Banach-Colmez spaces
Arthur-César Le Bras

Banach-Colmez spaces were introduced by Colmez in [1] (under the name "Espaces de Banach de Dimension Finie") almost fifteen years ago to give a new proof the conjecture "weakly admissible implies admissible" in p-adic Hodge theory. The goal of the talk was to show why they are important and ubiquitous.

Let C be the completion of an algebraic closure of \mathbb{Q}_p. Let Perf_C be the category of perfectoid spaces over C, and $\mathrm{Perf}_{C,\mathrm{proet}}$ be the big pro-étale site of C (the above category endowed with the pro-étale topology). We will look at presheaves on the category Perf_C with values in the category of \mathbb{Q}_p-topological vector spaces, which are sheaves on $\mathrm{Perf}_{C,\mathrm{proet}}$ when viewed simply as presheaves of \mathbb{Q}_p-vector spaces. Such a functor F is called a Banach sheaf when $F(X)$ is a Banach space for all affinoid perfectoid X. Here are two simple examples of Banach sheaves: the constant sheaf V, for any finite dimensional \mathbb{Q}_p-vector space V; the sheaf $W \otimes C \mathcal{O}$, for any finite dimensional C-vector space W.

The following definition looks a bit different from Colmez’s one, but is actually equivalent.

Definition 0.1. An effective Banach-Colmez space is a Banach sheaf F' which is an extension

$$0 \to V \to F' \to W \otimes C \mathcal{O} \to 0,$$

V (resp. W) being a finite dimensional \mathbb{Q}_p-vector space (resp. a finite dimensional C-vector space). A Banach-Colmez space is a Banach sheaf F which is a quotient

$$0 \to V' \to F' \to F \to 0,$$

where F' is an effective Banach-Colmez space and V' a finite dimensional \mathbb{Q}_p-vector space. The category of Banach-Colmez spaces will be denoted \mathcal{BC}.

To any presentation of a Banach-Colmez space as in the definition, we associate two integers: its dimension $\dim_C W$ and its height $\dim_{\mathbb{Q}_p} V - \dim_{\mathbb{Q}_p} V'$.

The definition of the category of Banach-Colmez spaces may look a bit strange, but Colmez proved the following difficult theorem ([1]).

Theorem 0.2. The category \mathcal{BC} is an abelian category. The functor $F \mapsto F(C)$ is exact and conservative on \mathcal{BC}.

Moreover, the functions dimension and height do not depend on the presentation and define two additive functions on \mathcal{BC}.

1. By definition, a sequence of Banach sheaves is said to be exact if it is so as a sequence of sheaves of \mathbb{Q}_p-vector spaces on $\mathrm{Perf}_{C,\mathrm{proet}}$.

At this point it is not clear that there exist interesting examples of Banach-Colmez spaces apart the obvious ones. To construct geometrically such examples, one can use p-divisible groups, as was observed by Fargues ([2]). Let G be a p-divisible group over \mathcal{O}_C. Its universal cover \tilde{G} is the sheaf which associates to any perfectoid algebra R over C the \mathbb{Q}_p-vector space $\tilde{G}(R) = \varprojlim \times_{p} \varprojlim_{k} \varprojlim_{n} G[p^n](R)$.

This sheaf is representable by a perfectoid space over C. For example if $G = \mathbb{Q}_p / \mathbb{Z}_p$, $\tilde{G} = \mathbb{Q}_p^{2}$. In general, one has an exact sequence of pro-étale sheaves

$$0 \to V(G) \to \tilde{G} \overset{\log}{\to} \text{Lie}(G)[p^{-1}] \otimes \mathcal{O} \to 0,$$

$V(G)$ being the rational Tate module of G. As moreover $\tilde{G}(R)$ is a Banach space for any perfectoid C-algebra R, this exact sequence shows that universal covers of p-divisible groups are examples of effective Banach-Colmez spaces! Actually, one can prove the following result

Theorem 0.3. Universal covers of p-divisible groups over \mathcal{O}_C are Banach-Colmez spaces and any Banach-Colmez space is the quotient of the universal cover of a p-divisible group by the Banach-Colmez space V associated to some finite dimensional \mathbb{Q}_p-vector space V.

This result has two consequences. The first one is the

Corollary 0.4. Banach-Colmez spaces are diamonds over $\text{Spa}(C^\flat)$.

The deep results of Fargues [2] and Scholze-Weinstein [4] on p-divisible groups allow to describe universal covers in terms of p-adic Hodge theory. The second consequence of the theorem is thus that one can get many explicit examples of Banach-Colmez spaces by playing with Fontaine rings. Here is an example: for any $\lambda = d/h \in \mathbb{Q}$, $\lambda \geq 0$, the functor $U_\lambda : R \mapsto B^{+}_{\text{crys}}(R^\flat / p^\lambda)$ is a Banach-Colmez space. For instance, $U_1 = \tilde{\mu}_p^\infty$ and the exact sequence (1) for $G = \mu_\infty$ evaluated on C becomes identified with the famous exact sequence

$$0 \to \mathbb{Q}_p, t \to (B^{+}_{\text{crys}})^{\varphi = p} \overset{\theta}{\to} C \to 0.$$

To completely elucidate the nature and the structure of the category \mathcal{BC}, we now turn to the relation with the Fargues-Fontaine curve X (for $E = \mathbb{Q}_p$, $F = C^\flat$).

Let

$$\text{Coh}^{0,-}(X) = \{ \mathcal{F} \in D(X), H^i(\mathcal{F}) = 0 \text{ for } i \neq -1, 0; H^{-1}(\mathcal{F}) < 0; H^0(\mathcal{F}) \geq 0 \},$$

2. This sheaf is representable by the perfectoid space $\text{Spa}(\mathcal{C}^0(\mathbb{Q}_p, C), \mathcal{C}^0(\mathbb{Q}_p, \mathcal{O}_C))$.

3. Here we implicitly identify $\text{Perf}_{C,\text{proet}}$ with $\text{Perf}_{C^\flat,\text{proet}}$, using Scholze’s equivalence.
where $D(X)$ is the bounded derived category of the abelian category $\text{Coh}(X)$ of coherent sheaves on X, and where for $\mathcal{E} \in \text{Coh}(X)$, the notation $\mathcal{E} \geq 0$ (resp. $\mathcal{E} < 0$) means that all the slopes of \mathcal{E} are non negative (resp. negative). This full subcategory of $D(X)$ is actually an abelian category (this is a consequence of the general theory of \textit{tilting} and \textit{torsion pairs}), and is endowed with a degree function $\text{deg}^{0,-}$ and a rank function $\text{rk}^{0,-}$.

For any perfectoid space S over C^\flat, there exists a relative version X_S of the curve (for $S = \text{Spa}(C^\flat)$, this is just the usual Fargues-Fontaine curve X). Although there is no morphism of adic spaces $X_S \to S$, one has a morphism of sites τ from $\text{Perf}_{C^\flat, \text{proet}}$ to the big pro-étale site of X. In particular, one can associate to any complex of coherent sheaves \mathcal{F} on X a sheaf $R^j\tau_*\mathcal{F}$ on $\text{Perf}_{C^\flat, \text{proet}}$, for any $j \geq 0$.

Theorem 0.5. The functor $R^0\tau_*$ induces an equivalence of categories $\text{Coh}^{0,-}(X) \simeq \mathcal{BC}$.

Under this equivalence the functions $\text{deg}^{0,-}$ and $-\text{ht}$ (resp. $\text{rk}^{0,-}$ and dim) correspond to each other.

For example, $R^0\tau_*$ sends \mathcal{O}_X to \mathbb{Q}_p, $i_{\infty,*}C$ to \mathcal{O}, and $\mathcal{O}_X(-1)[1]$ to \mathcal{O}/\mathbb{Q}_p. This result gives a precise meaning to the idea that all Banach-Colmez spaces can be obtained by using H^0 and H^1 of coherent sheaves on the Fargues-Fontaine curve. It also shows that the category \mathcal{BC} only depends on C^\flat.

Using this result and the corollary 0.4, one can show that automorphism groups of vector bundles on X are diamonds : see [3, Prop. 2.5]. For example, $\text{Aut}(\mathcal{O}_X^n) = \text{GL}_n(\mathbb{Q}_p)$ (and not the algebraic group GL_n!). This point is important for Fargues’s conjecture.

RÉFÉRENCES

