATIC DIEUDONNÉ THEORY 9

3]. The basic idea is to reduce many statements to the case of p-divisible groups
attached to abelian schemes, using a theorem of Raynaud ensuring that a finite
locally free group scheme on R can always be realized as the kernel of an isogeny
between two abelian schemes over R, Zariski-locally on R. For abelian schemes, via
the general device, explained in [5, Ch. 2] and recalled in Section 4.4, for computing
Ext-groups in low degrees in a topos, one needs a good understanding of the pris-
matic cohomology. It relies on the degeneration of the conjugate spectral sequence
abutting to reduced prismatic cohomology, in the same way as the description of
the crystalline cohomology of abelian schemes is based on the degeneration of the
Hodge-de Rham spectral sequence. We prove it in Section 4.5 by appealing to
the identification of some truncation of the reduced prismatic complex with some
cotangent complex, in the spirit of Deligne-Illusie (or, more recently, [10]), proved
in Section 3.2. The prismatic perspective provides a very natural way of doing this.

To prove Theorem 1.4.3, stated as Theorem 4.6.9 below, one first observes that
the functors

R 7→ BT(R) ; R 7→ DF(R)

on QSyn are both stacks for the quasi-syntomic topology (for BT, this is done in
the Appendix). Therefore, to prove that the functor M∆ is an antiequivalence,
it is enough to prove it for R quasi-regular semiperfectoid, since these rings form
a basis of the topology, in which case one can simply consider the more concrete
functor M∆ taking values in filtered prismatic Dieudonné modules over R, defined
by taking global sections ofM

∆
. Therefore, one sees that, even if one is ultimately

interested only by Noetherian rings, the structure of the argument forces to consider
large quasi-syntomic rings5.

Assume from now on that R is quasi-regular semiperfectoid. Fully faithfulness
is shown using the strategy of [48] (following an idea of de Jong-Messing) : one
first proves fully faithfulness for morphisms from Qp/Zp to µp∞ and then reduces
to this special case. The first step is actually delicate and unfortunately relies
on some results on algebraic K-theory from [18] and the companion paper [1],
due to the fact that general quasi-regular semiperfectoid rings are quite hard to
handle directly, contrary to the ones which are obtained as colimits of quotients
of perfectoid rings by finite regular sequences. We were not able to obtain a more
direct proof. Nevertheless, the proof works in general. By contrast, the second
step requires the additional hypothesis of Theorem 1.4.3 on R. It is inspired by the
analogous step in Scholze-Weinstein’s paper ([48, §4.3]), but more direct and less
intricate, even when the ring R is an Fp-algebra. In fact, we even prove under theses
assumptions the (a priori, but not a posteriori) stronger result that the prismatic
Dieudonné functor (forgetting the filtration) is fully faithful.

Once fully faithfulness is acquired, the proof of essential surjectivity is by reduc-
tion to the perfectoid case. One can actually even reduce to the case of perfectoid
valuation rings with algebraically closed fraction field. In this case, the result is
known, and due - depending whether one is in characteristic p or in mixed charac-
teristic - to Berthelot and Scholze-Weinstein.

Finally, Section 5 gathers several complements to the main theorems, already
mentioned above : the classification of finite locally free group schemes of p-power
order over a perfectoid ring, Breuil-Kisin’s classification of p-divisible groups over

5In characteristic p, Lau has recently and independently implemented a similar strategy in
[37].
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the ring of integers of a finite extension of Qp, the relation with the theory of
displays and the description of the Tate module of the generic fiber of a p-divisible
group from its prismatic Dieudonné crystal.

1.6. Notations and conventions. In all the text, we fix a prime number p.

• All finite locally free group schemes will be assumed to be commutative.
• If R is a ring, we denote by BT(R) the category of p-divisible groups over
R.
• If A is a ring, I ⊂ A an ideal, and K ∈ D(A) an object of the derived
category of A-modules, K is said to be derived I-complete if for every
f ∈ I, the derived limit of the inverse system

. . .K
f
→ K

f
→ K

vanishes. Equivalently, when I = (f1, . . . , fr) is finitely generated, K is
derived I-complete if the natural map

K → R lim(K ⊗L
A K

•
n)

is an isomorphism in D(A), where for each n ≥ 1, K•
n denotes the Koszul

complex K•(A; f
n
1 , . . . , f

n
r ) (one has H

0(K•
n) = A/(fn1 , . . . , f

n
r ), but beware

that in general K•
n may also have cohomology in negative degrees, unless

(f1, . . . , fr) forms a regular sequence). An A-moduleM is said to be derived
I-complete if K = M [0] ∈ D(A) is derived I-complete. The following
properties are useful in practice :
(1) A complex K ∈ D(A) is derived I-complete if and only if for each

integer i, Hi(K) is derived I-complete (this implies in particular that
the category of derived I-complete A-modules form a weak Serre sub-
category of the category of A-modules).

(2) If I = (f1, . . . , fr) is finitely generated, the inclusion of the full subcat-
egory of derived I-complete complexes in D(A) admits a left adjoint,
sending K ∈ D(A) to its derived I-comletion

K̂ = R lim(K ⊗L
A K

•
n).

Note that the derived I-completion of an A-module M (viewed as a
complex sitting in degree 0) need not be discrete.

(3) (Derived Nakayama) If I is finitely generated, a derived I-complete
complex K ∈ D(A) (resp. a derived I-complete A-module M) is zero
if and only if K ⊗L

A A/I = 0 (resp. M/IM = 0).
(4) If I is finitely generated, an A-module M is (classically) I-adically

complete if and only if it is derived I-complete and I-adically sepa-
rated.

(5) I = (f) is principal and M is an A-module with bounded f∞-torsion
(i.e. such thatM [f∞] =M [fN ] for some N), the derived I-completion
ofM (as a complex) is discrete and coincides with its (classical) I-adic
completion.

A useful reference for derived completions is [49, Tag 091N].
• Let A be a ring, I a finitely generated ideal. A complex K ∈ D(A) is
I-completely flat (resp. I-completely faithfully flat) if K ⊗L

A A/I is concen-
trated in degree 0 and flat (resp. faithfully flat), cf. [11, Definition 4.1.]. If

an A-module M is flat, its derived completion M̂ is I-completely flat.
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Assume that I is principal, generated by f ∈ A (in the sequel, f will
often be p). Let A → B be a map of derived f -complete rings. If A has
bounded f∞-torsion and A→ B is f -completely flat, then B has bounded
f∞-torsion. Conversely, if B has bounded f∞-torsion and A → B is f -
completely faithfully flat, A has bounded f∞-torsion. Moreover, if A and
B both have bounded f∞-torsion, then A→ B is f -completely (faithfully)
flat if and only if A/fn → B/fn is (faithfully) flat for all n ≥ 1. See [11,
Corollary 4.8]).
• A derived I-complete A-algebra R is I-completely étale (resp. I-completely
smooth) if R⊗L

A A/I is concentrated in degree 0 and étale (resp. smooth).
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2. Generalities on prisms

In this section we review the theory of prisms and collect some additional results.
In particular, we present the definition of the q-logarithm (cf. Section 2.2).

2.1. Prisms and perfectoid rings. We list here some basic definitions and results
from [12], of which we will make constant use in the paper. Let us first recall the
definition of a δ-ringA. In the following all rings will be assumed to be Z(p)-algebras.

Definition 2.1.1. A δ-ring is a pair (A, δ) with A a commutative ring and δ : A→
A a map (of sets) such that for x, y ∈ A the following equalities hold:

δ(0) = δ(1) = 0
δ(xy) = xpδ(y) + ypδ(x) + pδ(x)δ(y)

δ(x + y) = δ(x) + δ(y) + xp+yp−(x+y)p

p .

A morphism of δ-rings f : (A, δ)→ (A′, δ′) is a morphism f : A→ A′ of rings such
that f ◦ δ = δ′ ◦ f .

By design the morphism

ϕ : A→ A, x 7→ xp + pδ(x)

for a δ-ring (A, δ) is a ring homomorphism lifting the Frobenius on A/p. Using ϕ
the second property of δ can be rephrased as

δ(xy) = ϕ(x)δ(y) + ypδ(x) = xpδ(y) + ϕ(y)δ(x)

which looks close to that of a derivation. If A is p-torsion free, then any Frobenius
lift ψ : A→ A defines a δ-structure on A by setting

δ(x) :=
ψ(x) − xp

p
.

Thus, in the p-torsion free case a δ-ring is the same as a ring with a Frobenius lift.

Remark 2.1.2. The category of δ-rings has all limits and colimits and that these
are calculated on the underlying rings6 (cf. [12, Section 1]). In particular, there
exists free δ-rings (by the adjoint functor theorem). Concretely, if A is a δ-ring and
X is a set, then the free δ-ring A{X} onX is a polynomial ring overA with variables
δn(x) for n ≥ 0 and x ∈ X (cf. [12, Lemma 2.11]). Moreover, the Frobenius on
Z(p){X} is faithfully flat (cf. [12, Lemma 2.11]).

Definition 2.1.3. Let (A, δ) be a δ-ring.

(1) An element x ∈ A is called of rank 1 if δ(x) = 0.
(2) An element d ∈ A is called distinguished if δ(d) ∈ A× is a unit.

In particular, ϕ(x) = xp if x ∈ A is of rank 1.
Here is a useful lemma showing how to find rank 1 elements in a p-adically

separated δ-ring.

Lemma 2.1.4. Let A be a δ-ring and let x ∈ A. Then δ(xp
n

) ∈ pnA for all n. In
particular, if A is p-adically separated and y ∈ A admits a pn-th root for all n ≥ 0,
then δ(y) = 0, i.e., y has rank 1.

Proof. Cf. [12, Lemma 2.31]. �

6This does not hold for the category of rings with a Frobenius lift in the presence of p-torsion.
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We can now state the definition of a prism (cf. [12, Definition 3.2]). Recall that
a δ-pair (A, I) is simply a δ-ring A together with an ideal I ⊆ A.

Definition 2.1.5. A δ-pair (A, I) is a prism if I ⊆ A is an invertible ideal such that
A is derived (p, I)-complete, and p ∈ I + ϕ(I)A. A prism (A, I) is called bounded
if A/I has bounded p∞-torsion.

Remark 2.1.6. Some comments about these definitions are in order :

(1) By [12, Lemma 3.1] the condition p ∈ I + ϕ(I)A is equivalent to the fact
that I is pro-Zariski locally on Spec(A) generated by a distinguished ele-
ment. Thus it is usually not much harm to assume that I = (d) is actually
principal7.

(2) If (A, I) → (B, J) is a morphism of prisms, i.e., A → B is a morphism of
δ-rings carrying I to J , then [12, Lemma 3.5] implies that J = IB.

(3) An important example of a prism is provided by

(A, I) = (Zp[[q − 1]], ([p]q))

where

[p]q :=
qp − 1

q − 1
is the q-analog of p. Many other interesting examples will appear below.

(4) The prism (A, I) being bounded implies that A is classically (p, I)-adically
complete (cf. [7, Exercise 3.4.]), and thus in particular p-adically separated.

Lemma 2.1.7. Let (A, I) be a prism and let d ∈ I be distinguished. If (p, d) is a
regular sequence in A, then for all r, s ≥ 0, r 6= s the sequences

(p, ϕr(d)), (ϕr(d), ϕs(d))

are regular.

Proof. Note that it suffices to consider the case s = 0 by assuming r > s and
replacing d by ϕs(d). Then the statement is proven in [1, Lemma 3.3] and [1,
Lemma 3.6]. �

Previous work in p-adic Hodge theory used, in one form or another, the theory of
perfectoid spaces. From the prismatic perspective, this is explained as follows. We
recall that a δ-ring A (or prism (A, I)) is called perfect if the Frobenius ϕ : A→ A
is an isomorphism. If A is perfect, then necessarily A ∼= W (R) for some perfect
ring R (cf. [12, Corollary 2.30]).

Proposition 2.1.8. The functor

{perfect prisms (A, I)} → {(integral) perfectoid rings R}, (A, I) 7→ A/I.

is an equivalence of categories with inverse R 7→ (Ainf(R), ker(θ̃)), where Ainf(R) :=

W (R♭) and θ̃ = θ ◦ ϕ−1, θ being Fontaine’s theta map.

Proof. Cf. [12, Theorem 3.9]. �

Remark 2.1.9. (1) Of course, one could use θ instead of θ̃. We make this (slightly
strange) choice for coherence with later choices.

(2) The theorem implies in particular that for every perfect prism (A, I), the
ideal I is principal.

7For example, if A is perfect, i.e., the Frobenius ϕ : A → A is bijective, then this condition is
automatic by [12, Lemma 3.7].
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As a corollary, we get the following easy case of almost purity.

Corollary 2.1.10. Let R be a perfectoid ring and let R→ R′ be p-completely étale.
Then R′ is perfectoid. Moreover, if J ⊆ R is an ideal, then the p-completion R′ of
the henselization of R at J is perfectoid.

Proof. We can lift R′ to a (p, ker(θ))-completely étale Ainf(R)-algebra B. By [12,
Lemma 2.18], the δ-structure on Ainf(R) extends uniquely to B. Reducing modulo
p we see that B is a perfect δ-ring as it is (p, ker(θ))-completely étale over Ainf(R).
Using Proposition 2.1.8 R′ ∼= B/ ker(θ)B is therefore perfectoid. The statement on
henselizations follows from this as henselizations are colimits along étale maps (cf.
the proof of [49, Tag 0A02]). �

Moreover, perfectoid rings enjoy the following fundamental property.

Proposition 2.1.11. Let (A, I) be a perfect prism. Then for every prism (B, J)
the map

Hom((A, I), (B, J))→ Hom(A/I,B/J)

is a bijection.

Proof. Cf. [12, Lemma 4.7.]. �

2.2. The q-logarithm. Each prism is endowed with its Nygaard filtration (cf. [7,
Definition 11.2.]).

Definition 2.2.1. Let (A, I) be a prism. Then we set

N≥iA := ϕ−1(Ii)

for i ≥ 0. The filtration N≥•A is called the Nygaard filtration of (A, I).

This filtration (or rather the first piece of this filtration) will play an important
role in the rest of this text. It already shows up when proving the existence of the
q-logarithm

logq : Zp(1)(B/J)→ B, x 7→ logq([x
1/p]θ̃)

for a prism (A, I) over (Zp[[q − 1]], ([p]q)) from Remark 2.1.6, as we now explain.
Here,

Zp(1) := Tp(µp∞)

is the functor sending a ring R to Tp(R
×) = lim

←−
n

µpn(R) and

[−]θ̃ : lim
←−
x 7→xp

A/I → A

is the Teichmüller lift sending a p-power compatible system

x := (x0, x1, . . .) ∈ lim
←−
x 7→xp

A/I

to the limit

[x]θ̃ := lim
−→
n→∞

x̃p
n

n

where x̃n ∈ A is a lift of xn ∈ A/I. By definition,

Zp(1)(A/I) ⊆ lim
←−
x 7→xp

A/I, (x0, x1, . . .) 7→ (1, x0, x1, . . .).
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Moreover, on lim
←−
x 7→xp

A/I one can take p-th roots

(−)1/p : lim
←−
x 7→xp

A/I → lim
←−
x 7→xp

A/I, (x0, x1, . . .) 7→ (x1, x2, . . .).

In [1, Lemma 4.10] there is the following lemma on the q-logarithm. For n ∈ Z

we recall that the q-number [n]q is defined as

[n]q :=
qn − 1

q − 1
∈ Zp[[q − 1]].

Lemma 2.2.2. Let (B, J) be a prism over (Zp[[q − 1]], ([p]q)). Then for every
element x ∈ 1 +N≥1B of rank 1, i.e., δ(x) = 0, the series

logq(x) =
∞∑

n=1

(−1)n−1qn(n−1)/2 (x− 1)(x− q) · · · (x− qn−1)

[n]q

is well-defined and converges in B. Moreover, logq(x) ∈ N
≥1B and logq(x) =

q−1
log(q) log(x), where log(x) :=

∞∑
n=1

(−1)n−1 (x−1)
n

8.

The defining properties of the q-logarithm are that logq(1) = 0 and that its

q-derivative is
dqx
x (cf. [1, Lemma 4.6.]).

One derives easily the existence of the “divided q-logarithm”.

Lemma 2.2.3. Let (B, J) be a prism over (Zp[[q−1]], ([p]q)) and let x ∈ Zp(1)(B/J).

Then [x1/p]θ̃ ∈ B is of rank 1 and lies in 1 +N≥1B. Thus

logq([x
1/p]θ̃) =

∞∑

n=1

(−1)n−1qn(n−1)/2 ([x
1/p]θ̃ − 1) . . . ([x1/p]θ̃ − q

n−1)

[n]q

exists in B.

Proof. By Lemma 2.1.4 the element [x1/p]θ̃ is of rank 1 as it admits arbitrary pn-

roots. Moreover, [x1/p]θ̃ ∈ 1 + N≥1B as ϕ([x1/p]θ̃) = [x]θ̃ ≡ 1 modulo J . By
Lemma 2.2.2 we can therefore conclude. �

8This equality holds in B[1/p][[x− 1]]∧(q−1).
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3. Generalities on prismatic cohomology

3.1. Prismatic site and prismatic cohomology. In this paragraph, we shortly
recall, mostly for the convenience of the reader and to fix notations, some fun-
damental definitions and results, without proofs, from [12]. Fix a bounded prism
(A, I). Let R be a p-complete A/I-algebra.

Definition 3.1.1. The prismatic site of R relative to A, denoted (R/A)∆, is the
category whose objects are given by bounded prisms (B, IB) over (A, I) together
with an A/I-algebra map R→ B/IB, with the obvious morphisms, endowed with
the Grothendieck topology for which covers are given by (p, I)-completely faithfully
flat morphisms of prisms over (A, I).

Remark 3.1.2. In this remark we deal with the set-theoretic issues arising from
Definition 3.1.1. For example, as it stands there does not exist a sheafification
functor for presheaves on (R/A)

∆
. We will implicitly fix a cut-off cardinal κ like

in [46, Lemma 4.1] and assume that all objects appearing in Definition 3.1.1 (or
Definition 3.1.4) have cardinality < κ. The results of this paper will not change
under enlarging κ. For example, the category of prismatic Dieudonné crystals on
(R)∆ will be independent of the choice of κ. Also the prismatic cohomology does

not change (because it can be calculated via a C̆ech-Alexander complex), and thus
the (filtered) prismatic Dieudonné crystals will be independent of κ (by Section 4.4).

This affine definition admits an immediate extension to p-adic formal schemes
over Spf(A/I), cf [12].

Proposition 3.1.3 ([12], Corollary 3.12). The functor O
∆
(resp. O

∆
) on the pris-

matic site valued in (p, I)-complete δ−A-algebras (resp. in p-complete R-algebras),
sending (B, IB) ∈ (R/A)∆ to B (resp. B/IB), is a sheaf. The sheaf O∆ (resp.

O
∆
) is called the prismatic structure sheaf (resp. the reduced prismatic structure

sheaf).

These constructions have absolute variants, where one does not fix a base prism.
Let R be a p-complete ring.

Definition 3.1.4. The (absolute) prismatic site of R, denoted (R)∆, is the category
whose objects are given by bounded prisms (B, J) together with a ring map R →
B/J , with the obvious morphisms, endowed with the Grothendieck topology for
which covers are given by morphisms of prism (B, J) → (C, JC) which are (p, I)-
completely faithfully flat.

Exactly as before, one defines functors O∆ and O∆, which are sheaves on (R)∆.

We turn to the definition of (derived) prismatic cohomology. Fix a bounded
prism (A, I). The prismatic cohomology of R over A is defined in two steps. One
starts with the case where R is p-completely smooth over A/I.

Definition 3.1.5. Let R be a p-complete p-completely smooth A/I-algebra. The
prismatic complex ∆R/A of R over A is defined to be the cohomology of the sheaf
O∆ on the prismatic site :

∆R/A = RΓ((R/A)∆,O∆).

This is a (p, I)-complete commutative algebra object in D(A) endowed with a semi-
linear map ϕ : ∆R/A → ∆R/A, induced by the Frobenius of O∆.
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Similarly, one defines the reduced prismatic complex or Hodge-Tate complex :

∆R/A = RΓ((R/A)
∆
,O

∆
).

This is a p-complete commutative algebra object in D(R).

A fundamental property of prismatic cohomology is the Hodge-Tate comparison
theorem, which relates the Hodge-Tate complex to differential forms. For this, first
recall that for any A/I-module M and integer n, the nth-Breuil-Kisin twist of M
is defined as

M{n} :=M ⊗A/I (I/I
2)⊗n.

The Bockstein maps

βI : H
i(∆R/A){i} → Hi+1(∆R/A){i+ 1}

for each i ≥ 0 make (H∗(∆R/A{∗}, βI) a graded commutative A/I-differential

graded algebra9, which comes with a map η : R→ H0(∆R/A).

Theorem 3.1.6 ([12], Theorem 4.10). The map η extends to a map

η∗R : (Ω
∧p

R/(A/I), d)→ (H∗(∆R/A, βI)

which is an isomorphism.

While proving Theorem 3.1.6, Bhatt and Scholze also relate prismatic and crys-
talline cohomology when the ring R is an Fp-algebra. The precise statement is the
following. Assume that I = (p), i.e. that (A, I) is a crystalline prism. Let J ⊂ A
be a PD-ideal with p ∈ J . Let R be a smooth A/J-algebra and

R(1) = R⊗A/J A/p,

where the map A/J → A/p is the map induced by Frobenius and the fact that J
is a PD-ideal.

Theorem 3.1.7 ([12], Theorem 5.2). Under the previous assumptions, there is a
canonical isomorphism of E∞ −A-algebras

∆R(1)/A ≃ RΓcrys(R/A),

compatible with Frobenius.

Remark 3.1.8. (1) If J = (p), R(1) is just the Frobenius twist of R.
(2) The proof of Theorem 3.1.7 goes through for a syntomic A/J-algebra R.

The important point is that in the proof in [12, Theorem 5.2] in each

simplicial degree the kernel of the morphism B• → R̃ is the inductive limit
of ideals of the form (p, x1, . . . , xr) with (x1, . . . , xr) being p-completely
regular relative to A, which allows to apply [12, Proposition 3.13]. The
statement extends by descent from the quasi-regular semiperfect case to all
quasi-syntomic rings over Fp (cf. Lemma 3.4.3).

Definition 3.1.5 of course makes sense without the hypothesis that R is p-
completely smooth over A/I. But it would not give well behaved objects ; for
instance, the Hodge-Tate comparison would not hold in general10.. The formalism

9For p = 2 this assertion is non-trivial and part of the proof of [12, Theorem 4.10].
10Nevertheless, in Section 3.4 we will check that the site-theoretic defined prismatic cohomology

is well-behaved for quasi-regular semiperfectoid rings (as it agrees with the derived prismatic
cohomology), and also for quasi-syntomic rings
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of non-abelian derived functors allows to extend the definition of the prismatic and
Hodge-Tate complexes to all p-complete A/I-algebras in a manner compatible with
the Hodge-Tate comparison theorem.

Definition 3.1.9. The derived prismatic cohomology functor L∆−/A (resp. the

derived Hodge-Tate cohomology functor L∆−/A) is the left Kan extension (cf. [11,

Construction 2.1]) of the functor ∆−/A (resp. ∆−/A) from p-completely smooth
A/I-algebras to (p, I)-complete commutative algebra objects in (the ∞-category)
D(A) (resp. p-complete commutative algebra objects in D(R)), to the category of
p-complete A/I-algebras.

For short, we will just write ∆R/A (resp. ∆R/A) for L∆R/A (resp. L∆R/A) in the
following.

Left Kan extension of the Postnikov (or canonical filtration) filtration leads to
an extension of Hodge-Tate comparison to derived prismatic cohomology.

Proposition 3.1.10. For any p-complete A/I-algebra R, the derived Hodge-Tate
complex ∆R/A comes equipped with a functorial increasing multiplicative exhaus-

tive filtration Filconj∗ in the category of p-complete objects in D(R) and canonical
identifications

grconji (∆R/A) ≃ ∧
iLR/(A/I){−i}[−i]

∧p.

Finally, let us indicate how these affine statements globalize.

Proposition 3.1.11. Let X be a p-adic formal scheme over Spf(A/I). There exists
a functorially defined (p, I)-complete commutative algebra object ∆X/A ∈ D(X,A),
equipped with a ϕA-linear map ϕX : ∆X/A → ∆X/A, and having the following prop-
erties :

• For any affine open U = Spf(R) in X, there is a natural isomorphism of
(p, I)-complete commutative algebra objects in D(A) between RΓ(U,∆X/A)
and ∆R/A, compatible with Frobenius.

• Set ∆X/A = ∆X/A ⊗
L
A A/I ∈ D(X,A/I). Then ∆X/A is naturally an object

of D(X), which comes with a functorial increasing multiplicative exhaustive

filtration Filconj∗ in the category of p-complete objects in D(X) and canonical
identifications

grconji (∆X/A) ≃ ∧
iLX/(A/I){−i}[−i]

∧p.

3.2. Truncated Hodge-Tate cohomology and the cotangent complex. Let
(A, I) be a bounded prism, and let X be a p-adic A/I-formal scheme. The following
result also appears in [12, Proposition 4.14]. We give a similar argument (suggested
to us by Bhatt), with more details than in loc. cit.

Proposition 3.2.1. There is a canonical isomorphism :

αX : LX/Spf(A){−1}[−1]
∧p ∼= Filconj1 (∆X/A),

where the right-hand side is the first piece of the increasing filtration on ∆X/A

introduced in Proposition 3.1.11.

Proof. We can assume that X = Spf(R) is affine. We want to prove that there is a
canonical isomorphism

αR : LR/A{−1}[−1]
∧p ∼= Filconj1 (∆R/A).
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First, let us note that by the transitivity triangle for A→ A/I → R the cotangent
complex LR/A{−1}[−1]

∧p sits inside a triangle

R ∼= R ⊗A/I L(A/I)/A{−1}[−1]
∧p → LR/A{−1}[−1]

∧p → LR/(A/I){−1}[−1]
∧p

and the outer terms are isomorphic to R ∼= grconj0 ∆R/A and

grconj1 ∆R/A
∼= LR/(A/I){−1}[−1]

∧p.

To construct the isomorphism αR it suffices to restrict to A/I → R p-completely
smooth first, and then Kan extend. Thus assume from now on that R is p-
completely smooth over A/I.

Let (B, J) ∈ (R/A)∆, i.e., (B, J) is a prism over (A, I) with a morphism ι : R→
B/J . Pulling back the extension of A-algebras

0→ J/J2 → B/J2 → B/J → 0

along ι : R → B/J defines an extension of R by J/J2 ∼= B/J{1} and as such, is
thus classified by a morphism

α′
R : L

∧p

R/A → B/J{1}[1].

Passing to the (homotopy) limit over all (B, J) ∈ (R/A)∆ then defines (after shifting
and twisting) the morphism

αR : LR/A{−1}[−1]
∧p → τ≤1

∆R/A.

Concretely, if R = A/I〈x〉, then

L
∧p

R/A
∼= R⊗A/I I/I

2[1]⊕Rdx.

On the summand R⊗A/I I/I
2[1], the morphism α′

R is simply the base extension of

I/I2 → J/J2 as follows by considering the case A/I = R. On the summand Rdx
the morphism α′

R is (canonically) represented by the J/J2-torsor of preimages of

ι(x) in B/J2 and factors as R
ι
−→ B/J → B/J{1}[1] with the second morphism the

connecting morphism for 0 → B/J{1} → B/J2 → B/J → 0. Thus, after passing
to the limit, we get a diagram

R

�� %%▲
▲
▲
▲
▲
▲
▲
▲
▲
▲

∆R/A
// ∆R/A{1}[1]

and on H0 the horizontal morphism induces the Bockstein differential

β : H0(∆R/A)→ H0(∆R/A{1}[1]) = H1(∆R/A){1}.

Thus the image of dx ∈ H0(L
∧p

R/A) under αR is β(ι(x)). Therefore we see that on

H0 the morphism αR induces the identity under the identifications

(Ω1
R/(A/I))

∧p ∼= H0(L
∧p

R/A)

and

(Ω1
R/(A/I))

∧p ∼= H1(∆R/A){1}

(the second is the Hodge-Tate comparison). Moreover, the morphism

R⊗A/I I/I
2 ∼= H−1(L

∧p

R/A)
H−1(αR)
−−−−−−→ H−1(∆R/A{1}[1])
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is the canonical one obtained by tensoring R → H0(∆R/A) with I/I2. By functo-

riality (and as Ω1
R/A is generated by dr for r ∈ R), we can conclude that for every

p-completely smooth algebra R over A

αR : Hi(L
∧p

R/A)→ Hi(∆R/A{1}[1])

induces the canonical morphism, and thus, that αR is an isomorphism in general.
�

Recall the following proposition, which is a general consequence of the theory of
the cotangent complex.

Proposition 3.2.2. Let S be a ring, I ⊆ S an invertible ideal and X a flat
S := S/I-scheme. Then the class γ ∈ Ext2OX

(LX/Spec(S), I/I
2 ⊗S OX) defined

by LX/Spec(S) is ± the obstruction class for lifting X to a flat S/I2-scheme.

Proof. See [24, III.2.1.2.3] resp. [24, III.2.1.3.3]. �

As before, let (A, I) be a bounded prism.

Corollary 3.2.3. Let X be a p-completely flat p-adic formal scheme over A/I.

The complex Filconj1 ∆X/A splits in D(X) (i.e., is isomorphic in D(X) to a complex
with zero differentials) if and only if X admits a lifting to a p-completely flat formal
scheme over A/I2.

Proof. Indeed, Filconj1 ∆X/A splits if and only if the class in

Ext1OX
(grconj1 ∆X/A, gr

conj
0 ∆X/A) = Ext2OX

(L
∧p

X/Spf(A/I){−1},OX)

defined by Filconj1 (∆X/A) vanishes. Proposition 3.2.1 shows that this class is the same

as the class defined by the p-completed cotangent complex L
∧p

X/Spf(A){−1}. Lifting

X to a p-completely flat formal scheme over A/I2 is the same as lifting X ⊗A/I
A/(I, pn) to a flat scheme over A/(I2, pn) for all n ≥ 1 (here we use that (A, I)
is bounded in order to know that A/I is classically p-complete). One concludes
by applying Proposition 3.2.2, together with the fact that the p-completion of the
cotangent complex does not affect the (derived) reduction modulo pn. �

This corollary will be used in Section 4.5, when studying prismatic cohomology
of abelian schemes.

3.3. Quasi-syntomic rings. We shortly recall some key definitions from [11, Chap-
ter 4].

Definition 3.3.1. A ring R is quasi-syntomic if R is p-complete with bounded
p∞-torsion and if the cotangent complex LR/Zp

has p-complete Tor-amplitude in

[−1, 0]11. The category of all quasi-syntomic rings is denoted by QSyn.
Similarly, a map R → R′ of p-complete rings with bounded p∞-torsion is a

quasi-syntomic morphism (resp. a quasi-syntomic cover) if R′ is p-completely flat
(resp. p-completely faithfully flat) over R and LR′/R ∈ D(R′) has p-complete Tor-
amplitude in [−1, 0].

11This means that the complex M = LR/Zp
⊗L

R R/p ∈ D(R/p) is such that M ⊗L
R N ∈

D[−1,0](R/p) for any R/p-module N .
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For a quasi-syntomic ring R the p-completed cotangent complex (LR/Zp
)∧p will

thus be in D[−1,0] (cf. [11, Lemma 4.6.]).

Remark 3.3.2. This definition extends (in the p-complete world) the usual notion
of locally complete intersection ring and syntomic morphism (flat and local complete
intersection) to the non-Noetherian, non finite-type setting, as shown by the next
example.

Example 3.3.3. (1) Any p-complete l.c.i. Noetherian ring is in QSyn (cf. [2,
Theorem 1.2]).

(2) There are also big rings in QSyn. For example, any (integral) perfectoid
ring (i.e., a ring R which is p-complete, such that πp = pu for some π ∈ R
and u ∈ R×, Frobenius is surjective on R/p and ker(θ) is principal.) is in
QSyn (cf. [11, Proposition 4.18.]). We give a short explanation : if R is
such a ring, the transitivity triangle for

Zp → Ainf(R)→ R

and the fact that Ainf(R) is relatively perfect over Zp modulo p imply that
after applying −⊗L

R R/p, LR/Zp
and LR/Ainf (R) identify. But

LR/Ainf (R) = ker(θ)/ ker(θ)2[1] = R[1],

as ker(θ) is generated by a non-zero divisor12.
(3) As a consequence of (ii), the p-completion of a smooth algebra over a per-

fectoid ring is also quasi-syntomic, as well as any p-complete bounded p∞-
torsion ring which can be presented as the quotient of an integral perfectoid
ring by a finite regular sequence.

The (opposite of the) category QSyn is endowed with the structure of a site.

Definition 3.3.4. Let QSynopqsyn be the site whose underlying category is the op-
posite category of the category QSyn and endowed with the Grothendieck topology
generated by quasi-syntomic covers.

If R ∈ QSyn we will denote by (R)QSYN (resp. (R)qsyn) the big (resp. the small)
quasi-syntomic site of R, given by all p-complete with bounded p∞-torsion (resp.
all quasi-syntomic) rings over R endowed with the quasi-syntomic topology).

The authors of [11] isolated an interesting class of quasi-syntomic rings.

Definition 3.3.5. A ring R is quasi-regular semiperfectoid if R ∈ QSyn and there
exists a perfectoid ring S mapping surjectively to R.

Example 3.3.6. Any perfectoid ring, or any p-complete bounded p∞-torsion quo-
tient of a perfectoid ring by a finite regular sequence, is quasi-regular semiperfectoid.

The interest of quasi-regular semiperfectoid rings comes from the fact that they
form a basis of the site QSynopqsyn.

Proposition 3.3.7. Let R be quasi-syntomic ring. There exists a quasi-syntomic
cover R → R′, with R′ quasi-regular semiperfectoid. Moreover, all terms of the
C̆ech nerve R

′• are quasi-regular semiperfectoid.

Proof. See [11, Lemma 4.27] and [11, Lemma 4.29]. �

12One also proves that R[p∞] = R[p], which shows that R has bounded p∞-torsion.
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Finally, recall the following result, which is [12, Prop 7.11].

Proposition 3.3.8. Let (A, I) be a bounded prism, and R be a quasi-syntomic A/I-
algebra. There exists a prism (B, IB) ∈ (R/A)

∆
such that the map R → B/IB is

p-completely faithfully flat. In particular, if A/I → R is a quasi-syntomic cover,
then (A, I)→ (B, IB) is a faithfully flat map of prisms.

Proof. Since the proof is short, we recall it. Choose a surjection

A/I〈xj , j ∈ J〉 → R,

for some index set J . Set

S = A/I〈x
1/p∞

j 〉⊗̂
L

A/I〈xj,j∈J〉R.

Then R → S is a quasi-syntomic cover and by assumption A/I → R is quasi-
syntomic : hence, the map A/I → S is quasi-syntomic. Moreover the p-completion
of Ω1

S/(A/I) is zero. We deduce that the map A/I → S is such that (LS/(A/I))
∧p

has p-complete Tor-amplitude in degree [−1,−1]. Therefore, by the Hodge-Tate
comparison, the derived prismatic cohomology ∆S/A is concentrated in degree 0

and the map S → ∆S/A is p-completely faithfully flat. One can thus just take
B = ∆S/A. �

As observed in [12], a corollary of Proposition 3.3.8 is André’s lemma.

Theorem 3.3.9 (André’s lemma). Let R be perfectoid ring. Then there exists a
p-completely faithfully flat map R→ S of perfectoid rings such that S is absolutely
integrally closed, i.e., every monic polynomial with coefficients in S has a solution.

Proof. This is [12, Theorem 7.12]. Since the proof is also short, we recall it. Write
R = A/I, for a perfect prism (A, I) (Proposition 2.1.8). The p-complete R-algebra

R̃ obtained by adding roots of all possible monic polynomials over R is a quasi-
syntomic cover, so by Proposition 3.3.8, we can find a prism (B, J) over (A, I)

with a p-completely faithfully flat morphism R̃ → R1 := B/J . Moreover, we can
(and do) assume that (B, J) is a perfect prism, since going to the perfection13 of
a morphism of prisms preserves (p, I)-complete faithful flatness (because this can
be checked modulo (p, I) and is true for the usual perfection on Fp-algebras) and
because (A, I) is already perfect. Transfinitely iterating the construction R 7→ R1

produces the desired ring S. �

Let us recall that a functor u : C → D between sites is cocontinuous (cf. [49, Tag
00XI]) if for every object C ∈ C and any covering {Vj → u(C)}j of u(C) in D there
exists a covering {Cj → C}j of C in C and morphisms u(Cj)→ Vj over u(C). For
a cocontinuous functor u : C → D the functor

u−1 : Shv(D)→ Shv(C), F → (F ◦ u)♯

(here ()♯ denotes sheafification) is left-exact (even exact) with rightadjoint

G ∈ Shv(C) 7→ (D 7→ lim←−
{u(C)→D}op

G(C)).

Thus, a cocontinuous functor u : C → D induces a morphism of topoi

u : Shv(C)→ Shv(D).

13The perfection of a prism is the (p, I)-derived completion (or classical) of its colimit along
ϕ. See [12].
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Note that in the definition of a cocontinuous functor the morphisms u(Cj)→ u(C)
are not required to form a covering of C.

Corollary 3.3.10. Let R be a p-complete ring. The functor u : (R)∆ → (R)QSYN,
sending (A, I) to

R→ A/I

is cocontinuous. Consequently, it defines a morphism of topoi, still denoted by u :

u : Shv((R)∆)→ Shv((R)QSYN).

Proof. Immediate from the definition (cf. [49, Tag 00XJ]) and the previous propo-
sition. �

This yields the following important corollary.

Corollary 3.3.11. Let R be a p-complete ring. Let

0→ G1 → G2 → G3 → 0

be a short exact sequence of abelian sheaves on (R)QSYN. Then the sequence

0→ u−1(G1)→ u−1(G2)→ u−1(G3)→ 0

is an exact sequence on (R)∆. This applies for example when G1, G2, G3 are finite
locally free group schemes over R.

Proof. The first assertion is just saying that u−1 is exact, as u is a cocontinuous
functor ([49, Tag 00XL]). The second assertion follows, as any finite locally free
group scheme is syntomic (cf. [15, Proposition 2.2.2.]). �

3.4. Prismatic cohomology of quasi-regular semiperfectoid rings. In this
section we want to explain why different natural choices of prismatic cohomology
associated with a quasi-regular semiperfectoid ring are isomorphic. The same result
can be found in [12]. We include this section since it offers a different argument.

For the moment, fix a bounded base prism (A, I) and let R be p-complete A/I-
algebra. There are several cohomologies attached to R :

(1) The derived prismatic cohomology

∆R/A

of R over (A, I) defined in Definition 3.1.9 via left Kan extension of pris-
matic cohomology.

(2) The cohomology

∆
init
R/A := RΓ((R/A)∆,O∆)

of the prismatic site of (R/A)∆ (with its p-completely faithfully flat topol-
ogy).

(3) Finally (and only for technical purposes),

∆
init,unbdd
R/A := RΓ((R/A)∆,unbdd,O∆),

the prismatic cohomology of R with respect to the site (R/A)∆,unbdd of not

necessarily bounded prisms (B, J) over (A, I) together with a morphism
R→ B/J of A/I-algebras. We equip (R/A)∆,unbdd with the chaotic topol-
ogy.

These three cohomologies are different in general.
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Lemma 3.4.1. Assume that R is p-completely smooth over A/I. Then canonically

∆R/A
∼= ∆

init
R/A
∼= ∆

init,unbdd
R/A .

Proof. The first isomorphism follows from properties of the left Kan extension be-

cause R is p-completely smooth. For the second note that ∆
init,unbdd
R/A can be com-

puted via a C̆ech-Alexander complex as in [12, Construction 4.16] with all terms
(p, I)-completely flat over A. This implies that all terms are bounded prisms (cf.

[11, Corollary 4.8.]) and thus ∆
init,unbdd
R/A

∼= ∆
init
R/A. �

Now we restrict our discussion to quasi-regular semiperfectoid rings. Assume
from now on that (A, I) is a perfect prism and that A/I → R is a surjection with

R quasi-regular semiperfectoid. The prism ∆
init,unbdd
R/A admits then a more concrete

(but in general rather untractable) description. Let K be the kernel of A → R.
Then

∆
init,unbdd
R/A

∼= A{
K

I
}∧(p,I)

is the prismatic envelope of the δ-pair (A,K) from [7, Lemma V.5.1] as follows from
the universal property of the latter. In particular, the site (R/A)∆,unbdd has a final

object14.

Proposition 3.4.2. Let as above (A, I) be a perfect prism and R quasi-regular
semiperfectoid with a surjection A/I ։ R. Then the canonical morphisms induce
isomorphisms

∆R/A
∼= ∆

init
R/A
∼= ∆

init,unbdd
R/A

as δ-rings.

Proof. For the second isomorphism it suffices to see that ∆
init,unbb
R/A is bounded. For

showing that ∆
init,unbdd
R/A is bounded it suffices to prove that

∆R/A
∼= ∆

init,unbdd
R/A .

Namely, by the Hodge-Tate comparison ∆R/A is bounded because the (shifted)
cotangent complex L∧

R/(A/I)[−1] and all its shifted wedge powers have uniformly

bounded p∞-torsion. Namely they are p-completely flat over R (cf. [11, Lemma
4.7.]) and R is of bounded p∞-torsion. By the universal property of left Kan
extension (and Lemma 3.4.1) there exists a canonical morphism

αR : ∆R/A → ∆
init,unbdd
R/A

compatible with the canonical morphisms R → ∆R/A and R → ∆
init,unbdd
R/A . More-

over, by the assumption that R is quasi-regular semiperfectoid the cotangent com-
plex L∧

R/(A/I) is p-completely flat over R and concentrated in cohomological degree

−1. By the Hodge-Tate comparison the complexes ∆R/A and ∆R/A are therefore
concentrated in degree 0. By [12, Lemma 7.7], ∆R/A is canonically a δ-ring. Thus,

using the universal property of ∆
init,unbdd
R/A , there is moreover a canonical morphism

βR : ∆
init,unbdd
R/A → ∆R/A.

14Up to now this discussion did not use that R is quasi-regular, it was sufficient that A/I → R
is surjective.
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The composition βR ◦ αR = Id∆R/A
is the identity as follows from the universal

property of left Kan extension. Thus it suffices to see that βR is surjective. By
(p, I)-adic completeness it suffices to check this for

βR : ∆
init,unbdd
R/A /(p, I)→ ∆R/A/(p, I).

Let (A, I)→ (A′, I ′) be a faithfully flat morphism with (A′, I ′) again perfect. Then

R′ := A′⊗̂
L

AR

is discrete and again quasi-regular semiperfectoid (here we use that R has bounded
p∞-torsion and [11, Lemma 4.6.]). Moreover,

∆R/A⊗̂
L

AA
′ ∼= ∆R′/A′

as follows from the Hodge-Tate comparison and base change of the cotangent com-

plex. From the universal property of ∆
init,unbdd
R/A (and Proposition 2.1.11) we can

deduce

H0((A′⊗̂
L

A∆
init,unbdd
R/A )∧(p,I))

∼= ∆R′/A′

where the completion is derived (p, I)-adic and we, a priori, have to take the H0 as

this completion might not be discrete as possibly ∆
init,unbdd
R/A is unbounded. More-

over,

A′/(p, I)⊗A H
0((A′⊗̂

L

A∆
init,unbdd
R/A )∧(p,I))

∼= A′/(p, I)⊗A ∆
init,unbdd
R/A .

Hence, it suffices to proof the claim for R′ and (A′, I ′) instead. By Theorem 3.3.9
we can therefore assume that the kernel K of A/I → R is generated by elements
admitting pn-roots for all n ≥ 0. Set

S := A/I〈X
1/p∞

k | k ∈ K〉/Xj

and

B := A〈X
1/p∞

k | k ∈ K〉

where the completion is (p, I)-adic. After choosing compatible systems of pn-roots

for k ∈ K and lifting this system to A, we obtain a morphism

B → A, X
1/pn

k 7→ k1/p
n

which in turn induces a morphism

S → R.

By construction (and the Hodge-Tate comparison) the morphism

∆S/B → ∆R/A

is surjective as ker(B → S) → K is surjective. Thus we can reduce the proof of
surjectivity of βR to S. As S is the completed colimit of quotients of perfectoid
rings by regular sequences we can invoke [12, Ex. 7.9] to see that ∆

init
R/A

∼= ∆R/A

in this case and [7, Lemma V.2.15] to see that ∆
init,unbdd
R/A

∼= ∆
init
R/A as it can be

calculated via a C̆ech-Alexander complex all of whose terms are bounded (as they
are (p, I)-completely flat over A). �
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If pR = 0, i.e., R is quasi-regular semiperfect, there is moreover the universal
p-complete PD-thickening

Acrys(R)

of R (cf. [48, Proposition 4.1.3]). The ring Acrys(R) is p-torsion free by [11, Theorem
8.14.].

Lemma 3.4.3. Let (A, I), R be as above and assume that pR = 0. Then there is
a canonical ϕ-equivariant isomorphism

∆R/A
∼= Acrys(R).

Proof. As Acrys(R) is p-torsion free (cf. [11, Theorem 8.14]) and carries a canonical
Frobenius lift there we get a natural morphism

∆R/A → Acrys(R).

Conversely, the kernel of the natural morphism (cf. Theorem 3.4.6, which does not
depend on this lemma)

θ : ∆R/A → R

has divided powers (as one checks similarly to [11, Proposition 8.12], using that the
proof of Theorem 3.1.7 goes through in the syntomic case, cf. Remark 3.1.8). This
provides a canonical morphism

Acrys(R)→ ∆R

in the other direction. Similarly, to [11, Theorem 8.14] one checks that both are
inverse to each other. �

Remark 3.4.4. Both rings ∆R/A and Acrys(R) are naturally W (R♭)-algebras, but

the isomorphism of Lemma 3.4.3 restricts to the Frobenius on W (R♭). Concretely,
if R = R♭/x for some non-zero divisor x ∈ R♭, then

∆R/W (R♭)
∼=W (R♭){

x

p
}∧

and (cf. [12, Corollary 2.37])

Acrys(R) ∼=W (R♭){
xp

p
}∧ ∼= ∆R/W (R♭) ⊗W (R♭),ϕW (R♭).

Finally, we will need to connect ∆R to topological cyclic homology. Let

TC−(R)

be the p-completed negative topological cyclic homology of R (cf. [11] and [43]).

On π0(TC
−(R)) there is a canonical ring endomorphism ϕhS

1

induced from the
cyclotomic Frobenius ϕ : THH(R)→ THH(R)tCp on the (p-completed) topological
Hochschild homology. After choosing a perfectoid ring S → R mapping to R there
is a canonical morphism

R→ π0(TC
−(R))/ξ̃

(using that π0(TC
−(R)) ∼= π0(TP(R)) and [11, Proposition 6.4.]).

Theorem 3.4.5. The ring π0(TC
−(R)) is (p, ξ̃)-adically complete, p-torsion free

and the endomorphism ϕ : π0(TC
−(R)) → π0(TC

−(R)) is a Frobenius lift. The
induced morphism

∆R → π0(TC
−(R))

identifies the latter with the Nygaard completion ∆̂R.
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Proof. See [12, Theorem 13.1]. �

In particular, one derives for i ≥ 0 isomorphisms

π2i(TC(R)) ∼= ∆̂
ϕ=ξ̃i

R

for the topological cyclic homology TC(R) of R (cf. [11, Section 7.4.]).
Finally, we recall the following statement from [12], identifying the associated

gradeds of the Nygaard filtration.

Theorem 3.4.6. Let R be a quasi-regular semiperfectoid ring. Then

N≥i(∆R)/N
≥i+1(∆R) ∼= Filconji (∆R){i}

for i ≥ 0. In particular, ∆R/N≥1
∆R
∼= R.

Here Filconj• (∆R) denotes the conjugate filtration on ∆R with graded pieces given

by grconji (∆R) ∼= ΛiL
∧p

R/Zp
[−i].

Proof. See [12, Theorem 12.2]. �

3.5. The Künneth formula in prismatic cohomology. The Hodge-Tate com-
parison implies a Künneth formula. Here is the precise statement. Note that for
a bounded prism (A, I) the functor R 7→ ∆R/A is naturally defined on all derived
p-complete simplicial A/I-algebras.

Proposition 3.5.1. Let (A, I) be a bounded prism. Then the functor

R 7→ ∆R/A

from derived p-complete simplicial rings over A/I to derived (p, I)-complete E∞-
algebras over A preserves tensor products, i.e., for all morphism R1 ← R3 → R2

the canonical morphism

∆R1/A⊗̂
L

∆R3/A
∆R2/A → ∆

R1⊗̂
L

R3
R2/A

is an equivalence.

Proof. Using [11, Construction 2.1] (resp. [39, Proposition 5.5.8.15.]) the functor
R 7→ ∆R/A, which is the left Kan extension from p-completely smooth algebras to all
derived p-complete simplicial A/I-algebras, commutes with colimits if it preserves
finite coproducts. Clearly, ∆(A/I)/A

∼= A, i.e., ∆−/A preserves the final object.
Moreover, for R,S p-completely smooth over A/I the canonical morphism

∆R/A⊗̂
L

A∆S/A → ∆S⊗̂R/A

is an isomorphism because this may by I-completeness be checked for ∆−/A where
it follows from the Hodge-Tate comparison. �

Gluing the isomorphism in Proposition 3.5.1 we can derive, using as well the pro-
jection formula and flat base change for quasi-coherent cohomology, the following
statement.

Corollary 3.5.2. If X and Y are proper, p-completely smooth p-adic formal schemes
over Spf(A/I)), then

RΓ(X ×Spf(A/I) Y,∆X×Spf(A/I)Y/A)
∼= RΓ(X,∆X/A)⊗̂

L

ARΓ(Y,∆Y/A).
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3.6. A torsion-freeness result for prismatic cohomology. Let C be a com-
plete algebraically closed extension of Qp. Fix a choice ε ∈ OC♭ of compatible
primitive pn-th roots of unity and let µ = [ε]−1. In this paragraph, we establish µ-
torsion freeness of the prismatic cohomology of certain quasi-regular semiperfectoid
rings over OC/p

n (Proposition 3.6.2). Moreover, we set

(A, I) := (Ainf(OC), ker(θ̃))

and fix a generator ξ̃ : 1 + q + . . .+ qp−1 of ker(θ̃).

Lemma 3.6.1. The derived prismatic cohomology

∆(Z/pn⊗L
Zp

Fp)/Zp

is concentrated in degree 0 for n ≥ 1.

Proof. Let P be a polynomial Zp-algebra. Then by the crystalline comparison,
Theorem 3.1.7, and the comparison of crystalline cohomology with p-completed de
Rham cohomology of a smooth lift, cf. [4, Theorem V.2.3.2],

∆(P/p)/Zp
∼= RΓcrys((P/p)/Zp) ∼= dR

∧p

P/Zp

Left Kan extending this isomorphism (in the category of derived p-complete com-
plexes) yields an isomorphism

∆S⊗L
Zp

Fp/Zp
∼= dR

∧p

S/Zp

for any simplical Zp-algebra (to identify the left-hand side, we use that the left Kan
extension of the functor sending a polynomial Zp-algebra P to the prismatic coho-
mology of P/p over Zp is the same thing, by composition of left Kan extensions, as
the composition of the derived tensor product functor −⊗L

Zp
Fp with the left Kan ex-

tension of the functor sending a polynomial Fp-algebra to its prismatic cohomology
over Zp, which is by definition derived prismatic cohomology). In particular,

∆Z/pn⊗L
Zp

Fp
∼= dR

∧p

(Z/pn)/Zp
.

By [8, Proposition 8.5],

dR
∧p

(Z/pn)/Zp

∼= (DZ[x]((x))
∧p

x−pn

−−−→ DZ[x]((x))
∧p )

with the right hand side sitting in degrees −1, 0. As the p-completed free divided
power algebra DZ[x]((x))

∧p is an integral domain, we can conclude that as desired

dR
∧p

(Z/pn)/Zp

is concentrated in degree 0. �

Proposition 3.6.2. Let n ≥ 1. Let R be quasi-regular semiperfectoid and flat over
Z/pn. Define R′ := R⊗Z/pn OC/p

n. Then

∆R′

is µ-torsionfree.

Proof. We have to show that

∆R′ ⊗L
A A/µ



PRISMATIC DIEUDONNÉ THEORY 29

is concentrated on degree 0. The morphism A → A/µ factors over Acrys by
Lemma 3.6.3 below. Thus what we want to prove is that

(∆R′⊗̂
L

AAcrys)⊗̂
L

Acrys
A/µ

is concentrated in degree 0. The natural map A→ Acrys gives rise to a morphism
of prisms

(A, (ξ̃))→ (Acrys, (p))

and thus by base change for derived prismatic cohomology

∆R′⊗̂
L

AAcrys
∼= ∆

R′⊗̂
L

OC
Acrys/p

We can calculate

R′ ⊗L
OC

Acrys/p ∼= R ⊗L
Zp
Acrys/p

∼= R ⊗L
Z/pn (Z/pn ⊗L

Zp
Fp)⊗

L
Fp
Acrys/p

∼= (R ⊗L
Z/pn Fp)⊗

L
Fp

(Z/pn ⊗L
Zp

Fp)⊗
L
Fp
Acrys/p

∼= R/p⊗L
Fp

(Z/pn ⊗L
Zp

Fp)⊗
L
Fp
Acrys/p.

The first isomorphism follows from the definition of R′ (and OC/pn ∼= Z/pn ⊗L
Zp

OC by p-torsion freeness of OC), in the second isomorphism we inserted some
factors while in the third isomorphism we use that the canonical morphism Z/pn →
Z/pn ⊗L

Zp
Fp factors (in the derived category) over Fp

15. The fourth isomorphism

follows from flatness of R over Z/pn. Thus,

∆R′⊗L
OC

Acrys/p/Acrys
∼= ∆R/p⊗̂

L

Zp
∆Z/pn⊗L

Zp
Fp/Zp

⊗̂
L

Zp
Acrys

using base change along the morphism (Zp, (p)) → (Acrys, (p)) and the Künneth
formula Proposition 3.5.1. Our aim is therefore to prove that

∆R/p⊗̂
L

Zp
∆Z/pn⊗L

Zp
Fp/Zp

⊗̂
L

Zp
A/µ

is concentrated in degree 0.
The rings A/µ and ∆R/p are p-torsion free (the latter since the ring R/p is

quasi-regular semiperfect : it is obviously semiperfect, and is also quasi-syntomic
by [11, Lemma 4.15 (2)]). Hence, they are topologically free as Zp-modules16. It
therefore suffices to show that the derived prismatic cohomology ∆Z/pn⊗L

Zp
Fp/Zp

of

the simplicial ring Z/pn ⊗L
Zp

Fp over Fp is concentrated in degree 0. This is the

content of Lemma 3.6.1. Note that we can not apply the Künneth formula to
∆Z/pn⊗L

Zp
Fp/Zp

as the tensor product is taken over Zp. �

Lemma 3.6.3. The morphism A→ A/µ factors uniquely over Acrys.

Proof. We have ϕ(µ) = ξ̃µ and thus the (derived) p-complete p-torsion free ring
A/µ is naturally a δ-ring17. As

Acrys
∼= Ainf{

ξ̃

p
}∧p

15This canonical morphism is represented by the morphism of complexes (Zp
pn

−−→ Zp) →

(Z/pn
p
−→ Z/pn). Now it is clear that this morphism factors over Fp ∼= (Zp

p
−→ Zp).

16Therefore, the problem of Remark 4.8.7 does not appear in this case.
17By [10, Lemma 3.23], A/µ →֒ W (OC) with equality if C is spherically complete.
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by [12, Lemma 2.35] it suffices to see that ξ̃ is divisible by p in A/µ. By p-
torsionfreeness of A/µ this implies uniqueness. But clearly

ξ̃ = 1 + q + . . .+ qp−1 ≡ p mod µ

as µ = q − 1. �

Example 3.6.4. Proposition 3.6.2 is not a direct consequence of a torsion-freeness
statement for flat OC/pn-modules, as we now illustrate. Let us construct an exam-
ple of a ring R which is quasi-regular semiperfectoid and flat over OC/p such that
∆R contains no almost zero elements, i.e., elements x ∈ ∆R such that W (m♭)x = 0
where m

♭ ⊆ O♭C is the maximal ideal, but ∆R does. Let m ⊆ OC be the maximal
ideal. The flat OC/p-module

m⊗OC OC/p ∼= m/pm

contains the non-zero almost zero element p. Lifting this example to the world of
quasi-regular semiperfectoid rings will provide our example. Let

S̃ ⊆ OC〈X
1/p∞〉

be the subring of elements
∑

i∈Z[1/p]≥0

aiX
i such that ai ∈ m for i > 0. Set

R̃ := S̃/mX.

Then R̃ is quasi-regular semiperfectoid. Let

p♭ := (p, p1/p, p1/p
2

, . . .)

be a compatible system of pm-roots of p. As

m =
⋃

m≥0

(p1/p
m

)

we can write

R̃ = lim
−→
m≥0

OC〈X
1/p∞

m 〉/(Xm)

where the transition maps send X
1/pi

m to ((p1/p
m+1

)p−1)1/p
i

X
1/pi

m+1
18. This allows us

to compute ∆R̃ using [12, Lemma 12.3.]

∆
OC〈X

1/p∞

m 〉/(Xm)
∼= (

⊕

i∈Z[1/p]

A
Y im
[i]q!

)∧(p,q−1)

with q = [ε] the Teichmüller of a compatible system of pj-roots of unity and Ym =

X
1/p
m . Passing to the colimit over m implies that

∆R̃
∼= (A⊕

⊕

i∈Z[1/p]>0

W (m)♭
Y im
[i]q!

)∧(p,q−1) .

Finally, set

R := R̃/p.

Then

∆R ∼= ∆OC/p⊗̂
L

A∆R̃

18More precisely, we set X
1/pi

m = p1/p
m1/pi

X1/pi .
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by Proposition 3.5.1. Thus, to show that ∆R contains no non-zero almost zero
elements it suffices to show that

B⊗̂
L

AW (m♭)

contains no non-zero almost zero elements, where B := ∆OC/p. By definition there
is an exact sequence

0→W (m♭)→ A→W (k)→ 0

where k = OC/m is the residue field of OC . It suffices to show that

B⊗̂
L

AW (m♭)→ B

is injective as B contains no non-zero almost zero elements19. For this it suffices to

see that B⊗̂
L

AW (k) is concentrated in degree 0. But

B ∼= DZ[x]((x))⊗̂
L

Z[x]A

where Z[x] → A, x 7→ ξ, with ξ a distinguished element reducing to p in W (k).
The morphism Z[x] → A is a flat as follows from [10, Remark 4.31], which implies
that the above tensor product is concentrated in degree 0. Therefore,

B⊗̂
L

AW (k) ∼= DZ[x]((x))⊗̂
L

Z[x]W (k).

We may replace W (k) by Zp by faithful flatness of Zp →W (k). Finally,

DZ[x]((x))⊗̂
L

Z[x]Zp
∼= (DZ[x]((x))

x−p
−−−→ DZ[x]((x)))

is concentrated in degree 0 as the divided power algebraDZ[x]((x)) is an integral do-
main. This implies desired that ∆R has no non-zero almost zero elements. However,
∆R has non-zero almost zero elements as R has (and R embeds into ∆R).

19As B is p-complete and p-torsion free this reduces to the same statement over B/p, which is
free over OC/p.
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4. Prismatic Dieudonné theory for p-divisible groups

This chapter is the heart of this paper. We construct the (filtered) prismatic
Dieudonné functor over any quasi-syntomic ring and prove that it gives an antiequiv-
alence between p-divisible groups over R and filtered prismatic Dieudonné crystals
over R, for quasi-syntomic rings R which are flat over Zp or over Z/pn for some
n ≥ 1. The strategy to do this is to use quasi-syntomic descent to reduce to the
case where R is quasi-regular semiperfectoid, in which case the filtered prismatic
Dieudonné crystals over R can be replaced by simpler objects, the filtered prismatic
Dieudonné modules.

4.1. Abstract filtered prismatic Dieudonné crystals and modules. Let R
be a p-complete ring. We defined in Corollary 3.3.10 a morphism of topoi :

u : Shv((R)∆)→ Shv((R)QSYN).

We let v be the composite of u with the morphism of topos induced by restriction
to the small quasi-syntomic site (R)qsyn of R, formed by rings which are quasi-
syntomic over R, endowed with the quasi-syntomic topology.

Definition 4.1.1. Let R be a p-complete ring. We define :

Opris := v∗O∆ ; N≥1Opris := v∗N
≥1O∆ ; Ipris := v∗I∆,

where I∆ ⊆ O∆ denotes the canonical invertible ideal sheaf sending a prism (B, J) ∈
(R)∆ to J . The sheaf Opris is endowed with a Frobenius lift ϕ.

Although these sheaves are defined in general, we will only use them over quasi-
syntomic rings.

Proposition 4.1.2. Let R be quasi-syntomic ring. The quotient sheaf

Opris/N≥1Opris

is isomorphic to the structure sheaf O of (R)qsyn.

Proof. It is enough to produce such an isomorphism functorially on a basis of
(R)qsyn. By Proposition 3.3.7, we can thus assume that R is quasi-regular semiper-
fectoid. In this case, we conclude by Theorem 3.4.6. �

Definition 4.1.3. Let R be a p-complete ring. A prismatic crystal over R is
an O

∆
-module M on the prismatic site (R)

∆
of R such that for all morphisms

(B, J)→ (B′, J ′) in (R)∆ the canonical morphism

M(B, J)⊗B B
′ ∼=M(B′, J ′)

Note that a prismatic crystal in finite locally free O∆-modules (resp. in finite

locally free O∆-modules) is the same thing as a finite locally free O∆-module (resp.

a finite locally free O∆-module). In what follows, we will essentially consider only
this kind of prismatic crystals.

Proposition 4.1.4. Let R be a quasi-syntomic ring. The functors v∗ and v∗(−) :=
O∆⊗v−1Opris v−1 induce equivalences between the category of finite locally free O∆-

modules and the category of finite locally free Opris-modules.
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Proof. Because v∗(O∆) = O
pris it is clear that for all finite locally freeOpris-modules

M the canonical morphism

M→ v∗(v
∗(M))

is an isomorphism as this can be checked locally on (R)qsyn. Conversely, let N be
a finite locally free O∆-module. We have to show that the counit

v∗v∗(N )→ N

is an isomorphism. For any morphism R → R′ with R′ quasi-syntomic there are
equivalences

(R)∆/hR′ ∼= (R′)∆ , (R)qsyn/R
′ ∼= (R′)qsyn

of slice topoi where hR′(B, J) := HomR(R
′, B/J). By passing to a quasi-syntomic

cover R → R′ we can therefore assume that R is quasi-regular semiperfectoid, in
particular that the site (R)∆ has an inital object given by ∆R. By (p, I)-completely
faithfully flat descent of finite locally free modules over (p, I)-complete rings of
bounded (p, I)-torsion (cf. Proposition A.12), the category of finite locally free
O∆-modules on (R)∆ is equivalent to finite locally free ∆R-modules20. As the
morphism ∆R → R (the “θ”-map) is henselian along its kernel, cf. Lemma 4.1.24,
finite locally free ∆R-modules split on the pullback of an open cover of Spf(R).
Thus, after passing to a quasi-syntomic R-algebra, we may assume that N is finite
free. Then the isomorphism

v∗v∗(N ) ∼= N

is clear. �

Definition 4.1.5. Let R be a quasi-syntomic ring. A prismatic Dieudonné crystal
over R is a finite locally free Opris-moduleM together with ϕ-linear morphism

ϕM :M→M

whose linearization has its cokernel is killed by Ipris.

Definition 4.1.6. Let R be a quasi-syntomic ring. A filtered prismatic Dieudonné
crystal over R is a collection (M,FilM, ϕM) consisting of a finite locally free Opris-
moduleM, a Opris-submodule FilM, and a ϕ-linear map ϕM :M→M, satisfying
the following conditions :

(1) ϕM(FilM) ⊂ Ipris.M.
(2) N≥1Opris.M⊂ FilM andM/FilM is a finite locally free O-module.
(3) ϕM(FilM) generates Ipris.M as an Opris-module.

For a prismatic Dieudonné crystal (M, ϕM) the linearization of the morphism

ϕM :M→M is an isomorphism after inverting a local generator ξ̃ of Ipris and in
particular is injective, since ϕ∗M is ξ̃-torsion free.

The last condition in Definition 4.1.6 implies in particular that if (M,FilM, ϕM)
is a filtered prismatic Dieudonné crystal over R, then (M, ϕM) is a prismatic
Dieudonné crystal over R.

Definition 4.1.7. Let R be a quasi-syntomic ring. We denote by DM(R) the cat-
egory of prismatic Dieudonné crystals over R (with Opris-linear morphisms com-
muting with Frobenius) and by DF(R) the category of filtered prismatic Dieudonné

20The non-trivial point is that the global sections of a finite locally free O∆-module are locally

free over ∆R.
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crystals overR (with morphismsOpris-linear morphisms commuting with the Frobe-
nius and respecting the filtration).

Proposition 4.1.8. The fibered category of filtered prismatic Dieudonné crystals
over the category QSyn of quasi-syntomic rings endowed with the quasi-syntomic
topology is a stack.

Proof. This follows from the definition, because by general properties of topoi mod-
ules under Opris and O form a stack for the quasi-syntomic topology on (R)qsyn. �

For quasi-regular semiperfectoid rings, these abstract objects have a more con-
crete incarnation, which we explain now. Let R be a quasi-regular semiperfectoid
ring and let (∆R, I) be the prism associated with R. Note that I is necessarily
principal as there exists a perfectoid ring mapping to R. Recall (Theorem 3.4.6)
that

θ : ∆R/N
≥1

∆R ∼= R

is an isomorphism.

Definition 4.1.9. A prismatic Dieudonné module over R is a finite locally free
∆R-module M together with a ϕ-linear morphism

ϕM : M →M

whose linearization has its cokernel is killed by I.

Definition 4.1.10. A filtered prismatic Dieudonné module over R is a collection
(M,Fil M,ϕM ) consisting of a finite locally free ∆R-module M , a ∆R-submodule
Fil M , and a ϕ-linear map ϕM :M →M , satisfying the following conditions :

(1) ϕM (Fil M) ⊂ I.M .
(2) N≥1

∆R.M ⊂ Fil M and M/Fil M is a finite locally free R-module.
(3) ϕM (Fil M) generates I.M as a ∆R-module.

For a prismatic Dieudonné module (M,ϕM ) the linearization of the morphism

ϕM : M →M is an isomorphism after inverting a generator ξ̃ of I and in particular
is injective, since ϕ∗M is ξ̃-torsion free.

The last condition in Definition 4.1.10 implies in particular that if (M,FilM,ϕM )
is a filtered prismatic Dieudonné module over R, then (M,ϕM ) is a prismatic
Dieudonné module over R.

Remark 4.1.11. If R is perfectoid, one has

(∆R, I) = (Ainf(R), (ξ̃)).

A prismatic Dieudonné module is the same thing as a minuscule Breuil-Kisin-
Fargues module ([10]) over Ainf(R) with respect to ξ̃.

Remark 4.1.12. Assume that R is quasi-regular semiperfect, i.e. R is quasi-
regular semiperfectoid and pR = 0. Let (M,ϕM ) be a prismatic Dieudonné module
over R. Let N ⊂ M/N≥1

∆RM be a locally direct summand, and define Fil M to
be the inverse image of N in M . Then the collection (M,Fil M,ϕM ) is a filtered
prismatic Dieudonné module over R if and only if N is an “admissible” filtration
in the sense of Grothendieck on the Dieudonné module (M,ϕM , VM ), where VM =
ϕ−1
M .p (which makes sense by the assumption that (M,ϕM ) is a prismatic Dieudonné

module and the p-torsion freeness of ∆R). For a proof of this, see [16, Lemma 2.5.1]).
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Proposition 4.1.13. Let R be a quasi-regular semiperfectoid ring. The functor

M 7→ v∗M(∆R, I)

of evaluation on the initial prism (∆R, I) induces an equivalence between the cate-
gory of (filtered) prismatic Dieudonné crystals over R and the category of (filtered)
prismatic Dieudonné modules over R.

Proof. Use Proposition 4.1.4, Proposition 4.1.2, the fact that

∆R = RΓ((R)qsyn,O
pris) ; R = RΓ((R)qsyn,O)

and that finite locally free O∆-modules (resp. finite locally free O-modules) are
equivalent to finite locally free ∆R-modules (resp. finite locally free R-modules). �

Definition 4.1.14. We denote by DM(R) the category of prismatic Dieudonné
modules over R (with morphisms commuting with the Frobenius) and by DF(R)
the category of filtered prismatic Dieudonné modules over R (with morphisms com-
muting with the Frobenius and respecting the filtration).

Proposition 4.1.13 shows that the possible conflict of notation is not an issue :
for R quasi-regular semiperfectoid, the two categories denoted by DM(R) are nat-
urally equivalent, and similarly for DF(R).

The forgetful functor

(M,Fil M,ϕM ) 7→ (M,ϕM )

from DF(R) to DM(R) is faithful. It is not essentially surjective, nor (a priori) fully
faithful in general. But it is an equivalence for one important class of quasi-syntomic
rings.

Lemma 4.1.15. Let R be a perfectoid ring. Then the forgetful functor

DF(R)→ DM(R)

is an equivalence. In fact, for (M,FilM,ϕM ) ∈ DF(R) necessarily FilM = ϕ−1
M (IM).

Proof. If R is perfectoid, one has

∆R = Ainf(R) ; N
≥1

∆R = ξAinf(R),

where ξ̃ := ϕ(ξ) is a generator of I.
The argument of [16, Lemma 2.1.16] shows that the functor

(M,Fil M,ϕM ) 7→ (Fil M,
ξ

ξ̃
ϕM )

induces an equivalence betwwen DF(R) and DM(R′), with R′ = Ainf(R)/ξ (the
key point is that N≥1

∆R is principal, so that Fil M is a projective ∆R-module ;
in particular, the linearization of the divided Frobenius ϕM/ξ̃ identifies ϕ∗Fil M
and M). As ϕ is bijective on ∆R = Ainf(R), base change along ϕ is also an equiv-
alence between DM(R′) and DM(R). The composite functor sends M ∈ DF(R) to
(M,ϕM ) ∈ DM(R). �

The definition of filtered prismatic Dieudonné crystals is inspired by classical
definitions in crystalline Dieudonné theory, which are themselves generalized and
abstracted in the theory of frames and windows. To end this section, let us shortly
recall the general notions of frame and window, and the connection with the defi-
nitions above.
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Definition 4.1.16. A frame A = (A,Fil A,ϕ, ϕ1) consists of (classically) (p, d)-
adically complete rings A and R = A/Fil A, for some d ∈ A and some ideal Fil A,
a lift of Frobenius ϕ, a ϕ-linear map ϕ1 : Fil A→ A such that ϕ = ̟ϕ1 on Fil A,
with ̟ = ϕ(d).

Remark 4.1.17. In many situations (such as those considered in this paper), the
image of ϕ1 will always generate the unit ideal of A.

Here is an important source of examples.

Example 4.1.18. Let (A, I = (d)) be an oriented prism. There are two natural
ways of attaching a frame to (A, (d)). One possibility is to consider the frame

Ad = (A, (d), ϕ, ϕ1),

where ϕ1 is defined by ϕ1(dx) = ϕ(x) (recall that A is d-torsion free). The other
possibility is to consider the frame

ANyg = (A,N≥1A,ϕ, ϕ1)

where ϕ1 := ϕ/d on N≥1A (using again that A is d-torsion free). Note that in the
first case, the divided Frobenius is with respect to ϕ(d), whereas in the second case
the divided Frobenius is with respect to d.

Definition 4.1.19. A window M = (M,Fil M,ϕM , ϕM,1) over a frame A consists
of a finite locally free A-module M , an A-submodule Fil M ⊂ M , and ϕ-linear
maps ϕM :M →M and ϕM,1 : Fil M →M , such that :

• Fil A ·M ⊂ Fil M and M/Fil M is a finite locally free R-module.
• If a ∈ Fil A, m ∈M , ϕM,1(am) = ϕ1(a)ϕM (m).
• If m ∈ Fil M , ϕM (m) = ̟ϕM,1(m).
• ϕM,1(Fil M) + ϕM (M) generates M as an A-module.

A morphism of windows is anA-linear map preserving the filtrations and commuting
with ϕM and ϕM,1. The category of windows over A is denoted by Win(A).

Remark 4.1.20. If the surjectivity condition on the image of ϕ1 of Remark 4.1.17
is satisfied, then the third point of the previous definition follows from the second
and the last one simply says that ϕM,1(Fil M) generates M .

Example 4.1.21. Let (A, (d)) is an oriented prism. The category of windows over
the frame Ad of Example 4.1.18 is equivalent to the category BK(A) of minuscule
Breuil-Kisin modules over A, that is, to the category of pairs (M,ϕM ) where M
is a finite projective A-module and ϕM : M → M a ϕ-linear map such that its
linearization has cokernel killed by d and projective as an A/d-module. See [16,
Lemma 2.1.16] for a proof. The functor sends a window (M,FilM,ϕM , ϕM,1) to
(FilM,d.ϕM,1).

The other frame structure attached to an oriented prism discussed in Exam-
ple 4.1.18 is the one which is connected to filtered prismatic Dieudonné modules.
More precisely, let R be a quasi-regular semiperfectoid ring, with initial prism
(∆R, I). If one chooses a generator ξ̃ of I, one gets, for each filtered Dieudonné
module (M,Fil M,ϕM ) over R, a divided Frobenius ϕM,1 on Fil M , by dividing by

ξ̃ (recall that ∆R is ξ̃-torsion free by the Hodge-Tate comparison). Then :
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Proposition 4.1.22. Let R be a quasi-regular semiperfectoid ring. After the choice
of a generator ξ̃ of the ideal I of the prism (∆R, I), the category DF(R) is equivalent

to the category Win(∆R), where ∆R,Nyg is the frame associated to (∆R, I) and ξ̃, as
in Example 4.1.18.

Proof. Since ∆R is ξ̃-torsion free, the divided Frobenius on the filtration is deter-
mined by ϕM . �

Therefore, the theory of filtered prismatic Dieudonné modules fits into the gen-
eral formalism of windows21. For example, filtered prismatic Dieudonné modules
have normal decompositions, as we now explain. This simple fact will be very help-
ful later when describing the essential image of the filtered prismatic Dieudonné
functor.

Let us first recall some facts about henselian pairs. Let A be a ring and let
I ⊆ A be an ideal. We recall that the pair (A, I) is henselian if I is contained
in the Jacobson radical of A and if for any monic polynomial f ∈ A[T ] and each
factoriztion f = g0h0 with g0, h0 ∈ A/I[T ] monic and generating the unit ideal,
there exists a factorization f = gh with g, h monic and g0 = g, h0 = h (cf. [49, Tag
09XE]).

If I is locally nilpotent22 or A is I-adically complete, then the pair (A, I) is
henselian (cf. [49, Tag 0ALI], [49, Tag 0ALJ]).

For us the following well-known property of henselian pairs will be important
(cf. [18, Lemma 4.20]).

Lemma 4.1.23. Let (A, I) be an henselian pair. The base change M 7→M⊗AA/I
induces a bijection on isomorphism classes of finite projective modules over A, resp.
A/I.

Proof. If M,N are finite projective A-modules, then any isomorphism M/IM ∼=
N/IN can be lifted to a morphism M → N by projectivity of M . As I ⊆ A lies
in the Jacobson radical of A this lifted homomorphism is then automatically an
isomorphism. Moreover, any finite projective A/I-module can be lifted to a finite
projective A-module by [49, Tag 0D4A]. �

Now, we provide the proof that ∆R is henselian along N≥1
∆R = ker(θ : ∆R → R).

We learned the argument from [37, Remark 5.2].

Lemma 4.1.24. The pair (∆R, ker(θ)) is henselian.

Proof. Because ∆R is (p, ξ)-adically complete it suffices to prove that the pair

(∆R/(p, ξ), (p, ker(θ))/(p, ξ))

is henselian (cf. [49, Tag 0DYD]). We know ker(θ) = N≥1
∆R. Hence, for every

element x ∈ ker(θ), xp ∈ (p, ξ̃). As locally nilpotent ideals are henselian the claim
follows. �

21Nevertheless, as is visible in the proposition, we are in a situation where the subtle aspects
of the theory of windows, which have to do with the divided Frobenius in presence of torsion, do
not show up. They should if one tries to set up the theory for p-complete rings which are not
necessarily quasi-syntomic. See [37] for characteristic p rings.

22That is, every element in I is nilpotent.
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Proposition 4.1.25. Let (M,Fil M,ϕM ) be a filtered prismatic Dieudonné module
over R. Then there exist finite projective ∆R-modules L, T such that M = L ⊕ T
and Fil M = L ⊕N≥1

∆RT . Moreover, given L, T there exists a bijection between
isomorphisms ψ : ϕ∗(L⊕T )→ L⊕T and semi-linear endomorphisms ϕ′

M such that
(M,Fil M,ϕ′

M ) is a filtered prismatic Dieudonné module.

Proof. This follows from the fact that ∆R is henselian alongN≥1
∆R (Lemma 4.1.24)

and Lemma 4.1.23. Namely, the module R⊗∆R
M decomposes, asM/FilM is finite

projective, into a direct sum R ⊗∆R
M ∼= M/Fil M ⊕Q for some finite projective

R-module Q. Let L, T be finite projective ∆R-modules such that L is a lift of
Q and T a lift of M/Fil M . We can then lift the decomposition R ⊗∆R

M to a

decomposition M = L ⊕ T by projectivity. The property Fil M = L ⊕ N≥1
∆RT

follows. The last claim is [33, Lemma 2.5]. �

We record some statements which are later used to prove essential surjectivity
for the filtered prismatic Dieudonné functor.

For a ring A with an endomorphism ϕ : A → A we denote by ϕ − ModA the
category of ϕ-modules over A, i.e., the category of pairs (M,ϕM ) with M a finite
projective A-module and ϕM : ϕ∗M ∼=M an isomorphism.

Lemma 4.1.26. Let A→ B be a surjection of prisms with kernel J ⊆ A. Assume
that the Frobenius ϕ of A is topologically nilpotent on J and that (A, J) is henselian.
Then the functor

ϕ−ModA → ϕ−ModB, (M,ϕM ) 7→ (M ⊗A B,ϕM ⊗A B)

is an equivalence.

Proof. To prove fully faithfulness it suffices to show (by passing to internal hom’s)
that for every ϕ-module (M,ϕM ) over A the map

MϕM=1 → (M/JM)ϕM=1

is bijective. Let m ∈ MϕM=1 ∩ JM and write m =
n∑
i=1

aimi with ai ∈ J and

mi ∈M . Then

m = ϕjM (m) =

n∑

i=1

ϕj(ai)ϕ
j
M (mi)

where the ϕj(ai) converge to 0 if j → ∞ by our assumption on ϕ. Thus m =

ϕjM (m) → 0 if j → ∞ and therefore m = 0, which proves injectivity. Conversely,
let m ∈M and assume that ϕM (m) ≡ m modulo JM . Write

z := ϕM (m)−m ∈ JM.

As above the sequence ϕjM (z) converges to 0 if j →∞. Set

m̃ := m+

∞∑

j=0

ϕjM (z).

Then m̃ ≡ m modulo JM and ϕM (m̃) = m̃. Thus we showed that

MϕM=1 ∼= (M/JM)ϕM=1

and the functor ϕ − ModA → ϕ − ModB is fully faithful and we are left with
essential surjectivity. For this let (N,ϕN ) ∈ ϕ − ModB. By assumption A is
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henselian along J and thus we can write N ∼= M ⊗A B for some finite projective
A-module M . Using projectiviy of ϕ∗M over A we can lift ϕN : ϕ∗N → N to some
homomorphism ϕM : ϕ∗M →M . As J lies in the radical of A the homomorphism
ϕM will automatically be an isomorphism as ϕN is. Thus, we have lifted (N,ϕN )
to (M,ϕM ), which finishes the proof. �

The following statement is similar to [33, Lemma 2.12] or [30, Appendix A.4].

Lemma 4.1.27. Let (A, (ξ̃)) → (B, (ξ̃)) be a surjection of oriented prisms with
kernel J contained in N≥1A. Assume that ϕ1 is topologically nilpotent on J and
that (A, J) is henselian. Then the base change functor induces an equivalence :

Win(A) ≃Win((B,N≥1A/J,A/N≥1A,ϕ, ϕ1)).

We note that ϕ1(J) ⊆ J as B is ξ̃-torsion free and ϕ(j) = ξ̃ϕ1(j) in A. Thus the
condition that ϕ1 is topologically nilpotent on J makes sense. Moreover, ϕ1(J) ⊆ J
implies that (B,N≥1A/J,A/N≥1A,ϕ, ϕ1) is indeed a well-defined frame.

Proof. By the existence of normal decompositions and the fact that A is henselian
along J the base change functor

Win(A)→Win(B)

is essentially surjective. Let M,N be two windows over A. We want to prove that

HomA(M,N) ∼= HomB(M/J,N/J)

whereM/J,N/J denote the base change ofM,N to B. The idea of proof is similar
to Lemma 4.1.26 (and [33, Theorem 3.2]). Let

β : M → JN

be an arbitrary homomorphism of A-modules. Then the A-module homomorphism

U(β) : M → JN, m 7→ 1/ξ̃ϕN (Id⊗ β)(ϕ−1
M (ξ̃m))

is well-defined. Indeed, ϕM : ϕ∗M → M is injective with cokernel killed by ξ̃
(which follows from the fact that ϕM,1(FilM) generates M and that M,ϕ∗(M) are

ξ̃-torsion free) and thus on ξ̃M there exists a partial inverse ϕ−1
M : ξ̃M → ϕ∗M of

ϕM . Moreover, as β has image in JN the composition ϕN (Id ⊗ β) has image in

ξ̃N . By our assumption on topologically nilpotence of ϕ1 on J the endomorphism
ϕN,1 : JN → JN is topologically nilpotent. Hence, for every β : M → JN the
sequence

β, U(β), U(U(β)), . . . , Un(β), . . .

converges to 0. Now let α : M → N be a homomorphism of windows such that
α ≡ 0 modulo J . Then Un(α) = α for all n because α ◦ ϕM = ϕN ◦ α, which
implies α = 0 as the sequence Un(α) converges to 0 as we saw above. Conversely,
assume that α : M → N is an A-module homomorphism, such that α modulo J is
an homomorphism of windows over B. Then α maps FilM to FilN because this
can be checked modulo J . Set

β := U(α)− α : M → 1/ξ̃N.

Then β(M) ⊆ JN . Therefore the homomorphism

α̃ : M → N, m 7→ α(m) +

∞∑

n=0

Un(β)(m)
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is well-defined. Moreover, α ≡ α̃ modulo J and α̃ is a homomorphism of windows
over A. �

From the proof of the last lemma, one can also extract the following statement.

Lemma 4.1.28. Let R → R′ be a morphism of quasi-regular semiperfectoid rings
such that J = ker(∆R → ∆R′) is contained in N≥1

∆R, stable by ϕ1 and such that ϕ1

is topologically nilpotent on J (for some, or equivalently any, choice of a generator
of the idealI defining the prism structure of ∆R). Then the base change functors

DM(R)→ DM(R′) ; DF(R)→ DF(R′)

are faithful.

Proof. It is enough to prove that the first functor is faithful. For this, one uses the
exact same argument used in the proof of Lemma 4.1.27. �

Remark 4.1.29. More generally, if one has a morphism of frames A→ A′, whose
kernel J is contained in Fil A, stable by ϕ1, and such that ϕ1 is topologically
nilpotent on J , the same proof shows that the base change functor

Win(A)→Win(A′)

is faithful.

4.2. Definition of the filtered prismatic Dieudonné functor. In this sub-
section we define the filtered prismatic Dieudonné crystals of p-divisible groups
over quasi-syntomic rings and prove some formal properties of them. More diffi-
cult properties, like the crystal property or local freeness, will be proved later (cf.
Section 4.6) after discussing the case of abelian schemes first (cf. Section 4.5).

Let R ∈ QSyn be a quasi-syntomic ring and let (R)
∆

be its absolute prismatic
site. We recall from Proposition 4.1.4 that the category of finite locally free crystals
on (R)∆ is equivalent to the category of finite locally freeOpris-modules on the small
quasi-syntomic site (R)qsyn of R endowed with the quasi-syntomic topology.

Recall as well that there is an exact sequence

0→ N≥1Opris → Opris → O → 0

where O is the structure sheaf S ∈ (R)qsyn 7→ S on (R)qsyn (cf. Proposition 4.1.2).

Definition 4.2.1. Let G be a p-divisible group over R. We define

M
∆
(G) := Ext1(R)qsyn

(G,Opris)

FilM∆(G) := Ext
1
(R)qsyn

(G,N≥1Opris)

and ϕM
∆
(G) as the endomorphism of M∆(G) induced from the endomorphism ϕ

on Opris. We call (M
∆
(G), ϕM

∆
(G)) the prismatic Dieudonné crystal of G and

the dataM∆(G) := (M∆(G),FilM∆G,ϕM∆(G)) the filtered prismatic Dieudonné
crystal of G.

Remark 4.2.2. Beware that the prismatic Dieudonné crystal of a p-divisible group
is a sheaf on the quasi-syntomic site, not on the prismatic site. In particular, it is
not a crystal on the prismatic site of R, but rather the push-forward along v of a
crystal on the prismatic site (as will be proved later). We hope that this choice of
terminology does not create too much confusion ; from the mathematical point of
view, it is justified by Proposition 4.1.4.
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Fix a p-divisible group G over R. We check some easy properties of M∆(G).

Recall that there is the natural prismatic Cartier divisor Ipris ⊆ Opris.

Lemma 4.2.3. The morphism FilM∆(G)→M∆(G) is injective and

ϕM
∆
(G)(FilM∆(G)) ⊆ I

prisM∆(G).

Proof. The injectivity follows from Hom(G,O) = 0 as G is p-divisible and O is a
p-complete sheaf. For the second statement we claim that

IprisM
∆
(G) ∼= Ext1(R)qsyn

(G, Ipris).

For this it suffices to see that Hom(G,Opris/Ipris) = 0. But Hom(G,Opris/Ipris)
embeds into Hom(G, v∗(O∆)) and this sheaf is zero as v∗(O∆) is p-complete and

G p-divisible. As ϕ(N≥1Opris) ⊆ Ipris the map ϕM
∆
(G) will thus send FilM∆(G)

into IprisM∆(G). �

In [5], the crystalline Dieudonné crystal of a p-divisible group is defined via the
sheaf of local extensions on the crystalline site. There is a similar description of
the filtered prismatic Dieudonné crystal. Let

u : Shv(R)∆ → Shv(R)QSYN

be the morphism from the prismatic to the big quasi-syntomic topos constructed
in Corollary 3.3.10. If F is a sheaf on (R)QSYN, u

−1F is simply the sheafification
of the functor sending a prism (A, I) ∈ (R)∆ to F(A/I).

Let Shv(R)qsyn be the small pro-syntomic topos of R and

ε : Shv(R)QSYN → Shv(R)qsyn

be the natural projection. Then

v = ε ◦ u : Shv(R)∆ → Shv(R)qsyn

and thus

v−1 = u−1 ◦ ε−1.

Lemma 4.2.4. There are canonical isomorphisms

M∆(G)
∼= v∗(Ext1(R)∆

(u−1(G),O∆))

FilM∆(G)
∼= v∗(Ext1(R)

∆
(u−1(G),N≥1O∆)).

Proof. By adjunction there is a canonical isomorphism

RHom(G,Rv∗(O∆))
∼= Rv∗(RHom(v−1G,O∆)).

The p-divisible group G is the colimit of the pn-torsion G[p∞] on the small site
(R)qsyn. As ε−1(G[pn]) = G[pn], or more precisely ε−1(G[pn]) is the sheaf on
the big quasi-syntomic site represented by G[pn], one can conclude ε−1(G) = G by
passing to the colimit. In particular, v−1(G) = u−1(G). Thus we obtain a canonical
isomorphism

RHom(G,Rv∗(O∆))
∼= Rv∗(RHom(u−1(G),O∆)).

It suffices to see that M∆(G), resp. v∗(Ext
1
(R)

∆
(u−1(G),O∆)), are the first coho-

mology sheaves on both sides (and similarly with O∆ replaced by N≥1O∆). The
sheaves

Hom(G,R1v∗(O∆)),Hom(u−1(G),O∆)
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are 0 as G is p-divisible and the target p-complete (similarly for O∆ replaced by

N≥1O∆). This implies the statement. �

Using the p-adic Tate module TpG of G, i.e., the inverse limit

lim
←−
n

G[pn]

of sheaves on (R)qsyn, one can give a more explicit description of the prismatic
Dieudonné crystalM∆(G).

Lemma 4.2.5. Define the universal cover G̃ := lim
←−
p

G of G. Then the sequences

0→ TpG→ G̃→ G→ 0

0→ u−1TpG→ u−1G̃→ u−1G→ 0

of sheaves on (R)qsyn resp. (R)∆ are exact for the quasi-syntomic topology.

Proof. Exactness of the second follows from exactness of the first and exactness of
u−1 (cf. Corollary 3.3.11). The sequence

0→ G[pn]→ G→ G→ 0

is exact for the quasi-syntomic topology as each G[pn] is syntomic over R. Then

exactness of 0 → TpG → G̃ → G → 0 follows by passing to the limit and using
repleteness (in the sense of [13, Section 3]) of (R)qsyn. �

The following lemma will be useful when describing the filtered prismatic Dieudonné
crystals of Qp/Zp and µp∞ .

Lemma 4.2.6. There are a canonical isomorphisms

M∆(G)
∼= Hom(R)qsyn(TpG,O

pris) ∼= v∗Hom(R)
∆
(u−1(TpG),O∆)

and similarly for FilM∆(G) and N≥1O∆,N
≥1Opris.

Proof. This follows from Lemma 4.2.5 and the fact that

RHom(R)
∆
(u−1(G̃),O∆) = 0 ; RHom(R)qsyn(G̃,O

pris) = 0

as O∆,O
pris are derived p-complete sheaves and G̃ is a Qp-vector space. The same

argument works for FilM
∆
(G) as well. �

Remark 4.2.7. The universal vector extension E(G) of G can be seen as an ex-
tension of sheaves on (R)qsyn :

0→ ωǦ → E(G)→ G→ 0.

It is defined as in [42] (this makes sense since R is p-complete), or equivalently as
the push-out of the universal cover exact sequence

0→ TpG→ G̃→ G→ 0

along the Hodge-Tate map

HT : TpG→ ωǦ,

which sends f ∈ TpG = HomR(Qp/Zp, G), viewed by Cartier duality as an element

of HomR(µp∞ , Ǧ), to f∗dT/T , dT/T being the canonical generator of ωµp∞
. Is

there a way to use Lemma 4.2.6 to relate the prismatic Dieudonné module to the
dual of the Lie algebra of E(G) ?
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Assume now that R is quasi-regular semiperfectoid. Then, by Proposition 4.1.4,
the category of finite locally free crystals on (R)∆ is equivalent to the category of
finite projective ∆R-modules by evaluating a crystal on the initial prism ∆R. Simi-
larly, finite locally free Opris-modules on (R)qsyn are equivalent to finite projective
∆R by evaluating a finite locally free Opris-module M on R. This allows the fol-
lowing simplification of the definition of the filtered prismatic Dieudonné crystal of
a p-divisible group G over R.

Definition 4.2.8. Let R be quasi-regular semiperfectoid and let G be a p-divisible
group over R. Define

M∆(G) := Ext1(R)qsyn(G,O
pris) ∼= Ext1(R)∆

(u−1(G),O∆)

FilM∆(G) := Ext1(R)qsyn(G,N
≥1Opris) ∼= Ext1(R)

∆
(u−1(G),N≥1O∆)

and ϕM
∆
(G) as the endomorphism induced by ϕ on Opris. We call

(M∆(G), ϕM∆(G))

the prismatic Dieudonné module of G and

M∆(G) := (M∆(G),FilM∆(G), ϕM∆
(G))

the filtered prismatic Dieudonné module of G.

We will see later that M∆(G) is indeed a filtered prismatic Dieudonné module
in the sense of Definition 4.1.9. Moreover, M∆(G) is the evaluation of the fil-
tered prismatic Dieudonné crystalM∆(G) as follows from the local-global spectral
sequence

Eij2 = Hi(Spf(R), Extj(R)qsyn
(G,Opris))⇒ Exti+j(R)qsyn

(G,Opris)

by the vanishing of the sheafHom(R)qsyn(G,O
pris). Thus under the equivalence from

Proposition 4.1.13 the filtered prismatic Dieudonné crystalM∆(G) corresponds to
the filtered prismatic Dieudonné module M

∆
(G).

4.3. Comparison with former constructions. In this section we prove a com-
parison of the filtered prismatic Dieudonné functorM∆ with former constructions,
in two special cases :

(1) For quasi-syntomic rings such that pR = 0, we relateM∆ to the crystalline
Dieudonné functor of Berthelot-Breen-Messing [5], and more generallyM

∆

to the functor considered by Lau in [37].
(2) For perfectoid rings, we relate the prismatic Dieudonné functor to the func-

tor introduced by Scholze-Weinstein in [47, Appendix to Lecture XVII].

The intersection of these two cases is the case of perfect rings, which was histori-
cally the first to be studied. The situation for perfect fields is briefly discussed at
the end of this section.

We start with the case of quasi-syntomic rings R with pR = 0. We want to
compare the prismatic Dieudonné functor to the crystalline Dieudonné functor

G 7→ Ext1(R/Zp)crys,pr
(icrys∗ (G),Ocrys)

of [5]. Here (R/Zp)crys,pr is the (big) crystalline site of R over Zp, Ocrys is the
crystalline structure sheaf,

icrys : Shv(R)pr → Shv(R/Zp)crys,pr
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is the closed immersion (cf. [37, Lemma 8.1.]) and pr denotes the p-th root topology
of [37, Definition 7.2.]. As in [37, Section 8] we define

Ocrys := ucrys∗ (Ocrys)

as the pushforward of the crystalline structure sheaf Ocrys along the morphism

ucrys : Shv(R/Zp)crys,pr → Shv(R)pr

of topoi. Note that icrys∗ = (ucrys)−1, so we can rewrite the crystalline Dieudonné
functor as

G 7→ Ext1(R/Zp)crys,pr
((ucrys)−1(G),Ocrys)

Let J crys ⊆ Ocrys be the pushforward of the crystalline ideal sheaf Jcrys ⊆ Ocrys.
The following lemma is the basic input in the comparison of the prismatic and

crystalline Dieudonné functor.

Lemma 4.3.1. Let R → R′ be morphism of characteristic p rings which is a p-th
root morphism in the sense of [37, Definition 7.2.], i.e., Zariski-locally (on Spec(R′)
and Spec(R)) R′ is obtained by sucessively adjoining p-th roots of some elements.
Then there is a canonical isomorphism

Opris(R′)→ Ocrys(R′)

identifying N≥1Opris(R′) with J crys(R′).

Note that R′ is quasi-syntomic over R and thus Opris(R′) is defined.

Proof. Using the sheaf property for the pr-topology we may assume that R′ is
semiperfect. Then R′ is even quasi-regular semiperfect as it is quasi-syntomic over
R. Hence,

Opris(R′) = ∆R′ ∼= Acrys(R
′) = Ocrys(R′)

by Lemma 3.4.3. Moreover, the isomorphism in Lemma 3.4.3 identifiesN≥1Opris(R′)
with J crys. �

Let (R)qsyn,pr be the category of quasi-syntomic R-algebras equipped with the
pr-topology, and let

vcrys : Shv(R/Zp)crys,pr → Shv(R)qsyn,pr

be the morphism of topoi obtained by composing ucrys with restriction. Lemma 4.3.1
implies that the sheaves Opris and Ocrys on (R)qsyn,pr are isomorphic. We note
that the categories of finite locally free Ocrys-modules on (R)pr and finite locally
free Ocrys

|(R)qsyn,pr
-modules on (R)qsyn,pr are equivalent because for R quasi-regular

semiperfect both categories identify with finite locally free Acrys(R)-modules. Sim-
ilarly, the category of filtered prismatic Dieudonné crystals over R and the category
of filtered Dieudonné crystals of [37, Definition 8.11] are identified. These remarks
give a meaning to the comparison contained in the next two results.

Theorem 4.3.2. Let R be a quasi-syntomic ring with pR = 0 and G a p-divisible
group over R. Then there is a canonical Frobenius equivariant isomorphism

M∆(G)
∼= vcrys∗ (Ext1(R/Zp)crys,pr

((ucrys)−1(G),Ocrys))

from the prismatic Dieudonné crystal of G (cf. Definition 4.2.1) to the push-forward
of the crystalline Dieudonné crystal of G, which carries the natural filtrations on
both sides onto each other. In particular, if R is quasi-regular semiperfect, M∆(G)
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is isomorphic to the evaluation M crys(G) on Acrys(R) of the crystalline Dieudonné
crystal, compatibly with the Frobenius and the filtration.

Of course, the isomorphism is linear over the isomorphism Opris ∼= Ocrys from
Lemma 4.3.1.

Proof. By definition

M∆(G) = Ext
1
(R)qsyn

(G,Opris).

Thus by Lemma 4.3.1 it suffices to see

vcrys∗ (Ext1(R/Zp)crys,pr
((ucrys)−1(G),Ocrys)) ∼= Ext1(R)pr

(G,Ocrys)

and similarly with Ocrys replaced by J crys. This statement follows by a similar
reasoning as in Lemma 4.2.4 using that Ocrys is p-complete. Lemma 4.3.1 implies
then moreover compatibility with Frobenius and filtration. �

Corollary 4.3.3. Let R be a quasi-syntomic ring with pR = 0 and G a p-divisible
group over R. There is a canonical isomorphism

M∆(G)
∼= DFSpec(R)(G)|(R)qsyn,pr

of filtered Dieudonné crystals over R, where the right hand side is restriction of the
filtered Dieudonné functor of [37, §9].

Proof. It is enough to produce this isomorphism over quasi-regular semi-perfect
rings. It is given in this case by the last theorem, in view of Lau’s definition. �

In general, i.e., when p is not necessarily zero in R, one can still relate the
prismatic Dieudonné crystal of a p-divisible group to the crystalline Dieudonné
crystal, as follows. Let R be a p-complete ring and let D be a p-complete p-torsion
free δ-ring with a surjection D → R whose kernel has divided powers.23 As the
kernel of D → R has divided powers, the Frobenius on D induces a morphism
R→ D/p. With this morphism the prism (D, (p)) defines an object of the absolute
prismatic site (R)∆ of R. Via Lemma 4.2.4 it thus makes sense to evaluate the
prismatic Dieudonné module of a p-divisible group over R, more precisely v∗ of it,
on (D, (p)).

Lemma 4.3.4. For every p-divisible group over R there is a natural Frobenius
equivariant, filtered isomorphism

v∗(M∆(G))(D, (p))
∼= D(G)(D).

Here D(G)(D) denotes the evaluation of the (contravariant, crystalline) Dieudonné
crystal of G on the PD-thickening D → R.

Proof. Assume that H is a finite flat group scheme over R. Then H is syntomic
over R and there is a canonical isomorphism

H1((H(1)/D)∆,O∆)
∼= H1((H/D)crys,Ocrys)

by the crystalline comparison for syntomic morphisms (cf. Remark 3.1.8), where
H(1) := H ×Spec(R) Spec(D/p), and this holds more generally also for products of

23We don’t require pnR = 0 for some n ≥ 0.
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H over R24. This implies that the spectral sequences (cf. Section 4.4) calculating

M∆(H)(D, (p)) := Ext1(u−1(H),O∆)

resp. D(H)(D) are isomorphic (on the E1-page, which is sufficient). Hence, we
obtain the desired natural isomorphism for finite flat group schemes. The proof of
Proposition 4.6.5 below25 shows that writing

G = lim
−→
n

G[pn]

and passing to the limit yields a canonical isomorphism

M∆(G)(D, (p))
∼= D(G)(D)

for G a p-divisible group over R. �

Remark 4.3.5. The relation between the prismatic and the crystalline Dieudonné
functors will mostly be used over a characteristic p perfect field in the rest of this
text, and it could be interesting to find a more direct proof of it in this special case,
as explained at the end of this section. But it will also be used for comparison with
the Scholze-Weinstein functor in the next paragraph and in Section 5.2.

We turn to perfectoid rings. In this case (see Lemma 4.1.15), it is enough to
consider the functor M∆.

The following statement is a special case of a theorem of Fargues ([22], [47]). Let
C be a complete algebraically closed extension of Qp. We abbreviate

Ainf = Ainf(OC) , Acrys := Acrys(OC/p).

We also fix a compatible system ε of p-th roots of unity, and let ξ̃ = [p]q, where

q = [ε]− 1. We identify the initial prism of (OC)∆ with (Ainf , (ξ̃)).

Proposition 4.3.6. A prismatic Dieudonné module (M,ϕM ) over OC (i.e., a
minuscule Breuil-Kisin-Fargues module) is uniquely determined up to isomorphism
by the triple

(TM ,Mcrys, αM ),

where TM is the finite free Zp-module

TM =M [
1

ξ̃
]ϕM=1,

Mcrys =M ⊗Ainf
Acrys

is a ϕ-module over Acrys and αM : TM ⊗Zp Bcrys ≃ Mcrys ⊗Acrys Bcrys is the ϕ-

equivariant isomorphism coming from the natural map M [ 1
ξ̃
]ϕM=1 →M [ 1

ξ̃
].

Proposition 4.3.7. Let R be a perfectoid ring. The functor G 7→ M∆(G) from

BT(R) to DM(R) coincides with the (naive)26 dual of the functor MSW of [47,
Appendix to Lecture XVII].

24Note that H1((H/D)crys ,Ocrys) = H1(((H/p)/D)crys ,Ocrys). This follows from the com-

putation of crystalline cohomology by a C̆ech-Alexander complex and the following fact : if A is a
Z/pn-algebra (for some n > 0), P a free Zp-algebra surjecting onto A, the divided power envelopes

of P/pm → A and P/pm → A/p agree for any m ≥ n : see [4, Theorem I.2.8.2].
25Which the reader can check to be independent of the present lemma.
26I.e., HomAinf (R)(−, Ainf(R)).
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Proof. By v-descent (see [47, Theorem 17.5.2]), one can assume that R = OC ,
where C is a perfectoid algebraically closed field. If C has characteristic p, the
functorMSW is given by the naive dual of the crystalline Dieudonné functor, so we
can simply apply Theorem 4.3.2. Therefore, we can assume that C is a complete
algebraically closed extension of Qp. In this case, assume first that G = X [p∞], for
some formal abelian scheme X over OC , with rigid generic fiber Xrig. The functor
MSW sends G to the prismatic Dieudonné module over OC dual to H1

Ainf
(X) :

this follows from the definition of MSW (G) ([47, §12.1]), [47, Proposition 14.8.3]
and the previous proposition. In particular, in this case, MSW (G) is isomorphic
to the (naive) dual to M∆(G), by Corollary 4.5.7 and the comparison theorem

[12, Theorem 17.2]27. Moreover, this identification is functorial for morphisms of
p-divisible groups of abelian schemes (and not simply for morphisms of abelian
schemes) : indeed, let X,X ′ be two abelian schemes over OC , and G = X [p∞],
H = X ′[p∞], with a morphism f : G→ H . We want to see that the diagram

MSW (G)
∼= //

MSW (f)

��

M∆(G)
∗

M
∆
(f)∗

��

MSW (H)
∼= // M∆(H)∗

commutes. This can be checked after base change to Acrys. Then, using Lemma 4.3.4,
the terms on the top line (resp. on the bottom line) are identified with the covari-
ant crystalline Dieudonné module of G (resp. H), and the horizontal isomorphisms
induce the identity, by construction.

Let now G be a general p-divisible group over OC . There exists a formal abelian
scheme X over OC , such that X [p∞] = G × Ǧ (cf. [47, Proposition 14.8.4]). Let
e : X [p∞]→ X [p∞] be the idempotent with kernel G. Then

M
∆
(G)∗ = ker(M

∆
(e)∗ : M

∆
(X [p∞])∗ →M

∆
(X [p∞])∗)

and

MSW(G) = ker(MSW(e) : MSW(X [p∞])→MSW(X [p∞])).

By the functoriality explained above we can conclude. �

We obtain the following corollary, which we will need in Section 4.9.

Corollary 4.3.8. Let R be a perfectoid ring. The prismatic Dieudonné functor
M∆ induces an antiequivalence between BT(R) and DM(R).

In particular, by Lemma 4.1.15, also the filtered prismatic Dieudonné functor
M∆ is an antiequivalence in this case.

Proof. This follows immediatley from the last proposition and [47, Theorem 17.5.2].
Note that the argument of loc. cit. shows that one only needs to prove the equiva-
lence when R is the ring of integers of a perfectoid algebraically closed field, where
it is due to Berthelot [3, Theorem 3.4.1] and Scholze-Weinstein [48, Theorem 5.2.1]
(in this case, one can even assume that the fraction field of R is spherically com-
plete, and the result is then an easy consequence of results of Fargues : see [48,
§5.2]). �

27Note that we chose ξ̃ as a generator of the ideal of the prism, so the Frobenius twist in the
statement of loc. cit. disappears.
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Remark 4.3.9. Let R be a perfectoid ring. The functor M∆ is exact (see below
Proposition 4.6.7) and has an exact quasi-inverse (we will provide an argument for
this later in Section 5.1 in the case of finite locally free group schemes, which applies
verbatim for p-divisible groups).

Let us conclude this section by discussing the case of perfect fields. For a perfect
field k, Fontaine [23] was the first to give a uniform definition of a functor from
p-divisible groups to (prismatic) Dieudonné modules over k. Let us recall it first, as
formulated in [6, §4.1]. If A is a commutative ring, the set CW(A) of Witt covectors
with values in A is the set of all family (a−i)i∈N of elements of A such that there
exist integers r, s ≥ 0 such that the ideal Jr generated by the a−i, i ≥ r, satisfies
Jsr = 0. One still denotes by CW the sheaf on the big fpqc site28 of k associated to
the presheaf of Witt covectors. This is an abelian sheaf of W (k)-modules, endowed
with a Frobenius operator which is semi-linear with respect to the Frobenius on
W (k). Fontaines defines :

M cl(G) := Hom(k)fpqc
(G,CW).

As a corollary of Theorem 4.3.2 and results of Berthelot-Breen-Messing, one gets

Proposition 4.3.10. Let k be a perfect field, and let G be a p-divisible group over
R. One has a canonical W (k)-linear Frobenius-equivariant isomorphism

M∆(G)
∼=M cl(G).

Proof. By construction, the isomorphism of Theorem 4.3.2 is linear over the iso-
morphism ∆k ≃ Acrys(k), which is given by the Frobenius σ of W (k), i.e., it can be
seen as a Frobenius-equivariant W (k)-linear isomorphism :

M∆(G)
∼= (σ−1)∗M crys(G).

Composing it with σ−1-pullback of the inverse of theW (k)-linear Frobenius-equivariant
isomorphism of [6, Theorem 4.2.14], we get the desired isomorphism. �

It would be interesting to get a more direct proof of this corollary. In character-
istic p, the prismatic Dieudonné crystal of a p-divisible group admits a description
which looks similar to Fontaine’s definition.

Definition 4.3.11. Let R be a a quasi-syntomic ring with pR = 0. We define the
sheaf Q on (R)∆ as the quotient :

0→ O∆ → O∆[1/p]→ Q→ 0.

The morphism O∆ → O∆[1/p] is injective since any prism in (R)∆ is p-torsion
free.

Proposition 4.3.12. Let R be a quasi-syntomic ring with pR = 0, and let G be a
p-divisible group over R. The canonical exact sequence

0→ O
∆
→ O

∆
[1/p]→ Q→ 0

induces an isomorphism :

Hom(R)qsyn(G, v∗Q) = v∗Hom(R)
∆
(u−1G,O∆)

∼=M∆(G).

28We could as well use any other topology finer than the Zariski topology.
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Proof. First assume that G is a finite locally free group scheme. Then the statement
is clear, as

RHom(R)
∆
(u−1(G),O∆[1/p]) = 0,

because u−1(G) is killed by some power of p, whereas on O∆[1/p] multiplication by
p is invertible. The result for p-divisible groups is deduced by a limit argument. �

This naturally leads to the following question.

Question 4.3.13. When R = k is a perfect field, what is the relation between the
sheaf v∗Q and the sheaf CW of Witt covectors ?

4.4. Calculating Ext-groups in topoi. In this section we recall the method of
calculating Ext-groups in a topos as presented by Berthelot, Breen, Messing (cf. [5,
2.1.5]29. Let X be a topos and let G,H ∈ X be two abelian groups, i.e., two abelian
group objects.

The following theorem is attributed to Deligne in [5]. A proof can be found in
[45, Appendix to Lecture IV, Theorem 4.10].

Theorem 4.4.1. Let G ∈ X be an abelian group. Then there exists a natural
functorial (in G) resolution

C(G)• := (. . .→ Z[X2]→ Z[X1]→ Z[X0]) ≃ G

where each Xi ∈ X is a finite disjoint unions of products of copies G.

Proof. See [5, 2.1.5.] or [45, Appendix to Lecture IV, Theorem 4.10] �

Lemma 4.4.2. Let X ∈ X be any object and let F ∈ Ab(X) be an abelian group.
Then

RΓ(X,F) ∼= RHomAb(X)(Z[X ],F),

where Z[X ] denotes the free abelian group on X.

Proof. This follows by deriving the isomorphism F(X) ∼= HomAb(X)(Z[X ],F). �

These two results show that the Ext-groups

ExtiAb(X)(G,H)

can, in principle, be calculated in terms of the cohomology groups

Hi(G× . . .×G,H)

for various products G× . . .×G. Unfortunately, the construction of the resolution
in Theorem 4.4.1 is rather involved. However, the first terms, which are sufficient
for our applications, can be made explicit30. For example, the first terms can be
chosen to be

C(G)0 := Z[G]
C(G)1 := Z[G2]

C(G)2 := Z[G3]⊕ Z[G2]

with explicit differentials (cf. [5, (2.1.5.2.)]). The stupid filtration of the complex
C(G)• yields a spectral sequence

Ei,j1 = ExtjAb(X)(C(G)i,F)⇒ Exti+jAb(X)(C(G)•,F)
∼= Exti+jAb(X)(G,F)

29For simplicity we omit the case of the local Ext-sheaves, which is entirely similar.
30By this, we mean that one can construct a functorial (in G) resolution having these terms

in the beginning.
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and the terms
ExtiAb(X)(C(G)j ,F)

can be calculated using the cohomology. For later use let us make the first terms
of the first page of this spectral sequence explicit:

. . .

,,❩❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩ . . .

--❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩ . . . . . .

H2(G,F)
d1 //

,,❨❨
❨

❨
❨

❨
❨

❨
❨

❨
❨

❨
❨

❨
❨

❨
H2(G×G,F)

d2 //

,,❩❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
H2(G×G,F)⊕H2(G×G×G,F) // . . .

H1(G,F)
d1 //

,,❨❨
❨

❨
❨

❨
❨

❨
❨

❨
❨

❨
❨

❨
❨

❨
H1(G×G,F)

d2 //

,,❩❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
❩

❩
H1(G×G,F)⊕H1(G×G×G,F) // . . .

H0(G,F)
d1 // H0(G×G,F)

d2 // H0(G×G,F)⊕H0(G×G×G,F) // . . .

For an element (x1, . . . , xn) ∈ Gn let us denote by [x1, . . . , xn] ∈ Z[Gn] the cor-
responding element in the group ring Z[Gn]. The morphisms d1 and d2 are then
induced by

Z[G2]→ Z[G], [x, y] 7→ −[x] + [x+ y]− [y]

for d1 and

Z[G2]→ Z[G], [x, y] 7→ [x, y]− [y, x]
Z[G3]→ Z[G2], [x, y, z] 7→ −[y, z] + [x+ y, z]− [x, y + z] + [x, y]

for d2 (cf. [5, (2.1.5.2.)]).

4.5. Prismatic Dieudonné crystals of abelian schemes. In this section we
describe the prismatic cohomology of the p-adic completion of abelian schemes and
deduce from this the construction of the filtered prismatic Dieudonné crystal

M∆(X [p∞]) = (M∆(X [p∞]),FilM∆(X [p∞]), ϕM
∆
(X[p∞])).

of the p-divisible group X [p∞] of the p-adic completion of an abelian scheme X .
This will be done more generally for any p-divisible group over R in the next sec-
tion, using the results of this section. Nevertheless, for clarity - which yields some
redundancy - we decided to discuss the case of p-divisible groups attached to abelian
schemes completely first.

Let (A, I) be a bounded prism and let X → Spf(A/I) be the p-adic completion
of an abelian scheme over Spec(A/I).

We first prove degeneracy of the conjugate spectral sequence (cf. Proposition 3.1.10)
for X . The proof is an adaption of the argument in [5, Proposition 2.5.2.], which
proves degeneration of the Hodge-de Rham spectral sequence.

Recall the following statement.

Proposition 4.5.1. For all k ≥ 0 (resp. for all i, j ≥ 0), the A/I-module

Hk(X,Ω•
X/(A/I)) (resp. Hi(X,ΩjX/(A/I))) is finite locally free, and its formation

commutes with base change.
Moreover, the algebra H∗(X,Ω•

X/(A/I)) is alternating and the canonical algebra

morphism
∧∗H1(X,Ω•

X/(A/I))→ H∗(X,Ω•
X/(A/I))
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defined by the multiplicative structure of H∗(X,Ω•
X/(A/I)), is an isomorphism.

Proof. This is [5, Proposition 2.5.2. (i)-(ii)]. �

Proposition 4.5.2. The conjugate spectral sequence

Eij2 = Hi(X,ΩjX/A/I){−j} ⇒ Hi+j(X,∆X/A)

degenerates and each term as well as the abutment commutes with base change in
the bounded prism (A, I). Moreover,

H∗(X,∆X/A) ∼= Λ∗H1(X,∆X/A)

is an exterior A/I-algebra on H1(X,∆X/A).

Proof. Let n be the relative dimension of X over Spf(A/I). By Proposition 4.5.1,
for every i, j ≥ 0 the cohomology group

Hi(X,ΩjX/A/I){−j}

is a locally free A/I-modules of finite rank and commutes with base change in A/I.

Moreover, Hi(X,ΩjX/A/I){−j} = 0 if i+ j > n. We argue by descending induction

that the A/I-modules

Hk(X,∆X/A)

are locally free of finite rank. If k = n, then

Hn(X,∆X/A) ∼= Hn(X,ΩnX/A/I){−n}
tr{−n}

≃
−−−−→ A/I{−n}

becauseX is the p-adic completion of a proper, smooth scheme of relative dimension
n with geometrically connected fibers. Now assume that the claim is proven for all
i > k. We will show that it suffices to prove that H1(X,∆X/A) is locally free of
finite rank over A/I and commutes with base change in (A, I). We assume for the
moment that this is true. There is a canonical morphism

∧iH1(X,∆X/A)→ Hi(X,∆(X/A))

for all i and a pairing

Hn−k(X,∆X/A)⊗A/I H
k(X,∆X/A)→ Hn(X,∆X/A) ∼= A/I

induced by multiplication in H∗(X,∆X/A) These two morphisms yield a canonical
morphism

β : Hk(X,∆X/A)→ (∧n−k(H1(X,∆X/A)))
∨ ∼= ∧k(H1(X,∆X/A)).

By the Hodge-Tate comparison the complex

∆X/A

satisfies base change in (A, I), i.e., for a morphism (A, I)→ (A′, I ′) of prisms with
induced morphism g : X ′ := X ×Spf(A/I) Spf(A

′/I ′)→ X the canonical morphism

Lg∗∆X/A → ∆X′/A′

is an isomorphism. By induction the cohomology groups

Hi(X,∆X/A)

are locally free of finite rank for i > k. This implies that the cohomology group

Hk(X,∆X/A)
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commutes with base change in the prism (A′, I ′) as well. We want to show that the
morphism

β : Hk(X,∆X/A)→ (∧n−k(H1(X,∆X/A)))
∨ ∼= ∧k(H1(X,∆X/A)).

is an isomorphism. The cohomology group Hk(X,∆X/A) is finitely presented over

A/I because X → Spf(A/I) is proper and flat, ∆X/A is a perfect complex on

X and all Hi(X,∆X/A) for i > k are locally free of finite rank. Thus we may
apply Lemma 4.5.3 and, after base change to the algebraic closures of the residue
fields of A/p, assume that A/I is an algebraically closed field of characteristic p. In
particular, the Frobenius on A is bijective in this case, I = (p) and the twists (−){j}
are isomorphic to the identity. It suffices to show that for all k the cohomology
group Hk(X,∆X/A) has the correct dimension. This may be checked after base
change along ϕA/I . Then

ϕ∗
A/IH

k(X,∆X/A) ∼= Hk(X(1), (ϕX/A/I )∗(Ω
•
X/A/I ))

∼= Hk(X,Ω•
X/A/I)

where we used in the second isomorphism that the relative Frobenius

ϕX/A/I : X → X(1) := X ×Spec(A/I),ϕA/I
Spec(A/I)

is finite. By Proposition 4.5.1 this shows that this cohomology group has the correct
dimension. Thus we have reduced the proof to showing that H1(X,∆X/A) is locally
free of finite rank and commutes with base change in (A, I). From Proposition 3.2.1
it follows that

H1(X,∆X/A) ∼= H1(X, τ≤1∆X/A) ∼= H0(X,LX/A[−1]).

as LX/A is a perfect complex with amplitude in [−1, 0] this implies compatibil-

ity of H1(X,∆X/A) with base change in (A, I) if all the higher cohomology grous

Hj(X,LX/A[−1]) are locally free. As X admits a lift to A (see e.g. [44, Theorem

2.2.1]), Proposition 3.2.2 shows that LX/A ∼= OX [1]⊕Ω1
X/A/I . Another application

of Proposition 4.5.1 implies therefore that H1(X,∆X/A) is locally free of dimension

2n (and commutes with base change in (A, I) as all the A/I-modules Hj(X,OX)
and Hj(X,Ω1

X/A/I) are locally free for j ≥ 0. �

Lemma 4.5.3. Let S be a ring and let g : M → N be a morphism of S-modules
with M finitely generated and N finite projective. If

g ⊗S k(x) : M ⊗S k(x)→ N ⊗S k(x)

is an isomorphism for all closed points x ∈ Spec(S), then g is an isomorphism.

Proof. Let Q be the cokernel of g. Then Q is finitely generated and Q⊗S k(x) = 0
for all closed points x ∈ Spec(S). By Nakayama’s lemma, this implies that Q = 0,
i.e., g is surjective. As N is projective, this implies M ∼= N ⊕K for K the kernel
of g. As M is finitely generated, K is finitely generated. Moreover for all closed
points x ∈ Spec(S)

K ⊗S k(x) = 0

and thus another application of Nakayama’s lemma implies that K = 0. �

We recall that for a p-complete ring R there is the natural morphism of topoi

u : Shv(R)∆ → Shv(R)QSYN.
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Using the previous computations, we can first describe extension groups modulo
I.

Theorem 4.5.4. Let R be a p-complete ring and let f : X → Spf(R) be the p-adic
completion of an abelian scheme over Spec(R). Then

(1) Exti(R)∆
(u−1(X),O∆) = 0 for i = 0, 2.

(2) Ext1(R)∆
(u−1(X),O∆) is a prismatic crystal over R. Moreover,

Ext1(R)
∆
(u−1(X),O∆)

∼= R1f∆,∗(O∆)

for f∆ : Shv(X)∆ → Shv(R)∆ the morphism induced by f on topoi and

Ext1(R)∆
(u−1(X),O∆) is locally free of rank 2dim(X) over O∆.

The proof is entirely similar to the one of [5, Théorème 2.5.6.]

Proof. Let (B, J) ∈ (R)∆. We use the spectral sequence from Section 4.4 to calcu-
late for i ∈ {0, 1, 2} the groups

Exti(u−1(X)|(B,J),O∆)

on the localised site (R)∆/(B, J)
31. Set Y := X ×Spf(A/I) Spf(B/J). As by Hodge-

Tate comparison

H0(Y,∆Y/B) ∼= B/J

for any n the first row of the spectral sequence is isomorphic to

B/J
IdB/J
−−−−→ B/J

0
−→ B/J2 α

−→ B/J2 ⊕B/J3

with α(x, y) = (x, x + y,−x+ y,−2y,−y). Thus Hom(u−1(X)|(B,J),O∆) = 0 and

Ext1(u−1(X)|(B,J),O∆) is isomorphic to the kernel of

H1(Y,∆Y/B)
d1−→ H1(Y,∆Y/B)

and d1 = pr∗1 +pr∗2−µ
∗ for pri the two projections and µ the multiplication. From

the Künneth formula (cf. Corollary 3.5.2) and Corollary 4.5.8 it follows that

H1(Y,∆Y/B) ∼= H1(Y,∆Y/B)⊕H
1(Y,∆Y/B).

This implies µ∗ = pr∗1 + pr∗2, i.e., d1 = 0 and

Ext1(u−1(X)|(B,J),O∆)
∼= H1(Y,∆Y/B).

In particular, this group is compatible with base change in (B, J) and locally free
of rank 2dim(X) (by Proposition 4.5.2). Moreover, the morphism d2 is injective on
H1(Y,∆Y/B) as follows from the Künneth theorem and the concrete formula for d2.
Finally, from Corollary 4.5.8 and Lemma 4.5.5 one can deduce that

Hi(Y,∆Y/B)
d1−→ Hi(Y,∆Y/B)

is injective for all i ≥ 2. These statements implies Ext2(u−1(X)|(B,J),O∆) = 0.
This finishes the proof by passing to the local Ext-groups, i.e., by letting (B, J)
vary. �

In the proof we used the following lemma on primitive elements in exterior
algebras.

31Which will be implicitly the subscript of all Ext-groups appearing in this proof.
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Lemma 4.5.5. Let S be a ring and let M be a projective S-module. Then

{x ∈ Λ(M) | µ∗(x) = 1⊗ x+ x⊗ 1} = Λ1M,

where µ∗ : Λ(M) → Λ(M +M) ∼= Λ(M) ⊗S Λ(M) is the natural comultiplication
on Λ(M) coming from the diagonal M →M ⊕M .

Proof. This follows easily by decomposing Λ(M)⊗S Λ(M) into its bigraded pieces
Λi(M)⊗S Λj(M). �

Now we calculate the full extension groups, up to degree 2.

Theorem 4.5.6. Let R be a p-complete ring and let f : X → Spf(R) be the p-adic
completion of an abelian scheme over Spec(R). Then

(1) Exti(R)
∆
(u−1(X),O∆) = 0 for i = 0, 2.

(2) Ext1(R)
∆
(u−1(X),O

∆
) is a prismatic crystal over R. Moreover,

Ext1(R)
∆
(u−1(X),O∆)

∼= R1f∆,∗(O∆),

for f
∆
: Shv(X)

∆
→ Shv(R)

∆
the induced morphism on topoi and the pris-

matic crystal Ext1(R)
∆
(u−1(X),O

∆
) is locally free of rank 2dim(X) over

A/I.

Proof. Let (B, J) ∈ (R)∆. As the statements are local for the faithfully flat topology

we may assume that J = (ξ̃) is principal. From the exact sequence

0→ O∆/ξ̃
n ξ̃
−→ O∆/ξ̃

n+1 → O∆/ξ̃ = O∆ → 0

of sheaves on (R)∆/(B, J) and Theorem 4.5.4 we can inductively conclude that

Exti(u−1(X)|(B,J),O∆
/(ξ̃n)) = 0

for i ∈ {0, 2} and any n ≥ 0. This implies that

0→ Ext1(u−1(X)|(B,J),O∆/(ξ̃
n))

ξ̃
−→ Ext1(u−1(X)|(B,J),O∆/(ξ̃

n+1))

→ Ext1(u−1(X)|(B,J),O∆)→ 0

is exact and that

Exti(u−1(X)|(B,J),O∆)
∼= lim
←−
n

Exti(u−1(X)|(B,J),O∆/(ξ̃
n)),

and that it is zero for i ∈ {0, 2} or a locally free B-module of rank 2dim(X) if i = 1.
Using the spectral sequence from Section 4.4 we can see similarly to Theorem 4.5.4
that

Ext1(u−1(X)|(B,J),O∆)
∼= H1(X ×Spf(R) Spf(B/J),∆X/A).

This finishes the proof by passing to local Ext-groups. �

Corollary 4.5.7. Let R be a p-complete ring. Let X be the p-completion of an
abelian scheme over R. The Opris-module

M∆(X [p∞]) = Ext1(R)qsyn
(G,Opris)

is a finite locally free Opris-module of rank 2 dim(X), given by R1f∆,∗O∆.

Proof. By Lemma 4.2.4,

M
∆
(X [p∞]) = v∗(Ext

1
(R)

∆
(u−1G,O

∆
)).

Hence the corollary results from Theorem 4.5.6 and Proposition 4.1.4. �
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Although we will not use it, let us record the full description of the prismatic
cohomology of X .

Corollary 4.5.8. With the notation from Corollary 4.5.7, the prismatic cohomol-
ogy

R∗f∆,∗O∆

is a finite locally free crystal on (R)∆ and an exterior algebra on the locally free
crystal

R1f∆,∗(O∆)

of dimension 2dim(X).

Proof. Let (B, J) ∈ (R)
∆
and let Y := X×Spf(R) Spf(B/J). It suffices to prove the

analog statements for H∗(Y,∆Y/B). From (the proof of) Theorem 4.5.6 we see that

H1(Y,∆Y/B)→ H1(Y,∆Y/B)

is surjective and that H∗(Y,∆Y/B) is an exterior algebra on H1(Y,∆Y/B). Let

g := dimY . By lifting 2g-generators of H1(Y,∆Y/B) we obtain a morphism

B2g[−1]→ ∆Y/B.

Using the alternating products in H∗(Y,∆Y/B) of the images of the standard basis

of B2g we obtain a morphism

ΛiB2g[−i]→ RΓ(Y,∆Y/B)

inducing an isomorphism on Hi after passing to ⊗L
BB/J . Altogether, we obtain a

morphism

Λ∗(B2g)[−∗]→ RΓ(Y,∆Y/B)

of complexes which is an isomorphism after applying ⊗L
BB/J . By derived J-adic

completeness it is therefore an isomorphism, which implies the statements. �

We now turn to the filtration on the prismatic Dieudonné crystal of our abelian
scheme. From now on, the base ring R will be assumed to be quasi-syntomic.

Proposition 4.5.9. Let R be a quasi-syntomic ring and let f : X → Spf(R) be the
p-completion of an abelian scheme. Then there is a canonical exact sequence :

0→ FilM∆(X [p∞])→M∆(X [p∞])→ R1fqsyn,∗O → 0,

where fqsyn : Xqsyn → Spf(R)qsyn is the natural morphism of sites.

Proof. Applying RHom(R)qsyn(X,−) to the short exact sequence

0→ N≥1Opris → Opris → O → 0

on (X)qsyn (cf. Proposition 4.1.2), one gets a sequence

0→ FilM∆(X [p∞])→M∆(X [p∞])→ Ext1(R)qsyn
(X,O) ∼= R1fqsyn,∗O → 0

and we need to prove that this sequence is left and right exact32. Left exactness
follows from the fact that

Hom(R)qsyn(X,O) = 0.

32The isomorphism Ext1
(R)qsyn

(X,O) ∼= R1fqsyn,∗O follows from a similar reasoning as in

Theorem 4.5.4 (because one can use that R∗fqsyn,∗O is an exterior algebra on R1fqsyn,∗O).
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To prove right exactness, we can assume that R is quasi-regular semiperfectoid, by
Proposition 3.3.7. We claim that in this case, the evaluation on R of the above map

M∆(X [p∞])→ H1(X,O)

is surjective. The target of this ∆R-linear map is a finitely generated ∆R-module
(even, finiteley generated R-module), so by Nakayama’s lemma and p-completeness
of R, we can check surjectivity after base change along each surjective map ∆R → k,
where k is a characteristic p perfect field. Any such map extends to a map of δ-rings
∆R →W (k). Moreover, the base change of our map

M∆(X [p∞])→ H1(X,O)

along ∆R → W (k) is the corresponding map for the abelian variety X ×R k over
k. Thus we can assume that R = k is a characteristic p perfect field. In this
case, the result is a consequence of the comparison with the crystalline functor (cf.
Theorem 4.3.2) and [5, Proposition 2.5.8]. �

Proposition 4.5.10. Let R be a quasi-syntomic ring, and let X be the p-completion
of an abelian scheme over R. The tripleM

∆
(X [p∞]) of Definition 4.2.8 is a filtered

Dieudonné crystal over R.

Proof. We check the conditions of Definition 4.1.6. By Corollary 4.5.7,M∆(X [p∞])

is a finite locally free Opris-module. Proposition 4.5.9 shows that FilM∆(X [p∞])

is indeed a submodule ofM∆(X [p∞]), which contains N≥1Opris.M∆(X [p∞]), and
by Lemma 4.2.3,

ϕM
∆
(X[p∞])(FilM∆(X [p∞])) ⊂ IprisM∆(X [p∞]).

It thus only remains to verify the second part of Condition (2) and Condition (3)
of Definition 4.1.10.

Proposition 4.5.9 shows that the quotient

M∆(X [p∞])/FilM∆(X [p∞]) ≃ R1fqsyn,∗O,

which is a finite locally free O-module (cf. Proposition 4.5.1). Hence the second
requirement of Condition (2) is fullfilled. To check Condition (3), we can assume
that R is quasi-regular semiperfectoid. This condition says that the linearization
of the Frobenius

ϕ∗FilM∆(X [p∞])→ I.M∆(X [p∞])

is an isomorphism. Exactly as in the proof of Proposition 4.5.9, this can be checked
when R = k is a characteristic p perfect field, in which case this is known by
comparison with the crystalline functor (cf. Theorem 4.3.2). �

4.6. The filtered prismatic Dieudonné crystal of a p-divisible group. In
this section, we establish the basic properties of the filtered prismatic Dieudonné
functor for p-divisible groups. The idea, due to Berthelot-Breen-Messing, is to make
systematic use of the following theorem of Raynaud, to reduce to statements about
(p-divisible groups of) abelian schemes proved in the last section.

Theorem 4.6.1. Let S be a scheme, and let G be a finite locally free group scheme
over S. There exists Zariski-locally on S, a (projective) abelian scheme A and a
closed immersion G →֒ A over S.

Proof. See [5, Theorem 3.1.1]. �
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Proposition 4.6.2. Let R be a p-complete ring, and let G be a finite locally free
group scheme over R. The sheaf Ext1(R)

∆
(u−1G,O∆) is a prismatic crystal of locally

finitely presented O∆-modules.

Proof. By Theorem 4.6.1, one can choose locally on R an exact sequence of group
schemes

0→ G→ X → X ′ → 0,

where X and X ′ are abelian schemes over R. Whence, by Theorem 4.5.6 (1), an
exact sequence

Ext1(R)∆
(u−1X ′,O∆)→ Ext

1
(R)∆

(u−1X,O∆)→ Ext
1
(R)∆

(u−1G,O∆)→ 0.

This proves the proposition, by Theorem 4.5.6 (2). �

We recall that a finite locally free group scheme G over a scheme S is called
Barsotti-Tate of level n ≥ 0 if, Zariski-locally on S, there exists an isomorphism
G ∼= H [pn] for a p-divisible group H over S.

Remark 4.6.3. Let G be a finite locally free group scheme over a basis on which
p is nilpotent, and let ℓG be its coLie complex. Set :

ωG = H0(ℓG) , nG = H−1(ℓG) , tG = H0(ℓ̌G) ; νG = H1(ℓ̌G).

Grothendieck’s duality formula identifies ℓ̌G with the truncation τ≤1RHom(G∗,Ga),
and this gives rise to a canonical morphism :

φG : νG → tG.

If G is killed by pn, then G is a BTn if and only if tG, tG∗ are locally free and the
canonical morphisms φG and φG∗ are isomorphisms (cf. [25, Corollary 2.2.5]).

Proposition 4.6.4. Let R be a p-complete ring, and let G be a truncated Barsotti-
Tate group over R of level n. The sheaf Ext1(R)

∆
(u−1G,O∆) is a prismatic crystal

of finite locally free O∆/p
n-modules.

Proof. Fix once and for all an embedding of G into an abelian scheme X of dimen-
sion g over R. By Theorem 4.6.1, this can be done Zariski-locally on R, and the
reader can check that the different steps of the proof are all local statements on R.
Let X ′ be the cokernel of the embedding G→ X ; this an abelian scheme, and one
has an exact sequence

0→ G→ X → X ′ → 0

of group schemes over R.
We first prove that for any (B, J) ∈ (R)

∆
, the B-module

Ext1(R)∆
(u−1G,O∆)(B,J)

is locally generated by h sections, where h is the height of G. By the crystal
property of Ext1(R)

∆
(u−1G,O∆) (cf. Proposition 4.6.2), for any morphism of prisms

(B, J)→ (W (k), (p)), where k is a characteristic p perfect field,

Ext1(R)
∆
(u−1G,O

∆
)(B,J) ⊗B W (k) = Ext1(R)

∆
(u−1Gk,O∆

)(W (k),(p)).

By Nakayama’s lemma, p-completeness of B and the finite presentation proved in
Proposition 4.6.2, it suffices to prove that for any morphism B → k, k characteristic
p perfect field,

Ext1(R)
∆
(u−1G,O

∆
)(B,J) ⊗B k



58 JOHANNES ANSCHÜTZ AND ARTHUR-CÉSAR LE BRAS

is generated by h elements. Such a morphism B → k extends to a morphism of
prisms (B, J) → (W (k), (p)), so it suffices by the above to prove our claim when
R = k is a perfect field and (B, J) = (W (k), (p)). First, observe that

Ext1(k)∆(u
−1G,O∆)(W (k),(p)) ⊗ k = Ext1(k)∆(u

−1G,O∆)(W (k),(p)).

This is easily seen, using that Ext2(k)
∆
(u−1X,O∆) and Ext2(k)

∆
(u−1X,O∆) both

vanish.
As a corollary of Proposition 4.5.2 and Theorem 4.5.4, one has a short exact

sequence

0→ u∗Lie(X∗)→ Ext1(R)
∆
(u−1X,O∆)→ u∗ωX → 0,

and similarly for X ′. Also, note that we have exact sequences33 :

u∗Lie(X∗)→ u∗Lie(X
′∗)→ u∗νG∗ → 0

(where νG∗ = Ext1(G,Ga)) and

u∗ωX → u∗ωX′ → u∗ωG → 0.

The map Ext1(k)∆
(u−1X ′,O∆)→ Ext

1
(k)∆

(u−1X,O∆) is compatible with the natural

maps u∗Lie(X∗)→ u∗Lie(X
′∗) and u∗ωX′ → u∗ωX , through the identifications of

Theorem 4.5.4. The long exact sequence of Ext gives a surjection :

Ext1(k)
∆
(u−1X ′,O∆)→ Ext

1
(k)

∆
(u−1X,O∆)→ Ext

1
(k)

∆
(u−1G,O∆)→ 0,

since, as we have seen in Theorem 4.5.4, Ext2(k)∆
(u−1X ′,O∆) = 0. By the above

remark, we even have a commutative diagram :

0 //

��

0

��

// 0

��
u∗Lie(X∗) //

��

u∗Lie(X
′∗)

��

// u∗νG∗ //

��

0

Ext1(k)
∆
(u−1X,O

∆
) //

��

Ext1(k)
∆
(u−1X ′,O

∆
)

��

// Ext1(k)
∆
(u−1G,O

∆
) //

��

0

u∗ωX //

��

u∗ωX′

��

// u∗ωG

��

// 0

0 // 0 // 0

where all lines and the first two columns are exact. This proves that the map

Ext1(k)∆(u
−1G,O∆)→ u∗ωG

is surjective and an easy diagram chase prove that in fact the sequence

u∗νG∗ → Ext1(k)
∆
(u−1G,O∆)→ u∗ωG → 0

is exact. The sheaf ωG is a locally free sheaf of rank d = dimG. Moreover, as G is
a truncated Barsotti-Tate group, νG∗ is a locally free sheaf of rank h − d (cf. [25,

33Recall ([5, §5.1.1]) that if X is an abelian scheme, Lie(X∗) ∼= Ext1(X,Ga).
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Corollary 2.2.5]). Hence the sequence stays exact after evaluation on (W (k), (p))
and Ext1(k)

∆
(u−1G,O

∆
)(W (k),(p)) is generated by h sections. This proves the claim.

Back to the proof of the proposition, we know, as a direct consequence of Theo-
rem 4.5.6 that

Ext1(R)
∆
(u−1X [pn],O

∆
) = Ext1(R)

∆
(u−1X,O

∆
)/pn

is crystal of locally free O∆/p
n-modules of rank 2g−h. Consider the exact sequence

0→ G→ X [pn]→ H → 0,

where H is a Barsotti-Tate group of height 2g− h, induced by the embedding of G
in X . This gives an exact sequence

Ext1(R)∆
(u−1H,O∆)→ Ext

1
(R)∆

(u−1X [pn],O∆)→ Ext
1
(R)∆

(u−1G,O∆)→ 0.

Locally on (R)
∆
, the middle term is free of rank 2g over O

∆
/pn, while the left (resp.

right) term is generated by 2g−h (resp. h) sections. Therefore, Ext1(R)
∆
(u−1H,O

∆
)

and Ext1(R)
∆
(u−1G,O∆) are free over O∆/p

n of rank 2g − h and h. �

Proposition 4.6.5. Let R be a p-complete ring, and let G be a p-divisible group
over R. The sheaf

M∆(G) = Ext
1
(R)∆

(u−1G,O∆)

defined in Definition 4.2.8 is a prismatic crystal of finite locally free O∆-modules
of rank the height of G.

Proof. Let G be a p-divisible group over R. Since G = colim G[pn], we have a short
exact sequence :

0→ R1lim
n
Hom(R)

∆
(u−1G[pn],O

∆
)→ Ext1(R)

∆
(u−1G,O

∆
)

→ lim
n
Ext1(R)

∆
(u−1G[pn],O∆)→ 0.

The first term vanishes. Indeed, let (B, J) ∈ (R)∆ and fix some n ≥ 0. We will
show that the images of the morphisms

Hom(R)∆/(B,J)
(u−1(G[pm]),O∆)→ Hom(R)∆/(B,J)

(u−1(G[pn]),O∆)

stabilize for m→∞. Let Qm be the sequence of cokernels and set

Mk := Ext1(R)
∆
/(B,J)(u

−1(G[pk]),O
∆
)

for k ≥ 0. Then there is an exact sequence

0→ Qm →Mm−n
pn

−→Mm →Mpn → 0.

Here exactness on the right follows by (locally) embedding G[pm] into (the p-
completion of) an abelian scheme X and using that

Ext2(R)
∆
/(B,J)(u

−1(X),O∆) = 0

by Theorem 4.5.6. By Proposition 4.6.4 the B-module Mk is finite locally free over
B/pk for k ≥ 0 (with rank equal to the height of G). Moreover, the canonical
morphismMk+1⊗B/pk+1 B/pk →Mk is an isomorphism (as follows from the above
exact sequence). Set

M := lim
←−
k

Mk.
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Then M is a finite locally free over B (cf. [49, Tag 0D4B]) and M ⊗B B/pk ∼=Mk.
The exact sequence

0→ Qm →Mm−n →Mm →Mn → 0

and the snake lemma show that Qm identifies with the cokernel of

M [pm] ∼= H−1(M ⊗L
Z Z/pm)→M [pn] ∼= H−1(M ⊗L

Z Z/pn).

As B is of bounded p∞-torsion the same holds forM . This implies that for m→∞
the group M [pm], and thus Qm, becomes constant. In the end, this implies by
Mittag-Leffler the vanishing of the R1 lim

←−
term in question and thus,

Ext1(u−1(G),O∆)
∼=M

is finite locally free over B of rank the height of G. �

We can now summarize our discussion and prove the main result of this section.

Theorem 4.6.6. Let R be a quasi-syntomic ring, and let G be a p-divisible group
over R. The triple M∆(G) of Definition 4.2.1 is a filtered prismatic Dieudonné
crystal over R.

Proof. We have to show thatM∆(G)/FilM∆(G) is finite locally free over O. The
rest can then be proved exactly as in Proposition 4.5.10. First of all note that there
is a natural morphism

α :M∆(G)
∼= Ext1(R)qsyn

(G,Opris)→ Ext1(R)qsyn
(G,O) ∼= Lie(G∨)

with kernel FilM∆(G). As Lie(G) is finite locally free, it suffices to show that
α is surjective. By p-completeness this may be checked after morphisms R → k
with k an algebraically closed field of characteristic p. As α commutes with base
change we may thus assume that R = k. Then the surjectivity of α follows from
the comparison with the crystalline Dieudonné functor (cf. Theorem 4.3.2). �

We now state two useful properties of the prismatic Dieudonné functor : its
exactness and its compatibility with Cartier duality.

Proposition 4.6.7. Let R be a quasi-syntomic ring. The functor

M∆ : BT(R)→ DM(R), G 7→ M∆(G)

is exact.

Proof. Let

0→ G′ → G→ G′′ → 0

be a short exact sequence of p-divisible groups over R, which we see as an exact
sequence of abelian sheaves on (R)qsyn. Applying RHom(R)qsyn(−,O

pris) to it, we
get a long exact sequence :

Hom(R)qsyn(G
′,Opris)→M∆(G

′′)→M∆(G)→M∆(G
′)→ Ext2(R)qsyn

(G′′,Opris).

The first term vanishes as G′ is p-divisible and Opris derived p-complete. Let us
prove surjectivity ofM∆(G)→M∆(G

′). For n ≥ 1 consider the exact sequences

0→ G′[pn]→ G[pn]→ Hn → 0.
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Then G′′ = lim
−→
n

Hn with injective transition maps Hn → Hn+1 (as G[pn] ⊆ G′ =

G′[pn] for all n ≥ 1). As in the proof of Proposition 4.6.5 we can conclude that

M∆(G[p
n])→M∆(G

′[pn]), M∆(Hn+1)→M∆(Hn)

are surjective. Passing to the limit of the exact sequences

M∆(Hn)→M∆(G[p
n])→M∆(G

′[pn])→ 0

implies therefore that

M∆(G)→M∆(G
′)

is surjective, as desired. �

Let R be a quasi-syntomic ring and let G be a p-divisible group over R with
Cartier dual G∗. Passing to the limit for the Cartier duality on finite flat group
schemes yields isomorphisms

Tp(G
∗) ∼= HomR(TpG, Tpµp∞) ∼= HomR(G,µp∞)

of sheaves on (R)qsyn. We first construct a canonical morphism

ΦG :M
∆
(G)∨ ⊗Opris M

∆
(µp∞)→M

∆
(G∗),

whereM∆(G)
∨ denotes the Opris-linear dual ofM∆(G). Recall that

M
∆
(G∗) ∼= Hom(TpG

∗,Opris)

by Lemma 4.2.6. Thus we can define ΦG by setting

ΦG(δ ⊗ l)(α) := (δ ◦M∆(α))(l) ∈ O
pris

where

δ ∈ M∆(G)
∨, l ∈ M∆(µp∞), α ∈ Hom(G,µp∞) ∼= TpG

∗.

Clearly, the morphism ΦG is natural in G and commutes with base change in R.

Proposition 4.6.8. Let R be a quasi-syntomic ring. For every p-divisible group G
over R, the map

ΦG :M∆(G)
∨ ⊗Opris M∆(µp∞)→M∆(G

∗)

constructed above is an isomorphism.

Proof. Both sides are locally free Opris-modules of the same rank (cf. Proposi-
tion 4.6.5). Hence it suffices to see that ΦG is surjective, which can be checked
after base change R → k to perfect fields k of characteristic p. Thus, assume that
R = k. By Theorem 4.3.2 the prismatic Dieudonné functor over k is isomorphic to
the crystalline one. Let

Φcl
G :M

∆
(G)∨ ⊗Opris M

∆
(µp∞)→M

∆
(G∗)

be the natural isomorphism coming from classical duality for the crystalline Dieudonné
functor over perfect fields (cf. for example [23, Proposition 5.1.iii)]). Let

Ψ(−) :M∆(−)
∨ ⊗Opris M∆(µp∞)→M∆((−)

∗)

be any natural transformation (of functors on p-divisible groups over quasi-syntomic
rings over k). Then for any morphism γ : G→ H of p-divisible groups, there is an
equality

(1) ΨG(δ ⊗ l)(α ◦ γ) = ΨH(δ ◦M∆(γ)⊗ l)(α)
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where δ ∈ M∆(G), l ∈ M∆(µp∞), α ∈ Hom(H,µp∞). We want to show that

ΦG = uΦcl
G for all p-divisible groups G and some unit u ∈ Opris (independent of

G). Thus pick δ ∈ M∆(G)
∨, l ∈ M∆(µp∞) and α ∈ Hom(G,µp∞). Applying

(Equation (1)) to γ = α : G→ µp∞ implies

ΨG(δ ⊗ l)(α) = Ψµp∞
(δ ◦M∆(α) ⊗ l)(Idµp∞

)

for any natural transformation Ψ(−) as above. In particular, Ψ (and thus Φ(−) and

Φcl
(−) as examples) are determined by their behavior on G = µp∞ . For µp∞ both

induce an isomorphism

M∆(µp∞)∨ ⊗Opris M∆(µp∞) ∼= Hom(Tp(µp∞),Opris) ∼= Opris.

Namely, Φµp∞
is given by the natural evaluation, which is an isomorphism as

M∆(µp∞) is free over rank 1 (by the crystalline comparison, cf. Theorem 4.3.2).

That Φcl
µp∞

is an isomorphism follows from classical Dieudonné theory (cf. [23,

Proposition 5.1.iii)]). Hence, Φµp∞
and Φcl

µp∞
differ by some unit u ∈ Opris34. This

implies ΦG = uΦcl
G for all G by naturality. By [23, Proposition 5.1.iii)] we can

conclude. �

The main result of this text is the following theorem, whose proof will spread
out over the next sections.

Theorem 4.6.9. Let R be a quasi-syntomic ring which is flat over Z/pn (for some
n > 0) or over Zp. The filtered prismatic Dieudonné functor :

M∆ : BT(R)→ DF(R)

is an antiequivalence between the category of p-divisible groups over R and the
category of filtered prismatic Dieudonné crystals over R.

Proof. By Proposition 3.3.7 and the fact that both BT and DF are stacks on QSyn
for the quasi-syntomic topology (see Proposition A.11 and Proposition 4.1.8), we
can assume that moreover R is quasi-regular semiperfectoid. Then the theorem is
a consequence of Theorem 4.8.5 and Theorem 4.9.5, to be proved below. �

4.7. The prismatic Dieudonné modules of Qp/Zp and µp∞ . In this subsec-
tion, we calculate the prismatic Dieudonné crystals of Qp/Zp and µp∞ . We deduce
a description for all étale and multiplicative p-divisible groups. For the analogous
results for the crystalline Dieudonné functor see [6, 2.2.]. Let us fix a p-complete
ring R. Recall that for a p-divisible group G over R the prismatic Dieudonné crystal
M∆(G) is defined (cf. Definition 4.2.1) as the sheaf

M∆(G) := Ext
1
(R)qsyn

(G,Opris) = v∗Ext
1
(R)

∆
(u−1(G),O∆)

on the absolute prismatic site (R)∆ of R and that

M∆(G)
∼= Hom(R)qsyn(TpG,O

pris) = v∗Hom(R)
∆
(u−1(TpG),O∆),

by Lemma 4.2.6.

34Of course, one expects u = ±1, but as this finer statement is not necessary for us, we avoided
the calculation verifying this.
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Lemma 4.7.1. The Opris-moduleM∆(Qp/Zp) is generated by the push-out of the
short exact sequence

0→ Zp → Qp → Qp/Zp → 0

on (R)qsyn along the canonical morphism Zp → Opris. More generally,

M∆(G)
∼= Hom(Tp(G),Zp)⊗Zp O

pris.

if G is an étale p-divisible group.

Proof. This follows directly from the isomorphism

M
∆
(G) ∼= Hom(R)qsyn(TpG,O

pris)

and the fact that for an étale p-divisible group TpG is a local system of finite free
Zp-modules on (R)qsyn

35. �

Let us now describe the prismatic Dieudonné crystal of µp∞ . Denote by Ĝm the
p-adic completion of the multiplicative group scheme Gm. First, note that

M∆(µp∞) ∼= Ext1(R)qsyn
(Ĝm,O

pris)

as Ĝm/µp∞ is uniquely p-divisible and Opris p-complete.
We cannot describe M∆(µp∞) in general. Instead, we can describe the crystal

Ext1(R)∆
(u−1G,O∆) on the restriction to prisms (B, J) which live over the “cyclo-

tomic” base prism
(A, I) := (Zp[[q − 1]], ([p]q))

from Section 2.2.
The reason is that for such prisms we can use the q-logarithm from Section 2.2.

Recall that

M∆(µp∞) ∼= Hom(R)qsyn(Zp(1),O
pris) ∼= v∗Hom(u−1(Zp(1)),O∆)

with Zp(1) := Tpµp∞ . In particular, the morphism

logq : u
−1(Zp(1))→ O∆

from Section 2.2 defines a canonical element, which we call ℓq ∈ M∆(µp∞)(R).

Proposition 4.7.2. Over (A, I) = (Zp[[q − 1]], ([p]q)), the prismatic crystal

Hom(R)
∆
(u−1(Zp(1)),O∆

)

is free of rank 1, generated by ℓq. Moreover, the Frobenius on Hom(u−1(Zp(1)),O∆
)

sends ℓq to [p]qℓq.

Proof. Let (B, J) be a prism over (A, I). It suffices to show that

Ext1(u−1(Ĝm)|(B,J),O∆),

where we mean Ext1 in the category of abelian sheaves on the site of prisms over
(B, J), is freely generated by ℓq. By Proposition 4.6.5 this group satisfies base
change in (B, J). From the case (B, J) = (A, I), a comparison with q-de Rham
cohomology (cf. [12, Theorem 16.17]) and the spectral sequence from Section 4.4
one can conclude that it is free of rank 1 over B. To show that ℓq is a generator one
may pass to the case that (B, J) = (W (k), (p)) for k an algebraically closed field

35Here, we did some abuse of notation and denoted by Zp the sheaf S 7→ Homcts(π0(S),Zp)

on (R)qsyn, which is usually called Zp.
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of characteristic p. Then the comparison with the crystalline Dieudonné crystal
(cf. Theorem 4.3.2) reduces to an analogous statement for the usual logarithm as
for q = 1 the q-logarithm becomes the logarithm. Let R be a general ring of
characteristic p and let R′ → R be a surjection of schemes with a PD-structure
{γn}n≥0 on K := ker(R′ → R) and assume p nilpotent in R′. Then there is the
canonical morphism

log : Zp(1)(R)→ R′, x 7→ log([x])

where [−] : lim
x 7→xp

R→ R′ is the Teichmüller lift and log the crystalline logarithm

log: 1 +K → R′, y 7→
∞∑

n=1

(−1)n−1(n− 1)!γn(y − 1)

(which makes sense as [x] ∈ 1+K). But it is known that the logarithm generates the
crystalline Dieudonné crystal of µp∞ (cf. [6, 2.2.3.Corollaire]). Finally the action of
Frobenius on ℓq can be calculated using Lemma 2.2.2:

ϕHom(u−1(Zp(1)),O∆)(ℓq)(x) =
qp − 1

log(q)
log(xp) =

qp − 1

q − 1
ℓq(x) = [p]qℓq(x)

for x ∈ Zp(1). �

Remark 4.7.3. Note that, when pR = 0, the identification between the pris-
matic and crystalline Dieudonné modules from Theorem 4.3.2 is linear over the
isomorphism ∆R

∼= Acrys(R) from Lemma 3.4.3. This explains why the map

x 7→ logq([x
1/p]θ̃) is sent to x 7→ log([x]) (and not something like x 7→ log([x1/p]),

which would not make sense as [x1/p] − 1 need not have divided powers), cf. the
remark after Lemma 3.4.3.

Assume now that R is an A/I = Z[ζp]-algebra.

Corollary 4.7.4. Let G be a multiplicative p-divisible group over R. Then there
is a canonical isomorphism

u−1(Hom(G,µp∞))⊗Zp O∆
∼= Ext1(R)

∆
(u−1G,O∆)|(R/A)

∆

induced by sending f : G→ µp∞ to the evaluation of the morphism induced by f :

Ext1(R)
∆
(u−1µp∞ ,O∆)|(R/A)∆

→ Ext1(R)
∆
(u−1G,O∆)|(R/A)∆

on ℓq.

Proof. The morphism (and the claim that it is an isomorphism) commutes with
étale localisation on R. In particular, we may assume that G ∼= µdp∞ . Then the
claim follows from Proposition 4.7.2 and additivity of the right hand side. �

The important corollary of these computations is a description of the action of
the prismatic Dieudonné functor on morphisms Qp/Zp → µp∞ . Set

Zcycl
p := (lim

−→
n

Zp[ζpn ])
∧
p .

As usual we get the elements ε = (1, ζp, . . .), q := [ε] ∈ Ainf(Z
cycl
p ) and ξ̃ := qp−1

q−1 .
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Lemma 4.7.5. Let R be a quasi-regular semiperfectoid ring over Zcycl
p . Then the

morphism

Zp(1)(R) ∼= HomR(Qp/Zp, µp∞)
M

∆
(−)

−−−−→ HomDM(R)(M∆
(µp∞)),M

∆
(Qp/Zp)) ∼= ∆

ϕ=ξ̃
R

is given the map which sends x ∈ Zp(1)(R) to logq([x
1/p]θ̃) ∈ ∆

ϕ=ξ̃
R .

Proof. First note, that

HomDM(R)(M∆(µp∞)),M∆(Qp/Zp))
∼= ∆

ϕ=ξ̃
R

by evaluating a homomorphism M∆(µp∞) → M∆(Qp/Zp)
∼= ∆R on ℓq. The iden-

tification of M
∆
(−) on a homomorphism f : Qp/Zp → µp∞ follows easily from the

natural isomorphism

M∆(G)
∼= Hom(R)∆

(u−1(Tp(G)),O∆)

for a p-divisible group G over R and Proposition 4.7.2, Lemma 4.7.1. �

The following theorem, proved in the companion paper [1], is crucial and, unfor-
tunately, relies (in its full generality) on a deep result in algebraic K-theory.36

Theorem 4.7.6. Let R be quasi-regular semiperfectoid. The prismatic Dieudonné
functor induces an isomorphism

HomR(Qp/Zp, µp∞) ∼= HomDM(R)(M∆(µp∞),M∆R
(Qp/Zp)).

Proof. Both sides satisfy quasi-syntomic descent in R. For the left hand side this
follows from Proposition A.11. For the right hand side, this was proven in Propo-
sition 4.1.8. Thus we may assume R is a Zcycl

p -algebra. By Lemma 4.7.5 we have
to prove bijectivity of the q-logarithm

logq : Zp(1)(R)→ ∆
ϕ=ξ̃
R .

Let ∆̂R be the Nygaard completion on ∆R. By Theorem 3.4.5 and the remark

following it, ∆̂
ϕ=ξ̃

R identifies with the second p-completed topological cylic homology
group π2(TC(R;Zp)) of R. By [1, Corollary 1.5], we know that the composition

Zp(1)(R)
logq
−−→ ∆

ϕ=ξ̃
R → ∆̂

ϕ=ξ̃

R

is a bijection because it identifies with minus the cyclotomic trace to which one can
apply the results of [18]. Hence, it suffices to show that the morphism

π : ∆
ϕ=ξ̃
R → ∆̂

ϕ=ξ̃

R

is injective. By definition of the Nygaard filtration the Frobenius on ∆R factors
through a map

ψ : ∆̂R → ∆R,

i.e., ϕ = ψ ◦ π. Let x ∈ ∆
ϕ=ξ̃
R be in the kernel of π. Then

0 = ψ(π(x)) = ϕ(x) = ξ̃x,

which implies x = 0 as ξ̃ is a non-zero divisor in ∆R. This finishes the proof. �

36If R is regular semiperfect, the result is proven more elementary in [48]. If p 6= 2, then the
case of p-torsion free regular semiperfectoid rings can be deduced from this.
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In the case when R is of characteristic p, one can directly see that

Acrys(R)
ϕ=pi ∼= ∆

ϕ=ξ̃i

R
∼= ∆̂

ϕ=ξ̃i

R
∼= Âϕ=p

i

crys ,

cf. [11, Proposition 8.18].

4.8. Fully faithfulness for p-divisible groups. In this section we want to prove
fully faithfulness of the prismatic Dieudonné functor for p-divisible groups over
(certain) quasi-syntomic rings. We will do this by descent from the quasi-regular
semiperfectoid case.

We start with a preliminary technical result (Proposition 4.8.1). Fix for all this
subsection a complete algebraically closed extension C of Qp.

Let R be a quasi-regular semiperfectoid ring (for the moment we do not assume
that R is an OC -algebra). Let G be a p-divisible group over R. The formal scheme

TpG ∼= Spf(RG)

is represented by an R-algebra RG which is again quasi-regular semiperfectoid.
Indeed, as finite locally free group schemes are quasi-syntomic over R the ring RG
is quasi-syntomic. Moreover, RG/p is semiperfect by [48, Chapter 4.3]. The Yoneda
lemma shows that

∆RG
∼= Hom(R)qsyn,Sets(TpG,O

pris)

where the right-hand side denotes natural transformations of set-valued sheaves on
the quasi-syntomic site (R)qsyn of R. By Lemma 4.2.6

M
∆
(G) ∼= Hom(R)qsyn(TpG,O

pris)

where the right-hand side denotes (as before) natural transformations of abelian
sheaves. In particular, there exists a canonical morphism

M∆(G)→ ∆RG .

which is injective.
Under strong assumptions on R, one can prove more about this map. Let us

fix as usual a compatible system ε ∈ O♭C of primitive pn-th roots of unity and let
µ = [ε]− 1.

Proposition 4.8.1. Let R be a p-torsion free perfectoid OC-algebra which is inte-
grally closed in R[1/p] and let G be a p-divisible group over R such that

G×Spec(R) Spec(R[1/p]) ∼= (Qp/Zp)
h.

Then the cokernel of the natural morphism

∆
∗
RG
→M∆(G)

∗,

where (−)∗ refers to the ∆R-linear dual, is killed by µ.

Remark 4.8.2. As noticed in [48], and as will be apparent in the proof of The-
orem 4.8.5 below, one should think to this statement as saying that, for any p-
divisible group G over a big ring R as in the proposition, there aremany morphisms
from Qp/Zp to G.
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Proof. Fix an isomorphism

γ : (Qp/Zp)
h → G×Spec(R) Spec(R[1/p]).

The choice of ε defines an isomorphism of Qp/Zp ∼= µp∞ over Spec(R[1/p]). Dual-
ising γ yields therefore an isomorphism

η : (Qp/Zp)
h → G∨ ×Spec(R) Spec(R[1/p])

whereG∨ is the Cartier dual of G. As R is integrally closed in R[1/p] the morphisms
γ and η extend to morphism

γ̃ : (Qp/Zp)
h → G

and

η̃ : (Qp/Zp)
h → G∨

over R. The composition

(Qp/Zp)
h γ̃
−→ G

η̃∨

−−→ µhp∞

is given by the diagonal morphism induced by ε. Indeed, by construction this holds
over R[1/p]. But as R is p-torsion free the functor

G 7→ G×Spec(R) Spec(R[1/p])

is faithful, which implies the claim over R. Next we claim that the cokernel of

∆
∗
RG
→M∆(G)

∗

is µ-torsion. For this consider the diagram

∆
∗
R

(Qp/Zp)h
//

��

M∆((Qp/Zp)
h)∗

f

��

∆
∗
RG

//

��

M∆(G)
∗

g

��

∆
∗
R

µh
p∞

// M
∆
(µhp∞)∗

with f, g induced by γ̃ resp. η̃. The composition g ◦f is given, using the description
ofM∆(Qp/Zp) andM∆(µp∞) from Section 4.7, by multiplication with µ (as follows
from Lemma 4.7.5). Pick x ∈M

∆
(G)∗. Then

g(µx) = g(f(y))

for some y ∈ M
∆
((Qp/Zp)

h). But g is injective, as f ◦ g is an isomorphism after
inverting µ, ∆R is µ-torsion free (because R is perfectoid and p-torsion free) and
M∆(G)

∗ is of rank h. Thus

µx = f(y).

Using Lemma 4.8.3 and the above diagram we can conclude that µx lies in the
image of

∆
∗
RG
→M∆(G)

∗

as claimed. �
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Lemma 4.8.3. In Proposition 4.8.1, assume G = Qp/Zp. Then the natural mor-
phism

∆
∗
RG
→M∆(G)

∗

is surjective.

Proof. In this case,
∆RG

is given by the ring of continuous functions Zp → ∆R where ∆R is given the discrete
topology, while M∆(G) embeds into ∆RG as the ∆R-module of constant functions.
Evaluating at some point of Zp defines a linear form which maps to a generator of
M∆(G)

∗. �

We will need the following result.

Lemma 4.8.4. Let (C, J) be an henselian pair and let G be a p-divisible group
over C/J . Then there exists a p-divisible group G over C such that

G⊗C C/J ∼= G.

Proof. Set h as the height of G. Let BThn be the Artin stack (over Spec(Z)) of
n-truncated Barsotti-Tate groups of height h. Then for any n ≥ 1 the morphism

BThn → BThn−1

is a smooth morphism between smooth Artin stacks (cf. [32, Section 2] resp. [25,
Thm 4.4.]). By [21, Theorem, page 568] (which extends to the non-noetherian case
by passing to the limit) any section D → C/J of some smooth C-algebra D extends
to a section D → C. These statements imply that inductively, we can lift G[pn] to
a truncated p-divisible group Hn over C. Then finally

G := lim
−→
n

Hn

yields the desired lift over G. �

The main result of this subsection is the following.

Theorem 4.8.5. If R is a quasi-regular semiperfectoid ring, flat over Z/pn (for
some n > 0) or Zp , the prismatic Dieudonne functor over R is fully faithful for
p-divisible groups.

We point out that this is statement is for the prismatic Dieudonné functor, and
not only for the filtered prismatic Dieudonné functor.

Proof. From Theorem 4.7.6 we know that the prismatic Dieudonné functor induces
an isomorphism

HomR(Qp/Zp, µp∞)
∼=
→ Hom∆R

(M∆(µp∞),M∆(Qp/Zp)),

i.e., that it is fully faithful for morphisms Qp/Zp → µp∞ over R. We want to deduce
that it is fully faithful in general. For this, we follow the strategy of [48, Section
4.4.].

Let G1, G2 be two p-divisible groups over R. The R-algebra

RG1,G2 = RG1⊗̂RRǦ2

represents TpG1 ×Spf(R) TpǦ2 and is again quasi-regular semiperfectoid. Over
RG1,G2 , there are universal morphisms Qp/Zp → G1,RG1,G2

and G2,RG1,G2
→ µp∞
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(we denote by G1,RG1,G2
and G2,RG1,G2

the base changes of G1 and G2 to RG1,G2).
Passing to prismatic Dieudonné modules, we get natural morphisms

M∆(G1,RG1,G2
)→M∆(Qp/Zp) , M∆(µp∞)→M∆(G2,RG1,G2

).

Let f : M∆(G2)→M∆(G1) be a morphism of prismatic Dieudonné modules. Base
changing f to RG1,G2 , we get a morphismM∆(G2,RG1,G2

)→M∆(G1,RG1,G2
), which

we can pre- and post-compose with the canonical morphisms

M∆(G1,RG1,G2
)→M∆(Qp/Zp) , M∆(µp∞)→M∆(G2,RG1,G2

)

to get a morphism
βf :M∆(µp∞)→M∆(Qp/Zp)

of prismatic Dieudonné modules over RG1,G2 . By Theorem 4.7.6, it comes from a
morphism

ηf ∈ HomRG1,G2
(Qp/Zp, µp∞).

The morphism ηf is the same thing as a family (sn)n≥0 of elements in RG1,G2 ,
with s0 = 1, spn+1 = sn for all n. The same arguments as in [48, Chapter 4.4.]
(which require Proposition 4.6.8) prove that sn corresponds (by the very definition
of RG1,G2) to a morphism of finite locally free group schemes G1[p

n]→ G2[p
n]. The

condition spn+1 = sn for all n means that these morphisms combine to a morphism

αR(f) : G1 → G2

of p-divisible groups over R. In other words, we have constructed a map37

αR : Hom∆R
(M∆(G2),M∆(G1))→ HomR(G1, G2),

which is moreover natural in R and a retraction of

HomR(G1, G2)
M

∆
(−)

−−−−→ Hom∆R
(M∆(G2),M∆(G1)).

To prove the theorem, it therefore suffices to show that

αR : Hom∆R
(M∆(G2),M∆(G1))→ HomR(G1, G2),

is injective, for any p-divisible groups G1, G2 over R. This is the statement we will
prove, using the assumption that R is flat over Z/pn, for some n > 0, or over Zp,
which was not used yet. To shorten notation, we simply say in the rest of the proof
that R is flat over Z/pn, allowing the limit case n = ∞, which corresponds to the
case where R is flat over Zp (i.e., p-torsion free).

As one can argue quasi-syntomic locally, we can replace R by its base change
to OC/pn, which we still denote by R. By Proposition 3.6.2 the prism ∆R of R is
µ-torsion free. This will play an important role. We start by some observations.

(1) There exists a p-torsion free perfectoid OC -algebra S mapping surjectively
onto R. Moreover one can assume that S is henselian along ker(S → R).
Indeed, since R lives over OC/p

n, we have in particular a map OC → R. It
extends to a ring map :

OC〈X
1/p∞

i , i ∈ R♭〉 → R, x
1/pn

i 7→ (i♯)1/p
n

.

By completeness, it is enough to check surjectivity modulo p and this holds
true by semiperfectness of R/p. By Corollary 2.1.10, we can assume that
S is henselian along ker(S → R).

37This map of course depends on G1 and G2, although the notation does not indicate it.
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From now on, we fix such a ring S.
(2) Any p-divisible group G over R lifts to a p-divisible group GS over S. This

is the content of Lemma 4.8.4.
(3) Let G1, G2 be two p-divisible groups over R. Let R′ be a quasi-regular

semiperfectoid ring to which R maps, such that the induced map ∆R → ∆R′

is injective. Set

G′
1 := G1 ⊗R R

′ , G′
2 := G2 ⊗R R

′.

As M∆(G1),M∆(G2) (resp. M∆(G
′
1),M∆(G

′
2)) are finite locally free over

∆R (resp. over ∆R′), the map

Hom∆R
(M∆(G2),M∆(G1))→ Hom∆R′

(M∆(G
′
2),M∆(G

′
1))

is injective as well, i.e., the base change functor

DM(R)→ DM(R′)

is faithful. By naturality of α we have a commutative diagram

Hom∆R
(M∆(G2),M∆(G1))

αR //

��

HomR(G1, G2)

��

Hom∆R′
(M∆(G

′
2),M∆(G

′
1))

αR′
// HomR′(G′

1, G
′
2).

Let f ∈ Hom∆R
(M∆(G2),M∆(G1)), such that αR(f) = 0. Assume that

one can prove that the kernel of αR′ is µ-torsion. Then if f ′ denotes the
base change of f to ∆R′ , the previous diagram and the assumption show
that µ.f = 0. But by Proposition 3.6.2 (and the assumption made before
that R is the base change to OC/pn of a ring flat over Z/pn), ∆R is µ-torsion
free, and so also is the finite projective ∆R-module M

∆
(G1). Thus f = 0.

Therefore, to prove fully faithfulness over R, it is enough, for each
G1, G2 ∈ BT(R), to find a map R → R′, with R′ quasi-regular semi-
perfectoid, such that ∆R → ∆R′ is injective and such that the kernel of the
map αR′ (attached to the base change of G1, G2 to R′) is µ-torsion.

(4) Let G be any p-divisible group over R. By Observation (2), G lifts to a p-
divisible group GS over S. Let S′ be the integral closure of S in the S[1/p]-
algebra parametrizing trivializations of GS over S[1/p]. By the almost
purity theorem, [12, Theorem 10.8], S′ is a perfectoid ring and is the p-
completion of a filtered colimit of almost finite étale extensions of S ; in
particular, the map S → S′ is p-completely almost faithfully flat. Set
R′ = R⊗̂SS′. We claim that the map

∆R → ∆R′

is injective. This map is the (p, ξ̃)-completed base change of the map ∆S →
∆S′ , which is (p, ξ̃)-completely almost faithfully flat, and therefore is itself

(p, ξ̃)-completely almost faithfully flat, and therefore almost injective, i.e.,
every element in ker(∆R → ∆R′) is killed by W (m♭), where m

♭ ⊆ O♭C is the
maximal ideal. As we have already seen, ∆R has no µ-torsion and so the
kernel is zero on the nose, as µ ∈ W (m♭).
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We know fix G1 and G2 two p-divisible groups over R. As shown by Observation
(3), it is enough to find a quasi-regular semiperfectoid ring R′ over R, such that ∆R

injects in ∆R′ and such that the kernel of αR′ is killed by µ. We take R′ = S′⊗̂SR,
where S′ is defined as in Observation (4) for the choice of a lift of the p-divisible
group G = Ǧ2 to S. By the same observation, the map ∆R → ∆R′ is injective. It
remains to check the assertion on the kernel of αR′ .

From now on and until the end of this proof, to keep the notations light, we
rename S′ as S and R′ as R. As a consequence of the definitions, the quasi-
regular semiperfectoid ring R is the quotient of a perfectoid OC -algebra S, which
is integrally closed in S[1/p] and such that ǦS,2 is trivialized on S[1/p]. By Propo-
sition 4.8.1, the natural map

∆
∗
SǦS,2

→M∆(ǦS,2)
∗

has its cokernel killed by µ. By base change along ∆S → ∆R, we get that the
cokernel of the map

Hom∆R
(∆SǦS,2

⊗̂∆S
∆R,∆R)→M∆(ǦS,2)

∗⊗̂∆S
∆R =M∆(Ǧ2)

∗

(the last equality comes from the fact that GS,2 ⊗S R = G2 by definition and the
fact that the prismatic Dieudonné module is finite locally free). Since

SǦS,2
⊗̂SR = RǦ2

,

by the Künneth formula for prismatic cohomology (Proposition 3.5.1) and p-complete
flatness of S → SǦS,2

, we have

∆SǦS,2
⊗̂∆S

∆R = ∆RǦ2

and so we deduce that the map

∆
∗
RǦ2
→M∆(Ǧ2)

∗(2)

has cokernel killed by µ.
Let f ∈ HomDM(R)(M∆(G2),M∆(G1)). We explained at the beginning of the

proof that the associated morphism αR(f) is the same thing as an element

ηf ∈ HomRG1,G2
(Qp/Zp, µp∞)

and we want to prove that if ηf is zero, then f = 0. By definition, ηf is the
morphism corresponding to the composition

M∆((µp∞)RG1,G2
)→M∆(G2,RG1,G2

)
fRG1,G2−→ M∆(G1,RG1,G2

)→M∆((Qp/Zp)RG1,G2
),

where the left and right morphisms are induced by the two universal morphisms
coming from the definition of RG1,G2 .

Assume that ηf = 0. To conclude the proof of the theorem, it suffices to prove
that this implies that f = 0. Applying the considerations preceeding Proposi-
tion 4.8.1 to the quasi-regular semiperfectoid ring RǦ2

and to the p-divisible group
G1,RǦ2

, we know that the natural map

M∆(G1,RǦ2
)→ ∆RG1,G2
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is injective, but by construction this map identifies with the map

M∆(G1,RǦ2
)→M∆(G1,RG1,G2

)→M∆((Qp/Zp)RG1,G2
),

where the two maps are the natural ones. Considering the diagram

M∆((µp∞)RǦ2
) //

��

M∆((µp∞)RG1,G2
)

ηf

{{

��

M
∆
(G2,RǦ2

) //

fR
Ǧ2

��

M
∆
(G2,RG1,G2

)

fRG1,G2

��

M∆(G1,RǦ2
) // M∆(G1,RG1,G2

)

��

M∆((Qp/Zp)RG1,G2
).

we deduce that the composition

M∆((µp∞)RǦ2
)→M∆(G2,RǦ2

)
fR

Ǧ2−→ M∆(G1,RǦ2
)

is the zero map. Let α be the image of the generator of M∆((µp∞)RǦ2
) in

M∆(G2,RǦ2
) =M∆(G2)⊗∆R

∆RǦ2
.

Let v ∈ M∆(G2). Since the cokernel of (2) is killed by µ, there exists λ ∈ ∆
∗
RǦ2

such that

λ(α) = µv.

Therefore, considering the commutative diagram

M∆((µp∞)RǦ2
)

��

M
∆
(G2) //

f

��

M
∆
(G2,RǦ2

)

fRG1,G2

��

M∆(G1) // M∆(G1,RǦ2
).

we deduce that

µf(v) = f(µv) = f(λ(α)) = 0,

since the composition

M∆((µp∞)RǦ2
)→M∆(G2,RǦ2

)
fR

Ǧ2−→ M∆(G1,RǦ2
)

has been proved to be zero. Hence, µ.f = 0, which ends the proof. �

Remark 4.8.6. For quasi-regular semiperfect rings (the case n = 1, for which
the flatness condition is empty), one could instead use the results of [48, §4.3].
However, the proof of loc. cit. is more involved and requires results on the Hodge-
Tate sequence.
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Remark 4.8.7. Let R be a quasi-regular semiperfectoid algebra, flat over OC/pn

(including the limit case n =∞, i.e. the case where R is flat overOC). The ringR/p
is quasi-regular semiperfect, so it would be tempting to try to prove the theorem
by reduction to the characteristic p case. For this, it is enough (by Observation (3)
in the above proof) to prove that the natural morphism

∆R → ∆R/p

is injective. This works fine if n = ∞, i.e. if R is p-torsion free. This can also be
checked by hand in the special case R = OC/pn. One could then try to use that
the morphism

∆R → ∆R/p

is the completed base change along the map ∆OC/pn → ∆R of the injective map

∆OC/pn → ∆OC/p

and to prove that ∆R is (p, I)-completely flat over ∆OC/pn . But one issue is that in
general, the completed base change along a f -completely flat morphism between f -
complete rings with no f -torsion need not preserve short exact sequences of derived
f -adically complete modules. Here is an explicit counterexample. Set

R := Z[f, x]∧f

and
R′ := Z[f, x±1]∧f .

Then the morphism R→ R′ is f -completely flat, and even flat. Consider the short
exact sequence

0→
⊕̂

i≥0

Rsi
α
−→

⊕̂

i≥0

Rti → Q→ 0

where α(si) := fti − xti−1 (with t−1 := 0).38 Let qi ∈ Q be the image of ti. By
construction

fqi = xqi−1

for i ≥ 0 and Q is derived f -complete (cf. [49, Example 09AT]). We claim that the
sequence

0→
⊕̂

i≥0

R′si
α
−→

⊕̂

i≥0

R′ti → H0(Q⊗̂RR
′)→ 0

is not exact. Indeed,

H−1(Q⊗̂RR
′) ∼= Tf (Q⊗R R

′) 6= 0

as the element
(q0 ⊗ 1, q1 ⊗ 1/x, q2 ⊗ 1/x2, . . .)

defines a non-zero element in the f -adic Tate module of Q⊗R R′.
Therefore, one whould have to prove more about the morphism

∆OC/pn → ∆R.

38If α(
∞∑

i=0
risi) = 0, then for all i ≥ 0 we get (ri, ri+1) = (aix, aif) for some ai ∈ R because

f, x is a regular sequence. From aif = ri+1 = ai+1x one derives

fma0 ≡ fm−1a1x ≡ . . . ≡ amxm ≡ 0 mod xm

and therefore, using again that f, x is a regular sequence, that a0 ∈ (xm) for all m. This forces
a0 = 0 and then ai = 0 for all i ≥ 0.
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One may hope for example that ∆R is a topologically free ∆OC/pn -module, but this
does not follow simply from (p, I)-complete faithful flatness : there exist (p, I)-
completely faitfhfully flat ∆OC/pn -modules which are not topologically free.

4.9. Essential surjectivity. Let R be quasi-regular semiperfectoid and let as be-
fore

M∆(−) : BT(R)→ DF∆(R), G 7→ (M∆(G),FilM∆(G), ϕM∆(G))

be the prismatic Dieudonné functor with values in the category of filtered prismatic
Dieudonné modules DF(R) (cf. Section 4.2 and Theorem 4.6.6).

Let us fix a perfect prism (A, I), a generator ξ̃ ∈ I and a surjection A/I ։ R.

Let ξ := ϕ−1(ξ̃). By Corollary 2.1.10 we may assume that A/I is henselian along
ker(A/I → R).

Let us first assume that ker(A/I → R) is generated by some elements aj, j ∈ J ,

that admit compatible systems (aj , j
1/p, a

1/p2

j , . . .) of pn-roots. Define

S := A/I〈X
1/p∞

j | j ∈ J〉/(Xj)

and S → R, X
1/pn

j 7→ a
1/pn

j .
We note that by Theorem 3.3.9, we can always arrange this situation after passing

to a quasi-syntomic cover of A/I39.

Lemma 4.9.1. The base change functor DF(S) → DF(R) on filtered prismatic
Dieudonné modules is essentially surjective.

Proof. By Proposition 4.1.25 it suffices to show that each pair consisting of a finite
projective ∆R-module M and an isomorphism ϕM : ϕ∗M ∼=M may be lifted to ∆S .
For this it suffices to see that ∆S → ∆R is surjective and henselian along its kernel
(cf. Lemma 4.1.26). The surjectivity follows from the Hodge-Tate comparison as
LS/A/I → LR/A/I is surjective by our assumption that the aj , j ∈ J , generate
ker(A/I → R). First note that the pair (S, ker(S → R)) is henselian because the

X
1/pn

j are nilpotent in S and we assumed that A/I is henselian along ker(A/I →
R). To show that ∆S is henselian along K := ker(∆S → ∆R) it suffices to see
S ∼= ∆S/ ker(θS) is henselian along K := (K+ker(θ))/ ker(θ) (cf. [49, Tag 0DYD])).
But K ⊆ S is contained in ker(S → R). Another application of [49, Tag 0DYD]
therefore implies that S is henselian along K because (S, ker(S → R)) is henselian.
This finishes the proof. �

Note that the ring

S = A/I〈X
1/p∞

j | j ∈ J〉/(Xj | j ∈ J)

admits a surjection from the perfectoid ring40

S̃ := A/I[[X
1/p∞

j | j ∈ J ]] ∼= A[[X
1/p∞

j | j ∈ J ]]/(ξ̃)

by sending X
1/pn

j 7→ X
1/pn

j .

39Note that by the (the proof of) [11, Lemma 4.24] any morphism from a perfectoid ring to a
quasi-regular semiperfectoid ring is quasi-syntomic.

40More precisely, S̃ is the p-adic completion of lim
−→
n

A/I[[X
1/pn

j | j ∈ J ]].
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Lemma 4.9.2. The natural functor

DF(S̃)→ DF(S)

is essentially surjective.

Proof. The ring S̃ is henselian along (Xj | j ∈ J). By using normal decompositions,
i.e., Proposition 4.1.25, it suffices to see that the functor

ϕ−Mod∆S̃
→ ϕ−Mod∆S

is essentially surjective. We note that by (a variant of) [12, Proposition 3.13] (and
Proposition 3.4.2)

∆S ∼= ∆S̃{
Xj

ξ̃
| j ∈ J}∧

(p,ξ̃)

as the Xj form an infinite regular sequence in S̃. Define

B := ∆S̃/(Xj | j ∈ J),

where ∆S̃
∼= A[[X

1/p∞

j | j ∈ J ]]. Then B is p-torsion free and ξ̃-torsion free and thus

defines a prism. Moreover, canonically S ∼= B/ξ̃. By the universal property of ∆S

there exists therefore a canonical morphism

α : ∆S → B.

Concretely, the morphism α sends Xj 7→ 0. Using a variant of Lemma 4.1.24 we

see that ∆S is henselian along ker(α). By Lemma 4.9.3 ϕ(ker(α)) ⊆ ξ̃∆S and ϕ/ξ̃ is
topologically nilpotent on ker(α). Thus by Lemma 4.1.27 the categories of windows
over ∆S and B are equivalent. Therefore it suffices to see that windows over B can
be lifted to windows over ∆S̃ . After choosing a normal decomposition, this follows
as the functor

ϕ−Mod∆S̃
→ ϕ−ModB

is essentially surjective, which is true as ∆S is henselian along the kernel of ∆S ։ B
(cf. the end of the proof of Lemma 4.1.26). This finishes the proof. �

To finish the proof of Lemma 4.9.1 we have to prove the following lemmas.

Lemma 4.9.3. With the notations from the proof of Lemma 4.9.2 we get ϕ(ker(α)) ⊆

ξ̃∆S and ϕ1 := ϕ/ξ̃ is topologically nilpotent on ker(α).

Proof. Set K := ker(α). Then K is the closure in the (p, ξ̃)-adic topology of the

∆S-submodule generated by δn(Xj/ξ̃) for j ∈ J and n ≥ 0. By Lemma 4.9.4 the
module K equals the closure of the ideal generated by

zj,n :=
Xpn

j

ϕn(ξ̃)ϕn−1(ξ̃)p · · · ξ̃pn

for j ∈ J and n ≥ 0. Let us show that ϕ(K) ⊆ ξ̃∆S . Clearly,

(3) ϕ(zj,n) = ξ̃p
n+1

zj,n+1.

AsN≥1
∆S is closed in ∆S (being the kernel of the continuous surjection ∆S → S),

we can conclude K ⊆ N≥1
∆S . Next, let us check that ϕ1 is topologically nilpotent
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on K. Fix l ≥ 1. We claim that for every m ≥ 1 such that pm > l and any k ∈ K
we have

ϕm1 (k) ∈ ξ̃lK.

This implies as desired that ϕ1 is topologically nilpotent on K. As ξ̃lK is closed
and ϕm1 continuous (for the (p, ξ̃)-adic topology on K) it is enough to assume that
k = zj,n for some j ∈ J, n ≥ 1, because the zj,n generate a dense submodule in K41.
Using (Equation (3)) we can calculate

ϕm1 (zj,n) = ϕm−1
1 (ξ̃p

n+1−1zj,n+1) = . . . = aξ̃p
n+m−1zj,n+m ∈ ξ̃

pn+m−1K

for some a ∈ ∆S . But ξ̃p
n+m−1K ⊆ ξ̃lK because pn+m − 1 ≥ l. This finishes the

proof. �

Lemma 4.9.4. Let (A, I) be a prism and let d ∈ A be distinguished. Let further-
more x ∈ A be an element of rank 1. Then for n ≥ 1

zn :=
xp

n

ϕn(d)ϕn−1(d)p · · · dpn
∈ A{

x

d
} := A{z}/(dz − x)δ

and the resulting morphism

A[y1, y2, . . .]/(x− dy1, y
p
1 − ϕ(d)y2, y

p
2 − ϕ

2(d)y3, . . .)→ A{
x

d
}, yn 7→ zn

is surjective.

By derived Nakayama the conclusion holds thus as well after (derived) (p, d)-adic
completion.

Proof. We can argue in the universal case A = Zp[x]{d,
1
δ(d)}

∧
(p,d) where δ(x) = 0,

thus we may assume that A is transversal, i.e., that (p, d) is a regular sequence in A,
and that (x, d) is a regular sequence. This implies that for all r ≥ 1 the sequence
(ϕr(d), ϕr−1(d)) is regular as well (cf. Lemma 2.1.7). We first claim that for all
n ≥ 0 the element

zn :=
xp

n

ϕn(d)ϕn−1(d)p · · · dpn

lies in A{xd}. If n = 0, then zn = x
d ∈ A{

x
d}. For n ≥ 0 we can calculate

ϕ(zn) =
xp

n+1

ϕn+1(d) · · ·ϕ(d)pn

because ϕ(x) = xp. The numerator xp
n+1

is divisible by dp
n+1

in A{xd}. As

(dp
n+1

, ϕn+1(d) · · ·ϕ(d)p
n

) is a regular sequence in A we can conclude that dp
n+1

divides xpn+1

ϕn+1(d)···ϕ(d)pn
, i.e., that zn+1 ∈ A{

x
d}. Next we claim that the morphism

A[y1, y2, . . .]/(x− dy1, y
p
1 − ϕ(d)y2, y

p
2 − ϕ

2(d)y3, . . .)→ A{
x

d
}, yn 7→ zn

is surjective. For this it suffices to show for all n ≥ 0 that δn(xd ) lies in the subring
A[z1, . . . , zn+1] of A{

x
d} generated by the z1, . . . , zn+1. This claim follows from the

assertion that δ(zn) ∈ A[z1, . . . , zn+1] using induction and how δ acts on sums and
products. For n = 0 we can calculate

δ(z0) = δ(
x

d
) =

1

p
(ϕ(

x

d
)−

xp

dp
) =

1

p
(dp − ϕ(d))z1 = δ(d)z1 ∈ A{

x

d
}.

41Dense for the (p, ξ̃)-adic topology.
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Similarly, we see

δ(zn) =
1

p
(dp

n+1

− ϕn+1(d))zn+1

where the term 1
p (d

pn+1

− ϕn+1(d)) lies in A. This finishes the proof. �

We can derive essential surjectivity.

Theorem 4.9.5. Let R be a quasi-regular semiperfectoid ring, which is flat over
Z/pn (for some n > 0) or over Zp. Then the filtered prismatic Dieudonné functor

M∆(−) : BT(R)→ DF(R)

from the category of p-divisible groups over R to the category of filtered prismatic
Dieudonné crystals over R is essentially surjective.

Proof. To prove the theorem, we may pass to a quasi-syntomic cover R′ of R:
indeed, let M ∈ DF(R) such that its base change along the map R → R′ is of
the form M∆(G

′), for some p-divisible group G′ over R. The descent datum for
M∆(G

′) expressing that it comes from a filtered prismatic Dieudonné module over
R (namely, M) gives rise to a descent datum for G′, since fully faithfulness over
R′⊗̂RR′ is already proved (cf. Theorem 4.8.5). This descent datum is effective, by
p-completely faithfully flat descent for p-divisible groups (cf. Proposition A.11), so
there exists a p-divisible group G over R, with M∆(G) =M .

Therefore, by Theorem 3.3.9, we may and do assume that R ∼= A/I/(aj | j ∈ J)
for A/I a perfectoid ring and aj ∈ R admitting compatible systems of pn-roots of
unity. Using Lemma 4.9.1 we may even assume that

R ∼= A/I〈X
1/p∞

j | j ∈ J〉/(Xj).

In this case we can invoke Lemma 4.9.2 and reduce to the case that R is perfectoid.
Then we can cite Corollary 4.3.8 to conclude that M∆(−) is essentially surjective.

�

This concludes the proof of the main Theorem 4.6.9.

Remark 4.9.6. Let R be quasi-syntomic ring, flat over Z/pn for some n ≥ 0 or
Zp. The filtered prismatic Dieudonné crystal of the étale p-divisible group Qp/Zp
is given by

M∆(Qp/Zp) = (Opris,N≥1Opris, ϕ),

see Section 4.7. The functor G from DF(R) to the category of abelian sheaves of
(R)qsyn, sendingM ∈ DF(R) to

G(M) = HomDM(R)(M,M∆(Qp/Zp))⊗Zp Qp/Zp

(which only depends on the underlying prismatic Dieudonné crystal) defines a quasi-
inverse of the filtered prismatic Dieudonné functor. Indeed, if G ∈ BT(R), one has
a short exact sequence of abelian sheaves on (R)qsyn

0→ Tp(G)→ G̃ = Tp(G)⊗Zp Qp → G→ 0

and for any R′ ∈ (R)qsyn,

Tp(G)(R
′) = Hom(R′)qsyn(Qp/Zp, G) = HomDM(R′)(M∆

(G),M
∆
(Qp/Zp)),

since, R′ being itself quasi-syntomic over Z/pn or Zp, the prismatic Dieudonné
functor over R′ is fully faithful. This shows that

G = G(M∆(G)).
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By duality, one can rewrite the above formula more explicitely. Namely,

G(M) = (M∨)ϕ=1 ⊗Zp Qp/Zp,

whereM∨ denotes the Opris-linear dual ofM.
Nevertheless, it does not seem that these formulas are very useful in practice.

It looks difficult to prove directly that G takes values in the category of (quasi-
syntomic sheaves attached to) p-divisible groups. In the case of étale p-divisible
groups Theorem 4.6.9 yields an equivalence of Zp-local systems on R and finite
locally free Opris-modules (resp. ∆R-modules if R is quasi-regular semiperfectoid)
M together with an isomorphism ϕM : ϕ∗(M) ∼= M. This is a generalization
of Katz’ correspondence between Zp-local systems on the spectrum Spec(k) of a
perfect field k and ϕ-modules over W (k) (cf. [27, Proposition 4.1.1.]. We thank
Benôıt Stroh for pointing this out to us.
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5. Complements

5.1. Prismatic Dieudonné theory for finite locally free group schemes.
Let R be a perfectoid ring. We fix a generator ξ of ker(θ) and let ξ̃ = ϕ(ξ).

Definition 5.1.1. A torsion prismatic Dieudonné module over R is a triple

(M,ϕM , ψM ),

where M is a finitely presented Ainf(R)-module of projective dimension ≤ 1 which
is annihilated by a power of p and where ϕM : M → M and ψM : M → M are
respectively ϕ-linear and ϕ−1-linear, and satisfy

ϕM ◦ ψM = ξ̃, ψM ◦ ϕM = ξ.

The category of torsion prismatic Dieudonné modules overR is denoted by DMtors(R).

The base change of torsion prismatic Dieudonné modules behaves well.

Lemma 5.1.2. Let R→ R′ be a morphism of perfectoid rings andM ∈ DMtors(R).
Then M⊗Ainf(R)Ainf(R

′) is concentrated in degree 0. In particular, the base change
functor DMtors(R)→ DMtors(R

′) is exact.

Proof. Let

0→M1
f
−→M2 →M → 0

be a resolution of M by finite locally free Ainf(R)-modules. As M is killed by pn

for some n ≥ 0, there exists g : M2 → M1 such that f ◦ g = pn. Then pn = g ◦ f
(using that f is injective). The base change M1 ⊗Ainf(R) Ainf(R

′) is p-torsion free
as Ainf(R

′) is. This implies that the base change of f to Ainf(R
′) remains injective,

which finishes the proof. �

Before stating the main result, let us introduce a notation, which will be in use
only in this section.

Notation 5.1.3. If S is a p-complete ring, let BS (resp. CS) denote the category
whose objects are O∆-modules on (S)∆ (resp. O∆-modules on (S)∆ endowed with
a ϕ-linear Frobenius), and whose morphisms are O∆-linear morphisms (resp. O∆-
linear morphisms commuting with Frobenius).

Theorem 5.1.4. There is a natural exact42 antiequivalence

H 7→ (M∆(H), ϕM
∆
(H), ψM

∆
(H))

between the category of finite locally free group schemes of p-power order on R and
the category DMtors(R) of torsion prismatic Dieudonné modules over R, such that
the Ainf(R)-module M∆(H) is given by the formula

M∆(H) = Ext1(R)
∆
(u−1H,O∆)

and such that ϕM
∆
(H) is the map induced by the Frobenius of O

∆
.

Remark 5.1.5. A similar statement can be found in [36, Theorem 10.12]. Apart
from the change of terminology, the only difference with the result in loc. cit. is that
we remove the assumption that p ≥ 3 and provide a formula for the underlying Ainf -
module of the torsion minuscule Breuil-Kisin-Fargues module attached to a finite
locally free group scheme of p-power order.

42This includes the non-formal assertion that the inverse equivalence is exact, too.
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The proof of Theorem 5.1.4 will make use of the following lemma.

Lemma 5.1.6. Let (A, I) be a bounded prism, such that A is p-torsion free and let
S be a p-completely syntomic A/I-algebra43. Then

H0(S,∆S/A)

is p-torsion free.

Proof. As S is a p-completely syntomic A/I-algebra the derived prismatic coho-
mology ∆S/A agrees with the cohomology RΓ((S/A)∆,O∆) of the prismatic site of
S over A (this follows by descent from the quasi-regular semiperfectoid case and
Proposition 3.4.2). By [12, Proposition 3.13] and the assumption that S is a p-

completely syntomic A/I-algebra, one can calculate ∆S/A by some C̆ech-Alexander
complex that has p-complete p-completely flat terms over A. Therefore it suffices
to see that each p-complete p-completely flat A-algebra B has no p-torsion. As A
is p-torsion free, A, and thus B, is p-completely flat over Zp. But any p-completely
flat p-complete module over Zp is topologically free and thus p-torsion free. �

Proof of Theorem 5.1.4. The construction of the antiequivalence is exactly similar
to the one of [36, Theorem 10.12], replacing Theorem 9.8 in loc. cit. by Corol-
lary 4.3.8, so we do not give it and refer the reader to [36]. The simple principle is
that Zariski-locally on Spec(R), any finite locally free group scheme of p-power order
is the kernel of an isogeny of p-divisible groups (and even an isogeny of p-divisible
groups associated to abelian schemes, cf. Theorem 4.6.1) ; similarly, Zariski-locally
on Spec(R), any torsion prismatic Dieudonné module is the cokernel of an isogeny
of prismatic Dieudonné modules ([36, Lemma 10.10]).

Let us now prove that

M∆(H) = Ext1(R)
∆
(u−1H,O∆)

and that the functor M∆(−) preserves exactness for a short exact sequence

0→ H ′ → H → H ′′ → 0

of finite locally free group schemes of p-power order over R. Note that this implies
by Mittag-Leffler exactness of

0→M∆(H
′)→M∆(H)→M∆(H

′′)→ 0

if H ′, H,H ′′ are finite locally free group schemes of p-power order or p-divisible
groups.

By construction of the antiequivalence, it suffices to check that if H is the kernel
of an isogeny X → X ′, with X,X ′ are abelian schemes over R, the natural map

M∆(X [p∞]) = Ext1(R)∆
(u−1X,O∆)→ Ext1(R)∆

(u−1H,O∆)

is surjective. But the cokernel of this map embeds in Ext2(R)
∆
(u−1X ′,O∆), which

is zero by Theorem 4.5.6.
For exactness, start with a short exact sequence of finite locally free group

schemes of p-power order on R

0→ H ′ → H → H ′′ → 0,

43A morphism R → R′ between p-complete rings of bounded p∞-torsion is p-completely syn-
tomic if R′/p ∼= R′ ⊗L

R R/p and R/p → R′/p is syntomic in the sense of [49, Tag 00SL].
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which we see as an exact sequence of abelian sheaves on (R)qsyn. The surjectivity
of the map

M∆(H)→M∆(H
′)

can be checked locally and so we can assume that H , and so also H ′, embeds in an
abelian scheme X . But we know that the map

M∆(X [p∞])→M∆(H
′)

is already surjective, again because Ext2(R)
∆
(u−1X/H ′,O∆) = 0. Thus, the same

holds for the map

M∆(H)→M∆(H
′).

To prove injectivity of the map

M
∆
(H ′′)→M

∆
(H),

it suffices by the long exact sequence for RHom(R)∆
(−,O∆) to prove that

Hom(R)
∆
(u−1H ′,O∆) = 0.

Let us prove that Hom(R)
∆
(u−1H ′,O∆) is p-torsion free. This is enough : indeed,

we know it is also killed by a power of p, because u−1H ′ is. As

Hom(R)
∆
(u−1H ′,O∆) ⊂ H

0(u−1H ′,O∆) = H0(H ′,∆H′/Ainf
),

it suffices to prove that the latter is p-torsion free. This is the content of Lemma 5.1.6
when applied to the p-completely syntomic R-scheme H ′.

Let

G : DMtors → {finite locally free group schemes of p-power order over R}

be an inverse functor to M∆(−). We claim that G is exact. Let

0→M1 →M2 →M3 → 0

be an exact sequence in DMtors(R). For any morphism R → R′ the base change
of it along Ainf(R) → Ainf(R

′) will stay exact by 5.1.2. By [19, Proposition 1.1.]
and compatibility of G with base change in R we can therefore assume that R is
a perfect field of characteristic p. In this case the category of finite locally free
group schemes of p-power order and the category DMtors are abelian and thus any
equivalence between them is automatically exact. �

Remark 5.1.7. Let H be a finite locally free group scheme of p-power order over
the perfectoid ring R. We have seen in the previous proof that

Hom(R)
∆
(u−1H,O∆) = 0.

Assume pR = 0, i.e. that R is a perfect Fp-algebra. This result is to be contrasted
with the fact that

Hom(R/Zp)crys((u
crys)−1H,Ocrys)

is far from being 0. It is isomorphic to the Ocrys-linear dual of the crystalline
Dieudonné module

Mcrys(Ȟ) = Ext1(R/Zp)crys
((ucrys)−1H,Ocrys)

of the Cartier dual of H . In fact, one has a natural isomorphism ([5, Theorem
5.2.7])

τ≤1RHom(R/Zp)crys((u
crys)−1H,Ocrys)

∨[−1] ≃ τ≤1RHom(R/Zp)crys((u
crys)−1Ȟ,Ocrys),
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where

(−)∨ := RHomOcrys(−,Ocrys).

The previous equality is deduced from this by taking cohomology in degree 0.
Similarly, one has a natural isomorphism

τ≤1RHom(R)
∆
(u−1H,O

∆
)∨[−1] ≃ τ≤1RHom(R)

∆
(u−1Ȟ,O

∆
),

where
(−)∨ := RHomO

∆
(−,O∆).

One does not see anything interesting by taking cohomology in degree 0 on both
sides. But in degree 1, one obtains

Ext1O∆
(Ext1(R)∆

(u−1H,O∆),O∆) ≃ Ext
1
(R)∆

(u−1Ȟ,O∆),

and therefore

Ext1
∆R

(M∆(H),∆R) ≃M∆(Ȟ)

expressing the compatibility of the functorM∆ with Cartier duality on the category
of finite locally free group schemes of p-power order.

Remark 5.1.8. Let R be quasi-syntomic ring, flat over Z/pn or Zp. Although the
same trick allows in principle to deduce from Theorem 4.6.9 a classification result
for finite locally free group schemes of p-power order over R, it seems more subtle
to obtain a nice description of the target category, i.e. of the objects which can
locally on R be written as the cokernel of an isogeny of filtered prismatic Dieudonné
crystals on R. At least the arguments given above should go through whenever the
forgetful functor

DF(R)→ DM(R)

is an equivalence, like in the case of perfectoid rings or in the Breuil-Kisin case to
be discussed in the next section (where the classification of finite flat group schemes
is already known, and was proved by Kisin following the same technique, cf. [30,
Section 2.3.]).

5.2. Comparison over OK . In this section, we want to extract from Theorem 4.6.9
a concrete classification of p-divisible groups over p-complete regular local rings with
perfect residue field of characteristic p. This will in particular recover Breuil-Kisin’s
classification ([14], [30]), as extended to all p by Kim [29], Lau [35] and Liu [38],
over OK , for a complete discretely valued extension of Qp with perfect residue field.

Proposition 5.2.1. Let R be a p-complete Noetherian ring. If R is regular, there
exists a quasi-syntomic perfectoid cover R∞ of R.

Proof. The existence of a faithfully flat cover R → R∞, with R∞ perfectoid, is
explained in [9, Ex. 3.8]. Assume first that pR = 0 or that R is unramified. Since
R is in particular an integral domain, R is either flat over Zp or pR = 0. In the
first case set Λ := Zp and in the second Λ := Fp. By [49, Tag 07GB] the morphism
Λ → R is a filtered colimit of smooth ring maps and thus LR/Λ has p-complete
Tor-amplitude in degree 0. The triangle attached to the composite Λ → R → R∞

shows that LR∞/R has p-complete Tor-amplitude in degree −1. Therefore the
map R → R∞ is indeed a quasi-syntomic cover. Finally, when R is ramified of
mixed characteristic, one sees from the explicit construction of [9, Ex. 3.8 (5)] that
R → R∞ is the p-completion of a colimit of syntomic morphisms (obtained by
extracting pth-roots), hence is quasi-syntomic. �
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Remark 5.2.2. Conversely, the main result of [9] asserts that a Noetherian ring
with p in its Jacobson radical which admits a faithfully flat map to a perfectoid
ring has to be regular (this is a generalization of a theorem of Kunz [31] in positive
characteristic).

Proposition 5.2.3. Let R be a p-complete regular ring. The forgetful functor

DF(R)→ DM(R)

from filtered prismatic Dieudonné crystals to prismatic Dieudonné crystals is an
equivalence.

Proof. The forgetful functor is obviously faithful. Since R is quasi-syntomic and
either p-torsion free or such that pR = 0, we know by Theorem 4.8.5 (and quasi-
syntomic descent) that the composite functor

BT(R)→ DF(R)→ DM(R)

is fully faithful. This implies that the forgetful functor over R is also full.
Let us prove essential surjectivity. Let (M, ϕM) ∈ DM(R). Let R∞ be a

perfectoid quasi-syntomic cover of R, as in Proposition 5.2.1. LetM∞ ∈ DM(R∞)
be the base change ofM, which we see as a prismatic Dieudonné module M∞ over
R∞, via the equivalence of Proposition 4.1.13. We know (Lemma 4.1.15) that the
forgetful functor

DF(R∞)→ DM(R∞)

is an equivalence. In particular,M∞ ∈ DM(R∞) acquires a unique filtration FilM∞

such that

M∞ = (M∞,FilM∞, ϕM∞)

is a filtered prismatic Dieudonné module over R∞. We want to see that FilM∞

descends, i.e., that the images of FilM∞ along the two base change maps

∆R∞ → ∆R′
∞
,

where R′
∞ = R∞⊗̂RR∞, coincide. This holds because a prismatic Dieudonné mod-

ule over R′
∞ admits at most one filtration making it a filtered prismatic Dieudonné

module, i.e., because the forgetful functor

DF(R′
∞)→ DM(R′

∞)

is fully faithful. Indeed, R′
∞ is quasi-regular semiperfectoid and either p-torsion

free or of characteristic p (since it is p-completely faithfully flat over the regular
ring R) ; therefore, exactly as above for R, we know that the forgetful functor over
R′

∞ is fully faithful (using again Theorem 4.8.5). �

Recall the following definition, which already appeared in Example 4.1.21 before.

Definition 5.2.4. Let (A, I = (d)) be a prism. A Breuil-Kisin module (M,ϕM )
over (A, I), or just A if I is understood, is a finite free A-module M together with
an isomorphism

ϕM : ϕ∗M [
1

I
] ∼=M [

1

I
].

If ϕM (ϕ∗M) ⊆M with cokernel killed by I and finite projective as an A/I-module,
then (M,ϕM ) is called minuscule.

We denote by BK(A) the category of Breuil-Kisin modules over A and by
BKmin(A) ⊆ BK(A) its full subcategory of minuscule ones.
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We now specialize the previous discussion to the case where R is a complete
regular local ring with perfect residue field k of characteristic p. Any such R can
be written as

R =W (k)[[u1, . . . , ud]]/(E),

where d = dimR and E is a power series with constant term of p-value one (cf. [40,
Theorem 29.7, Theorem 29.8 (ii)]). Let (A, I) be the prism

(A, I) = (W (k)[[u1, . . . , ud]], (E)),

where the δ-ring structure on A is the usual one onW (k) and is such that δ(ui) = 0,
for i = 1, . . . , d. For simplicity, we assume d = 1 in the following, but the general
case works similarly.

Remark 5.2.5. Since R and A are regular, the condition that the cokernel is
projective over A/(E) = R in the definition of a minuscule Breuil-Kisin module
over A is automatic, as can be seen using the Auslander-Buchsbaum formula.

Theorem 5.2.6. Let R be a complete regular local ring with perfect residue field
of characteristic p. The functor

BT(R)→ BKmin(A) ; G 7→ v∗M∆(G)((A, I)) = Ext
1
(R)

∆
(u−1G,O∆)(A,I)

is an equivalence of categories.

The case where pR = 0 follows from Corollary 4.3.3, the classical fact that a
Dieudonné crystal over R is the same thing as a minuscule Breuil-Kisin module
over A (with respect to p) together with an integrable topologically quasi-nilpotent
connection making Frobenius horizontal and [16, Proposition 2.7.3], which proves
that for this particular ring A, the connection is necessarily unique. Hence in the
following, we will always assume that R is p-torsion free. In this case, the pair
(p,E) is transversal.

Remark 5.2.7. When R = OK , with K a complete discretely valued extension of
Qp with perfect residue field, A is usually denoted by S (a notation which seems
to originate from [14]). We will see below that the antiequivalence of the theorem
coincides in this case with the one studied by Kisin for p odd and Kim, Lau and
Liu when p = 2.

We will describe prismatic Dieudonné crystals over OK via descent using the
following lemma.

Lemma 5.2.8. The natural map from the sheaf represented by (A, I) to the final
object of Shv((R)∆) is an epimorphism for the p-completely faithfully flat topology.

Proof. Indeed, let (B, J) ∈ (R)∆. Let A∞ be the perfection of A ; the map R =
A/I → R∞ = A∞/IA∞ is a quasi-syntomic cover. By base change, the map

B/J → B/J⊗̂RR∞

is therefore a quasi-syntomic cover as well. By Proposition 3.3.8 there exists a prism
(C, JC) which is p-completely faithfully flat over (B, J) such that there exists a
morphism of B/J-algebras B/J⊗̂RR∞ → C/J . Since R∞ is perfectoid, it implies
that (C, JC) lives over (A∞, IA∞) (cf. Proposition 2.1.11), and a fortiori over (A, I),
as desired. �
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Proof of Theorem 5.2.6. By Theorem 4.6.9 and Proposition 5.2.3, we know that
the prismatic Dieudonné functor

M∆ : BT(R)→ DM(R)

is an antiequivalence. Therefore, it suffices to prove that the functor

M→ v∗M((A, I))

from prismatic Dieudonné crystals DM(R) to minuscule Breuil-Kisin modules BKmin(A)
is an equivalence. Let B the absolute product of A with itself in (R)∆. One has
(cf. [12, Proposition 3.13])

B =
(
W (k)[[u]]⊗W (k) W (k)[[v]]

)
{
u− v

E(u)
}
∧(p,E(u))

δ

where we wrote E(u) for E ⊗ 144. By Lemma 5.2.8 below and Proposition 4.1.8, a
prismatic Dieudonné crystalM overR is the same thing as a minuscule Breuil-Kisin
module N over A, together with a descent datum, i.e., an isomorphism

N ⊗A,p1 B ∼= N ⊗A,p2 B

(where p1, p2 : A → B are the two natural maps), satisfying the usual cocycle
condition.

We claim that any N ∈ BKmin(A) comes with a unique descent datum. Indeed,
let f : B → A be the map extending the multiplication map A ⊗W (k) A → A.
Proposition 5.2.10 below shows that base change along f induces an equivalence
between BKmin(B) and BKmin(A). In particular, this base change functor is fully
faithful, and so it suffices to produce the descent datum after base change along f .
But f ◦p1 = f ◦p2 = IdA, so one can simply take the isomorphism corresponding to
the identity of N . The same argument shows that the descent datum is unique. �

The proof of Proposition 5.2.10 relies on the following technical lemma.

Lemma 5.2.9. With the notation from the proof of Theorem 5.2.6 the ideal J ⊆ B
is contained in N≥1B, stable by ϕ1 and ϕ1 is topologically nilpotent on J , with
respect to the (p,E)-adic topology.

Proof. Write E := E(u). The ideal J is generated (up to completion) by the
δ-translates of

z := (u − v)/E,

so to check that J ⊂ N≥1B, it is enough to prove that δn(z) ∈ N≥1B for all n. We
prove by induction on n that for all k ≥ 0, ϕk(δn(z)) is divisible by E. For n = 0,
one has, for any k ≥ 1,

ϕk(z) =
upk − vpk

ϕk(E)
=

(u− v)(upk−1 + upk−2v + · · ·+ uvpk−2 + vpk)

ϕk(E)
.

Since (E,ϕk(E)) is regular (as (p,E) is transversal because B is p-completely faith-
fully flat over W (k)[[u]] by [12, Proposition 3.13]) and u− v is divisible by E in B,
we deduce that E divides ϕk(z). Let now n ≥ 0 and assume the result is known
for δn(z). We have, for k ≥ 0,

pϕk(δn+1(z)) = ϕk(pδn+1(z)) = ϕk(ϕ(δn(z))−δn(z)p) = ϕk+1(δn(z))−ϕk(δn(z))p,

44If similarly, E(v) = 1⊗E, then E(u)/E(v) is a unit in B by [12, Lemma 2.24] because E(u)

divides E(v) in B. Namely, E(v) = E(u)(E(v)−E(u)
E(u)

+ 1) in B and u− v divides E(u)− E(v).
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so the statement for δn+1(z) follows by induction hypothesis, and the fact that p
and E are transversal. This concludes the proof that J ⊂ N≥1B.

Let x ∈ J . We have

E.f(ϕ1(x)) = f(ϕ(x)) = ϕ(f(x)) = 0.

Since E is a non-zero divisor in A, we must have f(ϕ1(x)) = 0 and therefore
ϕ1(x) ∈ J , i.e., ϕ1 stabilizes J .

It remains to prove that the divided Frobenius is topologically nilpotent on J ,
endowed with the (p,E)-adic topology. Let

A′ = A

{
ϕ(E)

p

}∧p

,

which by [12, Lemma 2.35] identifies with the (p-completed) divided power envelope
DA((E))∧p of A in (E). The composition

α : A
ϕ
−→ A→ A′

defines a morphism of prisms (A, (E))→ (A′, (p)). Let

B′ := DA⊗̂W (k)A
(J ′)∧p ,

where J ′ is the kernel of the map A⊗̂W (k)A→ R. The ideal J ′ is generated by E

and u− v, which form a regular sequence in A⊗̂W (k)A/p, and therefore

B′ ∼= (A⊗̂W (k)A)

{
ϕ(E), ϕ(u − v)

p

}∧p

δ

∼= (A⊗̂W (k)A)

{
p, ϕ(u− v)

ϕ(E)

}∧ϕ(E)

δ

∼= Dϕ∗
A⊗̂W (k)A

B((E))∧p .

(In the second isomorphism we used again [12, Lemma 2.24], and in the first and
last [12, Lemma 2.37].) In particular, the map α induces a map, which we still
denote by the same letter :

α : B → B′.

It sends J ⊆ B to the kernel K ⊂ B′ of the map B′ → A′ (which extends the
multiplication on A⊗̂W (k)A→ A), and commutes with the divided Frobenius (be-
cause B′ is p- and thus ϕ(E)-torsion free). The ideal K ⊆ B′ is generated (up to
completion) by (u− v) and the δ-translates of

ϕ(u − v)

p
= unit ·

ϕ(u− v)

ϕ(E)
.

As the kernel J of B → A is stable by ϕ1, this implies that K = JB′ is stable by
ϕ1, and thus in particular contained in N≥1B′.

Observe also that

pB′ ∩B = (p,E).B

To see this, one needs to show that the map induced by α

B/(p,E)→ B′/p

is injective, i.e., by faithful flatness of ϕ : A→ A that the natural map

B/(p, ϕ(E)) = B/(p,Ep)→ B′/p = DB((E))/p

is injective. But since B is p-torsion free,

B′/p = B/(p,Ep)[X0, X1, . . . ]/(X
p
0 , X

p
1 , . . . )

∧p
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and the above map is simply the natural inclusion map. Hence, it suffices to
prove topological nilpotence of ϕ1 = ”ϕ/ϕ(E)” on K with respect to the p-adic
topology45. We do it in two steps.

Note first that ϕ is topologically nilpotent on K. More precisely, using that K
is stable by ϕ1, one easily sees by induction that ϕk(z) is divisible by pk, for all
z ∈ K and k ≥ 1 (with ϕk(z)/pk ∈ K, because A′ is p-torsion free). The equality

ϕ1(xy) = ϕ(x)ϕ1(y)

for x, y ∈ K, implies by induction that for any n ≥ 1 :

ϕn1 (xy) = ϕn(x)ϕn1 (y).

This shows that the second divided power ideal K [2] is stable by ϕ1 (since K is
stable by ϕ,ϕ1) and, by what we just said, that the left hand side is divisible by pn

in K. In fact, one can do better. Let m ≥ 1 and x ∈ K. In the previous equality,
take y = xm−1. Seeing it in B′[1/p] (recall that B′ is p-torsion free), one can divide
both sides by m!. It reads :

ϕn1 (γm(x)) =
ϕn(x)

m!
ϕn1 (x

m−1).

The left hand side always makes sense in K since K has divided powers, and for n
big enough, the right hand side as well since ϕn(x) tends p-adically to 0 and thus is
divisible by m! for n big enough. Letting n go to infinity, we see that the left hand
side goes to 0 in K. These considerations prove that ϕ1 is topologically nilpotent
(with respect to the p-adic topology) on K [2], as it is topologically nilpotent on K2

and all divided powers γm(x), m ≥ 2, for x ∈ K.
Let e be the degree of the polynomial E. Since K [2] is stable by ϕ1, ϕ1

defines a semi-linear endomorphism of the quotient K/K [2]. Let us now prove
that ϕpe1 (K/K [2]) ⊂ p.K/K [2]. We know that the A′-module K/K [2] is isomor-
phic to (Ω1

A)
∧p ⊗A A′ (where the map A → A′ is the natural inclusion). It

is a free A′-module of rank generated by du and via this identification, one has
ϕ1(du) = up−1du. But the image of upe in A′ is divisible by p since p divides Ep in
A′ and E is an Eisenstein polynomial. Therefore p (even pp−1) divides ϕpe1 (du⊗ 1)

in K/K [2].
Finally, let us check that these two steps imply the desired topological nilpotence.

Let x ∈ K, x̄ its class in K/K [2]. Fix an integer n ≥ 1. By the second step, we
have

ϕpne1 (x̄) ∈ pnK/K [2],

i.e., there exists y ∈ K [2] such that

ϕpne1 (x) ∈ y + pnK.

By the first step, there exists m ≥ 1 such that ϕm1 (y) ∈ pnK, and so

ϕpne+m1 (x) ∈ pnK,

as desired. �

45Let us clarify what we mean by the various ϕ1’s, whenever they are defined. On A we set
ϕ1 = ϕ/E which is the restriction of ϕ1 = ϕ/ϕ(E) along α. In B′ the element ϕ(E)/p is a unit
and thus ϕ1 = p

ϕ(E)
ϕ
p
, i.e., both possible definition of the divided Frobenius differ by a unit.
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Proposition 5.2.10. With the notations from the proof of Theorem 5.2.6 the map
f : B → A induces an equivalence:

BKmin(B)→ BKmin(A).

Proof. From Lemma 5.2.9 and the fact that the map B → A is surjective, one
deduces fully faithfulness of the functor

BKmin(B)→ BKmin(A)

as in the proof of Lemma 4.1.27. For essential surjectivity, observe that the map
ι : A → B sending a to the image of a ⊗ 1 in B is a section of the map B → A.
Therefore, any M ∈ BKmin(A) is the image by the functor

BKmin(B)→ BKmin(A)

of ι∗M ∈ BKmin(A). �

Finally, let K be a complete, discretely valued extension of Qp, let OK ⊆ K be
its ring of integers and assume the residue field k of OK is perfect. We will show
that the equivalence of Theorem 5.2.6 coincides with the equivalence established
by Kisin (cf. [30, Theorem 0.4]). Set

S :=W (k)[[u]]

with Frobenius lift ϕ : W (k)[[u]] → W (k)[[u]] sending u 7→ up. Fix a uniformizer
π ∈ OK and define the morphism

θ̃ : S→ OK , u 7→ π.

Then the kernel ker(θ̃) = (E) is generated by an Eisenstein polynomial E ∈
W (k)[u]. Let S be the p-completed divided power envelope of the ideal (E) ⊆ S,
i.e.,

S = S{
ϕ(E)

p
}∧p

in the category of δ-rings. Note that the composition

ψK : S
ϕ
−→ S→ S

induces to a morphism (S, (E)) → (S, (p)) of prisms. Via the composition OK ∼=

S/(E)
ψK
−−→ S/(p) we consider (S, (p)) as an object of the (absolute) prismatic site

(OK)∆. The antiequivalence

MKis(−) : BT(OK) ∼= BKmin(OK)

of Kisin has the characteristic property (cf. [30, Theorem (2.2.7)]) that for a p-
divisible group G over OK there is a canonical Frobenius equivariant isomorphism

MKis(G) ⊗S,ψ S ∼= D(G)(S)

where the right hand side denotes the evaluation of the crystalline Dieudonné crystal
of G on the PD-thickening S → OK (which sends all divided powers of E to zero).

Let G be a p-divisible group over OK with absolute filtered prismatic Dieudonné
crystalM∆(G). We use Lemma 4.2.4 and Proposition 4.1.4 and considerM∆(G)
as a crystal on the absolute prismatic site (OK)∆.
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Lemma 5.2.11. There is a natural Frobenius equivariant, filtered isomorphism

αK :M∆(G)(S, (p))
≃
−→ D(G)(S).

Here D(G)(S) denotes the evaluation of the Dieudonné crystal of G at the PD-
thickening S → OK .

Proof. This follows from Lemma 4.3.4. �

We want to show that the natural isomorphism αK restricts to an isomorphism
M∆(G)((S, (E)) ∼= MKis(G). In other words, we want to prove the existence of
the dotted morphisms in the diagram

M∆(G)((S, (E))
++❤

❝ ❴ ❬
❱

_�

��

MKis(G)
kk ❤

❝❴❬
❱ _�

��

M∆(G)(S, (p))
∼

D(G)(S).

Let C be the completion of an algebraic closure of K and let OC ⊆ C be its ring
of integers. Set Ainf := Ainf(OC), Acrys := Acrys(OC).

We can extend the morphism OK → OC to a morphism of prisms46

f : (S, (E))→ (Ainf , (ξ))

by sending u 7→ π♭ = [(π, π1/p, . . .)] (after choosing a compatible system of p-power
roots π1/pn ∈ OC of π). Let

ψC : Ainf
ϕ
−→ Ainf → Acrys.

Then analogous ψC induces a morphism (Ainf , (ξ))→ (Acrys, (p)) of prisms.
By faithful flatness of S→ Ainf (cf. [10, Lemma 4.30]47) it suffices to prove the

existence of the dotted arrows after base change to Ainf :

(4) M
∆
(G)((S, (E)) ⊗S,f Ainf

,,❡
❜ ❴ ❭

❨

_�

��

MKis(G) ⊗S,f Ainf
ll ❡

❜❴❭
❨ _�

��

M∆(G)(S, (p)) ⊗S,f Ainf
∼

D(G)(S)⊗S,f Ainf .

By flat base change of PD-envelopes (cf. [49, Tag 07HD]) we get

S⊗̂SAinf
∼= Acrys

and thus D(G)(S)⊗S Ainf
∼= D(GOC)(Acrys).

Similar to Lemma 5.2.11 there is a canonical isomorphism

αC :M
∆
(G)((Acrys, (p)) ∼= D(GOC )(Acrys)

by Lemma 4.3.4 and thus the lower horizontal isomorphism in (Equation (4)) iden-
tifies with αC . By the crystal property ofM∆(G) the left vertical injection

M∆(G)((S, (E))) ⊗S,f Ainf →֒ M∆(GOC )(S, (p))⊗S,f Ainf .

identifies with the inclusion

M∆(G)((Ainf , (ξ))) →֒ M∆(GOC )(Acrys, (p))

46Note that we take ξ, not ξ̃.
47But note that our map f differs from the one of [10], which is ϕ ◦ f .
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along the morphisms of prism ψC : (Ainf , (ξ)) → (Acrys, (p)). By Proposition 4.3.7
there is a canonical isomorphism

β : ϕ∗
Ainf
M∆(G)((Ainf , (ξ))) =M∆(G)((Ainf , (ξ̃))) ∼=MSW(GOC )

∗

to the dual of the functor constructed by Scholze-Weinstein. By [47, Theorem
14.4.3.] MSW(G)∗ ⊗Ainf

Acrys
∼= D(GOC/p)(Acrys) and moreover the diagram

ϕ∗
Ainf
M∆(G)((Ainf , (ξ)))

β
//

��

MSW(GOC )
∗

��

M∆(G)((Acrys, (p)))
≃ // D(G)(Acrys) ∼=MSW(GOC )

∗ ⊗Ainf
Acrys

commutes. Hence, it suffices to prove that there exists an isomorphism

γ : MKis(G) ⊗S,g Ainf →MSW(GOC )
∗

where g = ϕ ◦ f is a morphism of prisms

g : (S, (E))→ (Ainf , (ξ̃)),

such that the diagram

MKis(G) ⊗S,g Ainf

��

γ
// MSW(GOC )

∗

��

D(GOC )(Acrys, (p))
≃ // MSW(GOC )

∗ ⊗Ainf
Acrys

commutes.
Let T be the dual of the p-adic Tate module TpG of G. Then T is a lattice in

a crystalline representation of Gal(K/K) (where K ⊆ C is the algebraic closure of
K) andMKis(G) ∼=M(T ) whereM(−) is Kisin’s functor from lattices in crystalline
representations to Breuil-Kisin modules. By [10, Proposition 4.34] M(T )⊗S,g Ainf

corresponds under Fargues’ equivalence (cf. [47, Theorem 14.1.1]) to the pair (T,Ξ)

with Ξ ⊆ T⊗ZpBdR the B+
dR-lattice generated byDdR(TQp) = (T⊗ZpBdR)

Gal(K/K).
But this pair is exactly the one associated to GOC by Scholze-Weinstein.

Thus in the end our discussion implies the following proposition.

Proposition 5.2.12. The two functors

G 7→MKis(G)
G 7→ M∆(G)(S, (E))

from p-divisible groups over OK to minuscule Breuil-Kisin modules are naturally
isomorphic.

5.3. Filtered prismatic Dieudonné crystals and displays. The work of Zink
provides a classification of connected p-divisible groups over p-adically complete
rings (cf. [50]). In this section, we want to relate it to the classification obtained
(for quasi-syntomic rings) in Theorem 4.9.5.

Definition 5.3.1. Let R be a p-complete ring. A display over R is a window (cf.
Section 4.1 and [37, Example 5.4.]) over the frame

W (O) = (W (O), I(O) := ker(W (O)→ O), F, F1),
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in the topos of sheaves on the p-completely faithfully flat site of R, where F is the
Witt vector Frobenius and F1 the inverse of the bijective Verschiebung morphism
V : I(O)→ W (O).

The category of displays over R is denoted by Disp(R).

Remark 5.3.2. The category of displays satisfies faithfully flat descent : see [50,
Theorem 37]. Since displays over a p-complete ring R (with bounded p∞-torsion)
are equivalent to compatible systems of displays over R/pn for all n ≥ 1, we see
that displays even satisfy p-completely faithfully flat descent (cf. [11, Corollary
4.8]). Hence the category of displays over R in the sense of Definition 5.3.1 is
the same as the usual category of displays over R (i.e., windows over the frame
(W (R), I(R), F, F1)).

Proposition 5.3.3. Let R be a quasi-regular semiperfectoid ring. Assume that
pR = 0 or that R is p-torsion free. The natural morphism from Theorem 3.4.6

∆R → R

(given by moding out N≥1
∆R) lifts to a morphism of frames (in the general sense

of [16, Definition 2.1.5])

∆R,Nyg →W (R),

where ∆R,Nyg is the frame associated to (∆R, I) and ξ̃, as in Example 4.1.18.

Proof. By adjunction (cf. [26, Theoreme 4]), the morphism ∆R → R gives rise to a
morphism of δ-rings :

f : ∆R →W (R),

lifting the morphism to R, i.e., sending N≥1
∆R to I(R). In particular, f(ξ) ∈ I(R),

and thus

f(ξ̃) = ϕ(f(ξ)) = pϕ1(f(ξ))

and so p divides f(ξ̃). By [12, Lemma 2.24], we deduce that (p) = (f(ξ̃)). It is
then easy to conclude when W (R) is p-torsion free since the commutation (up to a
unit) of f with the divided Frobenius can be proved after multiplying by p. In the
case where pR = 0 one argues as in [36, Lemma 7.4]. �

It would be nice to prove that for any R quasi-regular semiperfectoid, the mor-
phism of the proposition always defines a morphism of frames. Although we did
not succeed in doing so, the next proposition shows that one can circumvent this
difficulty.

Proposition 5.3.4. Let R be a quasi-syntomic ring. There exists a natural functor,
unique up to isomorphism,

ZR : BT(R)→ Disp(R), G 7→ ZR(G) = (ZR(G),Fil ZR(G), F, F1)

such that the triple (ZR(G),Fil ZR(G), F ) is obtained by base change of M∆(G)
along the morphism of δ-pairs

(
Opris,N≥1Opris

)
→ (W (O), ker(W (O)→ O)) .

Moreover, it coincides with the composition of the filtered prismatic Dieudonné
functor with the functor induced by the morphism of frames of Proposition 5.3.3
when R is quasi-regular semiperfectoid and pR = 0 or R is p-torsion free.
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Proof. The requirement of the proposition already says what

(ZR(G),Fil ZR(G), F )

must be. Therefore, the only issue is to define the divided Frobenius F1.
Assume first that R is quasi-regular semiperfectoid and p-torsion free. Then one

defines ZR as the composition of the filtered prismatic Dieudonné functor with the
functor induced by the morphism of frames of Proposition 5.3.3. By quasi-syntomic
descent (Remark 5.3.2), one gets a functor ZR for any p-torsion free quasi-syntomic
ring R. For such rings R, the functor ZR is necessarily unique by p-torsion freeness
of W (R). In particular, it commutes with base change in R.

To obtain the functor ZR in general, we use smoothness of the stack of p-divisible
groups, following an idea of Lau, [34, Proposition 2.1]. Let X = Spec(A) →
BT × Spec(Zp) be a smooth presentation of the stack of p-divisible groups as in

loc. cit. Then Spec(B) = X ×BT X is affine. The p-adic completions Â and B̂ are
both p-torsion free (cf. [34, Lemma 1.6.]).

Let R be a quasi-syntomic ring and G be a p-divisible group over R. It gives rise
to a map α : Spec(R)→ BT × Spec(Zp). Let

Spec(S) = Spec(R)×BT ×Spec(Zp) Spec(A),

and

Spec(T ) = Spec(S)×Spec(A) Spec(B).

Let Ŝ and T̂ be their p-adic completions. The rings Â and B̂ are p-completely
smooth, and therefore quasi-syntomic. By base change the rings Ŝ and T̂ are also
quasi-syntomic. The base change

(ZŜ(GŜ),Fil ZŜ(GŜ), F )

of the triple (ZR(G),Fil ZR(G), F ) along R → Ŝ is also the base change of the
triple

ZÂ(HÂ),Fil ZÂ(HÂ), F )

along α⊗ Â of the universal p-divisible group H over A. The divided Frobenius F1

on ZÂ(HÂ) (coming from the first part of the proof) therefore induces an operator
F1 on ZŜ(GŜ). This operator F1 is compatible with the descent datum for the

base change along the two natural maps Ŝ → T̂ , since the functor ZB̂ exists and is
unique. By descent (Remark 5.3.2), this defines a display structure ZR(G) on the
triple (ZR(G),Fil ZR(G), F ).

This display structure is uniquely determined by the requirement that it is com-
patible with the maps R → Ŝ, Ŝ → Â. In particular, it has to coincide with
the composition of the filtered prismatic Dieudonné functor with the functor in-
duced by the morphism of frames of Proposition 5.3.3 also when R is quasi-regular
semiperfectoid and killed by p. �

The functor of Proposition 5.3.4 is not an antiequivalence when p = 2. Never-
theless, one has the following positive result, reproving the main result of [50], [32]
in the special case of quasi-syntomic rings.

Proposition 5.3.5. Let R be a quasi-syntomic ring, flat over Z/pn (for some
n > 0) or Zp. The functor ZR restricts to an antiequivalence

BTf (R) ∼= Dispnilp(R)
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between the category of formal p-divisible groups over R and the category of F -
nilpotent displays over R.

Recall that a display is said to be F -nilpotent if its Frobenius is nilpotent modulo
p.

Proof. Assume first that R is quasi-regular semiperfect. The functor ZR is the
composite of the filtered prismatic Dieudonné functor, which is an antiequivalence
by Theorem 4.6.9, and of the functor induced by the morphism of frames

(∆R ∼= Acrys(R),N
≥1∆R, ϕ, ϕ1)→ (W (R), I(R), F, F1).

The morphism ∆R → W (R) is surjective (since it is so modulo p and both sides
are p-complete ; note that we assume pR = 0). The kernel of this morphism is
generated by the elements [x](n), for x ∈ ker(R♭ → R) and n ≥ 1. For such an
element, one has

ϕ1([x]
(n)) =

(np)!

n!p
[x](np).

Iterating, one sees that ϕ1 is topologically nilpotent on the kernel (with respect to
the p-adic topology). By Lemma 4.1.27, the functor

DF(R)→ Disp(R)

is an equivalence. It is easily seen that it restricts to an antiequivalence between
formal p-divisible groups and F -nilpotent displays.

By quasi-syntomic descent, this yields the statement of the proposition when R
is quasi-syntomic with pR = 0. In general, R/p is quasi-syntomic ([11, Lemma 4.16
(2)]) and one can consider the following commutative diagram :

BT(R)
ZR //

��

Disp(R)

��

BT(R/p)
ZR/p

// Disp(R/p).

Grothendieck-Messing theory for F -nilpotent displays (cf. [50, Theorem 48]) cou-
pled with Grothendieck-Messing theory for p-divisible groups (cf. [42, V (1.6)] and
[50, Corollary 97]) show that this diagram is 2-cartesian. Since ZR/p is an antiequiv-
alence, ZR also is one. �

5.4. Étale comparison for p-divisible groups. Let R be a quasi-syntomic ring
and let G be a p-divisible group over R. In this section we show how the (dual
of the) Tate module of the generic fiber of R, seen as a diamond ([46, Definition
11.1]), can be recovered from the (filtered) prismatic Dieudonné crystalM∆(G) of
G.

Let

Opris

be the prismatic sheaf on (R)qsyn and

I := Ipris ⊆ Opris

the natural invertible Opris-module (cf. Definition 4.1.1). Fix n ≥ 0. Note that the
Frobenius

ϕ : Opris → Opris
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induces a morphism, again called Frobenius,

ϕ : Opris/pn[1/I]→ Opris/pn[1/I]

as ϕ(I) ⊆ (p, I) although I is not stable under ϕ.
We let

(R)v

be the v-site of all maps Spf(S) → Spf(R) with S a perfectoid ring over R. By
definition the coverings in (R)v are v-covers Spf(S′) → Spf(S) (cf. [12, Section
8.1.]). Let

(R)qsyn,qrsp

be the site of all maps Spf(S)→ Spf(R) with S quasi-regular semiperfectoid (covers
given by quasisyntomic covers). The perfectoidization functor

S 7→ Sperfd

from [12, Definition 8.2.] induces a continuous functor

α : (R)v → (R)qsyn,qrsp

sending Spf(S) to Spf(Sperfd). Indeed, by [12, Proposition 8.10.] and the fact that
quasi-syntomic covers are v-covers the conditions of [49, Tag 00WV] are satisfied.
Moreover, we have the “inclusion of the generic fiber”

j : Spa(R[1/p], R)⋄v → (R)v

induced by sending Spf(S) to Spa(S[1/p], S)48. Here Spa(R[1/p], R)⋄v is the v-site of
the diamond associated with Spa(R[1/p], R) (cf. [46, Section 15.1.], [46, Definition
14.1.iii)]).

Lemma 5.4.1. There are natural isomorphism

α∗(Z/p
n) ∼= (Opris/pn)ϕ=1

and

(α ◦ j)∗(Z/p
n) ∼= (Opris/pn[1/I])ϕ=1

of sheaves on (R)qsyn,qrsp.

Here (−)ϕ=1 denotes the (non-derived) invariants of ϕ on the sheafOpris/pn[1/I].

Proof. We only prove the second statement. The first is similar (but easier). Let
S be a quasi-regular semiperfectoid R-algebra. Then

(Opris/pn[1/I])ϕ=1(S) ∼= (lim
−→
ϕ

Opris/pn[1/I])ϕ=1(S) ∼= (lim
−→
ϕ

Opris(S)/pn)ϕ=1.

The first isomorphisms follows from commuting a kernel with a filtered limit and
the second as S is quasi-regular semiperfectoid (which implies that the p-torsion free
sheaf lim

−→
ϕ

Opris has no higher cohomology over S). Then [12, Lemma 9.2.] implies

that

(lim
−→
ϕ

Opris(S)/pn)ϕ=1 ∼= (Ainf(Sperfd)/p
n[1/I])ϕ=1.

48We use the notation Spa(S[1/p], S) when S is not necessarily integrally closed in S[1/p].
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By [12, Lemma 9.3.], the equivalence of underlying topological spaces under tilting
of perfectoid spaces, [47, Theorem 7.1.1.], and [28, Proposition 3.2.7.] the right-
hand side becomes

Wn((Sperfd[1/p])
♭)ϕ=1 ∼= Homcts(π0(Spa(Sperfd[1/p], Sperfd)),Z/p

n),

which agrees with

(α ◦ j)∗(Z/p
n)(S).

This finishes the proof. �

We can derive the following description of the Tate module of the generic fiber.

Proposition 5.4.2. Let G be a p-divisible group over R with prismatic Dieudonné
crystalM

∆
(G) and let n ≥ 0. Then

j∗α∗(M∆(G)/p
n[1/I]ϕ=1)

is canonically isomorphic to HomZ/pn(G[p
n]η,Z/p

n) where G[pn]η denotes the sheaf
Spa(S[1/p], S) 7→ G[pn](S[1/p]) on Spa(R[1/p], R)⋄v.

Proof. SetM :=M∆(G). By Lemma 4.2.6

M∼= Hom(R)qsyn,qrsp(TpG,O
pris).

From the proof of Proposition 4.6.5 we can conclude that

Hom(R)qsyn,qrsp(TpG,O
pris)/pn ∼= Hom(R)qsyn,qrsp(TpG,O

pris/pn)

∼= Hom(R)qsyn,qrsp(G[p
n],Opris/pn).

It follows that

M/pn[1/I] ∼= Hom(R)qsyn,qrsp(G[p
n],Opris/pn[1/I])

as using Section 4.4 the functor Hom(R)qsyn,qrsp(G[p
n],−) commutes with filtered

colimits. Finally,

M/pn[1/I]ϕ=1 ∼= Hom(R)qsyn,qrsp(G[p
n],Opris/pn[1/I]ϕ=1).

By Lemma 5.4.1

Opris/pn[1/I]ϕ=1 ∼= (α ◦ j)∗(Z/p
n)

and thus

M/pn[1/I]ϕ=1 ∼= Hom(R)qsyn,qrsp(G[p
n], (α ◦ j)∗(Z/p

n))

∼= (α ◦ j)∗(HomZ/pn((α ◦ j)
∗G[pn],Z/pn))).

The definitions of α and j imply

(α ◦ j)∗M/pn[1/I]ϕ=1 ∼= HomZ/pn((α ◦ j)
∗G[pn],Z/pn),

as we can conclude from Lemma 5.4.3. �

Lemma 5.4.3. With the notations from Proposition 5.4.2,

(α ◦ j)∗G[pn] ∼= G[pn]η.
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Proof. By right exactness of (α ◦ j)∗, it suffices to show

(α ◦ j)∗TpG ∼= TpGη.

Moreover, we may assume that R is perfectoid by passing to slice topoi. Let S be
the R-algebra representing TpG on p-complete rings. Thus S is the p-completion
of lim
−→
m

Sm where Sm represents G[pm]. Then S is quasi-regular semiperfectoid. By

definition (α ◦ j)∗TpG is represented by the perfectoid space

Spa(Sperfd[1/p], S
+
perfd)

over Spa(R[1/p], R) where S+
perfd is the integral closure of Sperfd in Sperfd[1/p].

Let Spa(T, T+) be an affinoid perfectoid space over Spa(R[1/p], R), in particular
we assume that T+ is integrally closed in T = T+[1/p]. Then any morphism
Sperfd[1/p]→ T sends S+

perfd → T+ because S is a p-completed direct limit of finite

R-algebras and T+ is perfectoid and integrally closed in T . Thus

Hom(R[1/p],R)((Sperfd[1/p], S
+
perfd), (T, T

+)) ∼= HomR(S
+
perfd, T

+)

∼= HomR(S, T
+)

∼= HomR(lim−→
m

Sm, T
+)

∼= HomR(lim−→
m

Sm, T ) = TpG(T )

where Sm represents G[pm] (thus S is the p-adic completion of lim
−→
m

Sm)). In the last

isomorphism we used again that all Sm are finite over R and thus any morphism
Sm → T of R-algebras factors over T+. �
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Appendix A. Descent for p-completely faithfully flat morphisms

In this appendix, we prove descent results for the p-completely faithfully flat
topology on p-complete rings. We expect the statements in this section to be more
or less known, but we did not find a written source.

Let R be a p-complete ring with bounded p∞-torsion. The property that R has
bounded p∞-torsion is important as it implies that the pro-systems

{R/pn}n≥0

and
{R⊗L

Z Z/pn}n≥0

are pro-isomorphic49. In particular, for every complex M of R-modules there is an
isomorphism of pro-systems

{M ⊗L
R R/p

n}n≥0
∼= {M ⊗L

Z Z/pn}n≥0.

Let us recall how faithfully flat descent for modules follows from the Barr-Beck
theorem (cf. [20, Chapitre 4]).

Let
T : C → D

be a functor between two categories and assume that T admits a rightadjoint

U : D → C.

Set
F := T ◦ U : D → D.

The unit c : F = TU → IdD and the natural transformation

µ : F = TU → F ◦ F = TUTU

induced from the counit IdC → UT give F the structure of a comonad. An object
D ∈ D together with a morphism αD : D → FD is called an comodule for F if the
composition

D
αD−−→ FD

c
−→ D

is the identity and the diagram

D
αD //

��

FD

µD

��
FD

FαD // FFD

commutes. For each C ∈ C the canonical morphism

TC → TUTC

induced from the counit C → TUC gives a comodule structure on the object
D := TC. The theorem of Barr-Beck states the following converse.

Theorem A.1 (Barr-Beck). Assume that

• A pair of morphisms a, b : C1 → C2 in C admits an equalizer if Ta, T b : TC1 →
TC2 admits one
• If c : C0 → C1 equalizes a, b, then c is an equalizer of a, b if Tc is an equalizer
of Ta, Tb.

49The pro-system H−1(R⊗L
Z
Z/pn) ∼= R[pn] is pro-zero as R has bounded p∞-torsion.
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Then the functor T induces an equivalence of C with the category of comodules for
F .

If A → B is a faithfully flat morphism of rings, then faithfully flat descent be
deduced from Theorem A.1 by setting C := ModA, D := ModB and T := B⊗A (−).
Namely in this case comodules in D can be identified with B-modules with descent
datum (cf. [20, Chapitre 4.2]) and the theorem of Barr-Beck applies because the
functor T = B ⊗A (−) satisfies both hypothesis in Theorem A.1 as A → B is
faithfully flat.

Assume from now on that R a p-complete ring with bounded p∞-torsion. Let
ModR,c be the abelian category of derived p-complete R-modules and let R → R′

be a p-completely flat morphism of rings and assume that R′ is p-complete with
bounded p∞-torsion.

For an R-module M we set

T (M) := ̂R′ ⊗L
RM

where the completion is derived. We let

ModR,c,bdd ⊆ModR,c

be the full subcategory of R-modules with bounded p∞-torsion. Equivalently, it is
the full subcategory consisting of R-modules M such that the pro-system

{H−1(M ⊗L
R R/p

n}n≥0
∼= {H−1(M ⊗L

Z Z/p}n≥0

is pro-zero. Namely, if M is an abelian group such that the p∞-torsion in M is
unbounded, then

{H−1(M ⊗L
Z Z/pn)}n≥0

∼= {M [pn]}n≥0

is not pro-zero. If it were, then there exists an m ≥ 0, such that the morphism

pm−1 : M [pm]→M [p]

is zero. But as M has unbounded p∞-torsion there exists a non-zero element in
M [pm] \M [pm−1].

Lemma A.2. The functor T : ModR,c,bdd → ModR′,c,bb has the forgetful functor
ModR′,c,bdd → ModR,c,bdd as a right adjoint.

Proof. The functor T is well-defined. Namely, for M ∈ ModR,c,bdd the complex
T (M) is p-adically complete and T (M)⊗L

R′/p R
′/p ∼=M ⊗L

R/p R
′/p is concentrated

in degree 0 as R→ R′ is p-completely flat, and the pro-system

{H−1(M ⊗L
R R

′/pn)}n≥0
∼= {H−1(M ⊗L

R R/p
n)⊗R/pn R

′/pn}n≥0

is zero. For the adjunction it suffices to see that the restriction of a derived p-
complete R′-moduleM with bounded p∞-torsion is a derived p-complete R-module
with bounded p∞-torsion. But derived p-completeness and the torsion only depends
on the underlying Z-module and thus the claim follows. �

Lemma A.3. Let 0→M0 →M1 →M2 → 0 be an exact sequence in ModR,c,bdd.
Then the sequence

0→ T (M0)→ T (M1)→ T (M2)→ 0

is exact.
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Proof. The triangle

̂M0 ⊗L
R R

′ → ̂M1 ⊗L
R R

′ → ̂M2 ⊗L
R R

′

is distinguished and each term is concenctrated in degree 0. �

Lemma A.4. The category ModR,c,bdd of p-complete R-modules with bounded p∞-
torsion admits kernels and the inclusion ModR,c,bdd → ModR commutes with these.
Moreover, the functor T : ModR,c,bdd → ModR′,c,bdd commutes with kernels.

Proof. LetM1 →M2 be a morphism in ModR,c,bdd and K its kernel as a morphism
of R-modules. Then K is (derived) p-complete (because it identifies with a coho-
mology group of the derived p-complete mapping cone ofM1 →M2). Moreover, K
has bounded p∞-torsion because M1 has. In the exact sequence

0→ K →M1 →M1/K → 0

the right term is (derived) p-complete and has bounded p∞-torsion (because it
embeds intoM2). Therefore the statement on p-completely flat base change follows
from Lemma A.3 �

Lemma A.5. The functor

T : ModR,c,bdd → ModR′,c,bdd

is conservative, i.e., reflects isomorphisms.

Proof. Let M1 → M2 be a morphism, such that T (M1) → T (M2) is an isomor-
phism. By p-completeness of M1 and M2 it suffices to see that M1 ⊗L

R R/p →
M2⊗L

RR/p is an isomorphism. By p-complete faithful flatness of R→ R′ this may
be checked after base change to R′. But for M ∈ModR,c,bdd we get that

M⊗L
RR/p⊗

L
R/pR

′/p ∼=M⊗L
RR

′⊗L
R′R′/p ∼= ( ̂M ⊗L

R R
′)⊗L

R′R′/p ∼= T (M)⊗L
R′R′/p

and thus the statement follows. �

Lemma A.6. Let R→ R′ be p-completely faithfully flat and let 0→M0 →M1 →
M2 be a sequence of morphisms in ModR,c,bdd such that 0 → T (M0) → T (M1) →
T (M2) is exact. Then 0→M0 →M1 →M2 is exact.

Proof. Let K be the kernel of M1 → M2. It suffices to see that the natural map
M0 → K is an isomorphism. Using Lemma A.4 this follows from Lemma A.3. �

Now, we can conclude descent for p-completed R-modules with bounded p∞-
torsion from the Barr-Beck theorem.

Theorem A.7. The category ModR,c,bdd is equivalent to the category of descent
data (M,α), where M ∈ ModR′,c,bdd and α an isomorphism of the base changes of

M to ̂R′ ⊗L
R R

′ satisfying the cocycle condition over ̂R′ ⊗L
R R

′ ⊗L
R R

′.

Proof. From Lemma A.6 and Lemma A.4 we can conclude that the hypothesis of
the theorem of Barr-Beck Theorem A.1 are satisfied. As in [20, Chapitre 4.2.] one
can conclude the statement on descent data. �

Under descent the property of being finite projective is preserved.

Lemma A.8. Let M ∈ Modc,R,bdd. If T (M) = ̂M ⊗L
R R

′ is finite projective over
R′, then M is finite projective over R.
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Proof. From classical faithfully flat descent of finite projective modules we can
conclude that

M ⊗L
R R/p

is a finite projective R/p-module as

M ⊗L
R R/p⊗

L
R/p R

′/p

is. Therefore the claim follows from Lemma A.9. �

Lemma A.9. Let R be a p-complete ring with bounded p∞-torsion and let M be a
derived p-complete complex of R-modules such that M ⊗L

RR/p is a finite projective
R/p-module placed in degree 0. Then M is (quasi-isomorphic to) a finite projective
R-module.

Proof. We first show that M is concentrated in degree 0. Indeed,

M ∼= R lim
←−
n

(M ⊗L
Z Z/pn) ∼= R lim

←−
n

(M ⊗L
R R/p

n),

where we use that R has bounded p∞-torsion in the second isomorphism. Moreover,
all M ⊗L

R R/p
n are concentrated in degree 0 by the flatness of M ⊗L

R R/p over R/p
and the exact triangles

(M ⊗L
R R/p)⊗

L
R/p (p

n)/(pn+1)→M ⊗L
R R/p

n+1 →M ⊗L
R R/p

n.

ByMittag-Leffler we thus get thatM is concentrated in degree 0. By p-completeness
of M we can conclude from the derived Nakayama lemma that M is finitely gener-
ated because M ⊗L

R R/p is. Therefore there exists a short exact sequence

0→ K → Rn →M → 0.

Then K is derived p-complete and because M ⊗L
R R/p is concentrated in degree 0

the sequence

0→ K/p→ (R/n)n →M/p→ 0

remains exact. As M/p ∼= M ⊗L
R R/p is projective over R/p, K/p is finitely gen-

erated. Therefore K is finitely generated by the derived Nakayama lemma and
therefore M is finitely presented. Let x ∈ Spec(R) be a closed point. Then by
p-completeness of R the point x lies in Spec(R/p). Thus we can conclude that

M ⊗L
R k(x)

∼= (M ⊗L
R R/p)⊗

L
R/p k(x)

is concentrated in degree 0 as M ⊗L
R R/p is a finite projective R/p-module. Using

Lemma A.10 we can conclude. �

Lemma A.10. Let S be a ring and let M be a finitely presented S-module. If

M ⊗L
S k(x)

is concentrated in degree 0 for all closed points x ∈ Spec(S), then M is finite
projective.

Proof. Using thatM is finitely presented we may after replacing S by a localisation
at a maximal ideal assume that S is local with unique closed point x ∈ Spec(S).
Then let

0→ K → Sn
α
−→M → 0

be a short exact sequence such that α⊗S k(x) is an isomorphism. Then K is finitely
generated because M is finitely presented. Hence, by Nakayama it suffices to prove
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K ⊗S k(x) = 0. But M ⊗L
S k(x) is discrete and α⊗S k(x) is an isomorphism, thus

even K ⊗L
S k(x) = 0. �

Proposition A.11. The fibered categories of p-divisible groups and finite locally
free group schemes over p-complete rings with bounded p∞-torsion are stacks for
the p-completely faithfully flat topology.

Proof. It suffices to show the statement for finite locally free group schemes as p-
divisible groups are canonically a colimit of such. From TheoremA.7 and Lemma A.8
we know that finite locally free modules form a stack for the p-completely faithfully
flat topology on p-complete rings with bounded p∞-torsion. As base change com-
mutes with fiber products, this implies that finite locally free group schemes form
a stack, too. �

Recall that a morphism

(A, I)→ (B, J)

of prisms is called faithfully flat if it is (p, I)-completely flat.

Proposition A.12. The fibered category

(A, I) 7→ { finite projective A−modules}

on the category of bounded prisms is a stack for the faithfully flat topology.

Proof. If (A, I) is a prism, then A is classically I-complete and thus finite projective
A-modules are equivalent to compatible systems of finite projective A/In-modules,
i.e.,

{ finite projective A−modules} ∼= 2− lim
←−
n

{ finite projective A/In −modules}

(cf. [49, Tag 0D4B]). As the 2-limit of stacks is again a stack it suffices to show that
for any n ≥ 0 the fibered category

(A, I) 7→ { finite projective A/In −modules}

is a stack on bounded prisms. If (A, I) → (B, J) is a faithfully flat morphim of
prisms, then

A/In → B/Jn

is a p-completely faithfully flat morphism of rings with bounded p∞-torsion. Thus
the proposition follows from Theorem A.7 and Lemma A.8. �

Example A.13. We give an example of a ring R which is classically (p, f)-complete
where f ∈ R is a non-zero divisor, such that R/f has bounded p∞-torsion, but R
has unbounded p∞-torsion. Set

R := Z[f, xi,j | i ≥ 0, 0 ≤ j ≤ i]∧(p,f)/J

with J generated by the elements

pxi,j − fxi,j+1

(where xi,i+1 := 0). Then f is a non-zero divisor in R and all p∞-torsion in

R/f ∼= Z[xi,j ]/(pxi,j)

is killed by p. But

pixi,0 = pifxi,1 = . . . = f ixi,i 6= 0
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while pi+1xi,0 = f ipxi,i = 0. This shows that R has unbounded p∞-torsion. As f
is a non-zero divisor in R the (p, f)∞-torsion in R is zero.
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[14] Christophe Breuil. Schémas en groupes et corps de normes, 13 pages, 1998.
[15] Christophe Breuil. Groupes p-divisibles, groupes finis et modules filtrés. Annals of

Mathematics-Second Series, 152(2):489–550, 2000.
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