ANNEAUX DE FONTAINE ET GÉOMÉTRIE : DEUX EXEMPLES D’INTERACTION
Arthur-César Le Bras
Ecole Normale Supérieure, 45 rue d’Ulm, 75005 Paris, France et Institut de Mathématiques de Jussieu, 4 place Jussieu, 75005 Paris, France.
E-mail: arthur-cesar.le-bras@imj-prg.fr, lebras@dma.ens.fr
ANNEAUX DE FONTAINE ET GÉOMÉTRIE : DEUX
EXEMPLES D’INTERACTION

Arthur-César Le Bras
TABLE DES MATIÈRES

Introduction générale.. 7
 La théorie de Hodge p-adique en quelques mots...................... 7
 Position du problème.. 7
 Représentations potentiellement semi-stables......................... 8
 La théorie des (ϕ, Γ)-modules...................................... 9
 (ϕ, Γ)-modules et théorie de Hodge p-adique.................. 11
 La courbe fondamentale en théorie de Hodge p-adique.............. 12
 Correspondance de Langlands p-adique et revêtements de Drinfeld 13
 Théorie de Lubin-Tate non abélienne..................................... 13
 Le programme de Langlands p-adique..................................... 14
 Correspondance de Langlands locale p-adique et géométrie : représentations semi-stables non cristallines................................. 15
 Correspondance de Langlands locale p-adique et géométrie : représentations de de Rham non semi-stables................................. 17
 Questions et perspectives.. 18
 Espaces de Banach-Colmez et faisceaux cohérents sur la courbe de Fargues-Fontaine 19
 Les Espaces Vecteurs de dimension finie de Colmez.................. 19
 La catégorie des Banach-Colmez comme cœur abélien de $D^b(Coh_X)$ 20
 Cohomologie pro-étale et cohomologie syntomique................... 22
 Prolongements et perspectives.. 22

1. Revêtements du demi-plan de Drinfeld et correspondance de Langlands p-adique 25
 1.1. Introduction... 25
 1.1.1. Les résultats principaux... 25
 1.1.2. Survol de la preuve... 29
 1.1.3. Compléments.. 32
 1.1.4. Plan du chapitre... 33
 1.2. Notations et conventions.. 33
 1.3. Revêtements du demi-plan de Drinfeld et fibrés vectoriels... 35
 1.3.1. L’espace de Drinfeld et ses revêtements.......................... 35
 1.3.2. Quelques rappels sur les espaces Stein.......................... 36
 1.3.3. Le caractère localement analytique de $O(\Sigma_n)^*$............. 37
 1.3.4. Numérotation et lissité de $H^1_{\text{dR},c}(\Sigma_n)$.......... 38
 1.4. Uniformisation p-adique et cohomologie de de Rham......... 40
 1.4.1. Formes modulaires quaternioniques classiques et p-adiques 40
 1.4.2. La π- partie de la cohomologie de de Rham à supports de Σ_n 42
 1.5. Construction d’un morphisme G-équivariant.................. 44
 1.5.1. Compatibilité local-global (d’après Emerton)................. 44
 1.5.2. Nouvelle application du théorème d’uniformisation p-adique 46
 1.5.3. Preuve du théorème 1.5.1....................................... 48
 1.6. (ϕ, Γ)-modules sur l’anneau de Robba et équations différentielles p-adiques 48
 1.7. Représentations localement analytiques de G et modèle de Kirillov-Colmez 52
 1.7.1. (ϕ, Γ)-modules et représentations de G............. 52
 1.7.2. L’action infinitésimale de G.................................. 54
 1.7.3. Vecteurs P-finis et modèle de Kirillov...................... 54
2. Espaces de Banach-Colmez et faisceaux cohérents sur la courbe de Fargues-Fontaine

1.1. Introduction .. 87

2.1. Espaces de Banach-Colmez.. 90

2.2. Catégorie des espaces de Banach-Colmez.. 90

1.1.1. Proposition 1.1.1 et 1.1.2 ... 88

1.1.2. Proposition 1.1.3 et 1.1.4 ... 88

2.2.1. Espaces perfectoïdes, topologie pro-étale et v-topologie .. 90

2.2.2. Catégorie BC.. 91

2.2.3. Revêtements universels de groupes p-divisibles ... 92

1.1.3. Proposition 1.1.7.. 89

2.3. Quelques calculs de cohomologie pro-étale... 95

2.3.1. Cohomologie de la droite affine ... 95

2.3.2. Cohomologie de l’espace affine de dimension arbitraire... 96

2.4. Groupes d’extensions de certains faisceaux pro-étalé.. 100

2.4.1. Cas G = G_a, G’ = Q_p ... 100

2.4.2. Cas G = G’ = G_a .. 101

2.4.3. Cas G = Q_p et G’ = Q_p ou G’ = G_a .. 102

2.5. Faisceaux cohérents sur la courbe de Fargues-Fontaine ... 115

2.5.1. Rappels sur la courbe de Fargues-Fontaine ... 115

2.5.2. Faisceaux de torsion et coeurs abéliens ... 117

2.6. Une description alternative de la catégorie Coh_X.. 119

2.6.1. Algèbres sympathiques... 119

2.6.2. La catégorie Coh_X comme catégorie de faisceaux « pervers cohérents » (au sens de [26]) 120

2.7. La catégorie BC en termes de la courbe ... 121

2.7.1. La catégorie BC comme cœur abélien de D^b(Coh_X) .. 123

2.7.2. Lien avec la définition originale de Colmez ... 126

2.7.3. Le « drôle de corps » de Colmez ... 128

2.8. Cohomologie symtonique et espaces de Banach-Colmez... 129

2.8.1. Cohomologie symtonique.. 129

2.8.2. Cohomologie étale.. 131

2.8.3. Interprétation en termes de la courbe de Fargues-Fontaine .. 131

2.8.4. Comparaison étale-symtonique... 134

2.8.5. Remarques finales : cohomologie étale et symtonique des affinoïdes surconvergents 135

2.9. Appendice : faisceaux de périodes .. 138

Bibliographie... 141
Cette thèse se compose de deux chapitres indépendants. Cette courte introduction présente le contexte dans lequel s’inscrivent les résultats obtenus et les résume brièvement.

Ces deux chapitres ont en commun l’usage intensif de la théorie de Hodge p-adique ; c’est donc naturellement par là que nous commençons.

La théorie de Hodge p-adique en quelques mots

Position du problème. — Soit p un nombre premier, et K une extension finie de \mathbb{Q}_p, dont on note \mathcal{G}_K le groupe de Galois absolu. Si ℓ est un nombre premier, on appelle *représentation ℓ-adique* de \mathcal{G}_K la donnée d’un espace vectoriel V de dimension finie sur \mathbb{Q}_ℓ, muni d’une action linéaire et continue de \mathcal{G}_K. Des exemples très intéressants de telles représentations sont fournis par la cohomologie étale ℓ-adique des variétés propres et lisses sur K.

Si $\ell \neq p$, le théorème de monodromie ℓ-adique de Grothendieck ([137, Appendice]) montre que la structure des représentations ℓ-adiques de \mathcal{G}_K est assez simple : si V est une telle représentation, il existe un sous-groupe ouvert du groupe d’inertie I_K, tel que la restriction de V à ce sous-groupe soit unipotente (on dit que V est *quasi-unipotente*) ; autrement dit, il existe un endomorphisme nilpotent N de l’espace vectoriel V, tel que pour tout g dans ce sous-groupe, $\rho(g) = \exp(N t_\ell(g))$, $t_\ell : I_K \rightarrow \mathbb{Z}_\ell(1)$ désignant la projection de l’inertie sur le quotient ℓ-adique modéré.

Si on prend $\ell = p$, i.e. si l’on s’intéresse aux représentations p-adiques de \mathcal{G}_K, la situation est nettement plus compliquée. Pour mettre un peu d’ordre dans l’univers sauvage des représentations p-adiques du groupe de Galois d’un corps p-adique, la stratégie très fructueuse introduite par Fontaine est de construire certaines \mathbb{Q}_p-algèbres topologiques munies d’une action continue de \mathcal{G}_K et de structures additionnelles respectées par cette action — par exemple, un Frobenius, un opérateur de monodromie, une filtration... La construction d’une telle algèbre B permet de découper une sous-catégorie intéressante de représentations p-adiques de \mathcal{G}_K : celles qui sont *B-admissibles*, c’est-à-dire celles qui deviennent triviales quand on étend les scalaires à B. Si V est B-admissible, le B^{ϕ}-module $(B \otimes V)^{\phi}$ est libre de rang $\dim_{\mathbb{Q}_p} V$ et muni des mêmes structures que B. On associe ainsi à toute représentation B-admissible un invariant plus maniable et qui permet, si l’anneau B est assez fin, de récupérer la représentation V.

La difficulté consiste donc à construire de telles algèbres B ; la construction dépend évidemment des représentations que l’on souhaite étudier. Pour des compléments à la discussion qui suit, le lecteur pourra consulter par exemple [7] ou [36]. Si l’on veut décrire toutes les représentations p-adiques, en les remplaçant par des objets plus simples, on aboutit à la théorie des (φ, Γ)-modules ; si, au contraire, on souhaite isoler les propriétés spécifiques de certains types de représentations (par exemple, celles que donnent la cohomologie étale p-adique d’une variété propre et lisse sur K, ou d’une variété propre et lisse ayant bonne...
réduction) et même espérer ainsi les caractériser, il faut jouer avec les anneau de Fontaine $B^+_{\text{dR}}, B^+_{\text{crist}}, B_{\text{st}}$.

Représentations potentiellement semi-stables. — Commencons par ces derniers. Soit C le complété d’une clôture algébrique de \mathbb{Q}_p, \mathcal{O}_C l’anneau des entiers de C. Le basculement \(^{(1)}\)

\[
\mathcal{O}_C^\theta = \lim_{\varphi} \mathcal{O}_C/p^n
\]

est un anneau local parfait de caractéristique p, de corps des fractions noté C^\flat. On note

\[
A_{\text{inf}} = W(\mathcal{O}_C^\theta)
\]

l’anneau des vecteurs de Witt de \mathcal{O}_C^θ. On dispose d’un morphisme d’anneaux

\[
\theta : A_{\text{inf}}[1/p] \to C, \quad \sum_{k \geq -\infty} p^{k}[x_k] \mapsto \sum_{k \geq -\infty} p^{k}x_k^{(0)},
\]

où l’on a noté pour chaque k, $x_k = (x_k^{(n)})_{n \geq 0} \in \mathcal{O}_C^\theta$, et $\lfloor \cdot \rfloor$ le relèvement de Teichmüller. On définit B^+_{dR} comme le complété de $A_{\text{inf}}[1/p]$ pour la topologie $\ker(\theta)$-adique. Si l’on fixe $\varepsilon \in \mathcal{O}_C^\theta$, avec $\varepsilon^{(0)} = 1$, $\varepsilon^{(1)} \neq 1$, un système compatible de racines p^n-èmes de l’unité, la série

\[
\sum_{n=1}^{\infty} (-1)^{n+1}(\lfloor \varepsilon \rfloor - 1)^n/n
\]

converge dans B^+_{dR} vers un élément t, le « $2i\pi$ de Fontaine ». L’anneau B^+_{crist} est un anneau de valuation discrète d’uniformisante t, de corps des fractions noté B_{crist}. L’anneau B_{dR} est donc un corps et est muni d’une action de $\mathcal{G}_{\mathbb{Q}_p}$ et d’une filtration définie par

\[
\text{Fil}^iB_{\text{dR}} = t^iB^+_{\text{dR}},
\]

stable par Galois. Une représentation p-adique V est dite de de Rham si elle est B_{dR}-admissible, i.e. si

\[V \otimes_{\mathbb{Q}_p} B_{\text{dR}} \simeq D_{\text{dR}}(V) \otimes_K B_{\text{dR}},\]

de façon compatible à l’action de \mathcal{G}_K et à la filtration, avec $D_{\text{dR}}(V) = (V \otimes_{\mathbb{Q}_p} B_{\text{dR}})^{\mathcal{G}_K}$. Le théorème spectaculaire suivant (voir par exemple [89]) fournit beaucoup d’examles naturels de représentations de de Rham \(^{(2)}\). Il a été démontré par Faltings (d’autres preuves en ont ensuite été données par Beilinson et Scholze).

Théorème 1. — Soit Z une variété propre et lisse sur K. Pour chaque $i \geq 0$, $H^i_{\text{ét}}(Z_K, \mathbb{Q}_p)$ est une représentation de de Rham de \mathcal{G}_K et $D_{\text{dR}}(H^i_{\text{ét}}(Z_K, \mathbb{Q}_p)) = H^i_{\text{dR}}(Z/K)$ comme K-espaces vectoriels filtrés (la cohomologie de de Rham est munie de la filtration de Hodge).

En d’autres termes, on a un isomorphisme de comparaison compatible à toutes les structures :

\[H^i_{\text{ét}}(Z_K, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} B_{\text{dR}} \simeq H^i_{\text{dR}}(Z/K) \otimes_K B_{\text{dR}}.\]

Formulé ainsi, le théorème rappelle fortement l’isomorphisme de comparaison classique :

\[H^i_{\text{Betti}}(Z, \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{C} \simeq H^i_{\text{dR}}(Z/\mathbb{C}),\]

pour Z propre et lisse sur \mathbb{C}, donné par l’intégration des formes différentielles sur les cycles. Malheureusement, l’anneau de pôles B_{dR} n’a pas une structure assez riche : la connais-
sance de $D_{\text{dR}}(V)$ ne permet pas de reconstruire V. Pour ce faire, il faut introduire des anneaux plus subtils : B_{crist} et B_{st}. Nous ne rappelons pas les détails de leur construction. Disons simplement que si V est une représentation cristalline (resp. semi-stable), c’est-à-dire B_{crist}-admissible (resp. B_{st}-admissible), $D_{\text{crist}}(V) := (V \otimes_{\mathbb{Q}_p} B_{\text{crist}})^{\mathcal{G}_K}$ (resp. $D_{\text{st}}(V) :=

\[\]

\(1\). Terminologie due à Scholze [128], qui a donné un nom à « cette vieille construction de la théorie de Hodge p-adique qui n’avait pas été baptisée » ([73]).

\(2\). Mais il existe beaucoup d’autres exemples de représentations de de Rham que celles du théorème.
(V ⊗_{Q_p} B_{st})^{ϕK}) est un K_0-espace vectoriel de rang \dim_{Q_p} V, muni d’un Frobenius \varphi bijectif semi-linéaire et d’une filtration K-linéaire exhaustive séparée et admissible sur \D_{\text{crys}}(V) \otimes_{K_0} K \simeq D_{\text{dR}}(V) (resp. un K_0-espace vectoriel de rang \dim_{Q_p} V, muni d’un Frobenius \varphi bijectif semi-linéaire, d’un endomorphisme N vérifiant \varphi = p\varphi N et d’une filtration K-linéaire exhaustive séparée et admissible sur D_{st}(V) \otimes_{K_0} K \simeq D_{\text{dR}}(V) (4))

Une représentation cristalline est automatiquement semi-stable. Un théorème de Colmez et Fontaine [43] montre qu’en restriction à la catégorie des représentations cristallines (resp. semi-stables), le foncteur \D_{\text{crys}} (resp. \D_{st}) induit une équivalence avec la catégorie des \varphi-modules filtrés admissibles (resp. la catégorie des (\varphi,N)-modules filtrés admissibles). Ces représentations sont donc complètement décrites par des objets d’algèbre semi-linéaire.

Là encore, la géométrie donne naturellement des exemples de telles représentations. Cantonnons-nous ici au cas cristallin ([145]).

Théorème 2. — Soit \(\mathcal{O}_K \) un schéma propre et lisse sur \(O_K \), de fibre générique \(Z \) et de fibre spéciale \(\mathcal{Z} \). Pour tout \(i \geq 0 \), \(H^i_{\text{ét}}(Z_K, \mathcal{O}_p) \) est une représentation cristalline et \(\D_{\text{crys}}(H^i_{\text{ét}}(Z_K, \mathcal{O}_p)) = H^i_{\text{crys}}(\mathcal{Z}/K_0) \), comme \(\varphi \)-modules filtrés \((H^i_{\text{crys}}(\mathcal{Z}/K_0) \otimes_{K_0} K \simeq H^i_{\text{dR}}(\mathcal{Z}/K) \) étant muni de la filtration de Hodge). En d’autres termes, on a un isomorphisme, compatible à toutes les structures :

\[
H^i_{\text{ét}}(Z_K, \mathcal{O}_p) \otimes_{\mathcal{O}_p} B_{\text{crys}} \simeq H^i_{\text{crys}}(\mathcal{Z}/K_0) \otimes_{K_0} B_{\text{crys}}.
\]

Ce théorème a été démontré par plusieurs auteurs : après des résultats partiels de Fontaine-Messing et Bloch-Kato, il a été prouvé complètement par Tsuji, puis plus récemment par Niziol, Andreatta-Iovita, Beilinson et Bhatt.

On peut même aller un cran plus loin, et ce point sera important pour le premier chapitre de cette thèse. Berger [6] a démontré le théorème de monodromie \(\ell \)-adique de Grothendieck cité plus haut, qui affirme qu’une représentation de de Rham de \(\mathcal{G}_K \) est automatiquement potentiellement semi-stable (5), c’est-à-dire semi-stable en restriction à \(\mathcal{G}_{K'} \), avec \(K' \) une extension finie de \(K \). Par conséquent, se donner une représentation de de Rham revient exactement à se donner un \((\varphi,N,\mathcal{G}_K) \)-module filtré admissible sur \(\mathcal{O}_p^{\text{st}} \), à savoir

\[
D_{\text{pot}}(V) := \bigcup_{\mid K':K < \infty} D_{\text{st}}(V|_{\mathcal{G}_{K'}}).
\]

La théorie des \((\varphi,\Gamma) \)-modules. — Pour certaines questions, par exemple lorsque l’on étudie les déformations de représentations galoisiennes (technique popularisée par les travaux de Serre, Mazur, Hida, Wiles, ... et aux retombées arithmétiques spectaculaires), il est gênant de devoir se restreindre aux représentations de de Rham. Les \((\varphi,\Gamma) \)-modules de Fontaine permettent de contourner cette difficulté. On se restreint pour simplifier au cas \(K = \mathcal{Q}_p \) dans ce paragraphe (6). Soit \(\Gamma = \text{Gal}(\mathcal{Q}_p^{\text{ab}})/\mathcal{Q}_p \). Le caractère cyclotomique identifie \(\Gamma \) au groupe topologique \(\mathcal{Z}_p^\times \); on note \(a \mapsto \sigma_a \) la bijection réciproque. Soit \(H = \text{Gal}(\mathcal{Q}_p^{\text{ab}}/\mathcal{Q}_p(\mu_{p^{\infty}})) \).

Il faut pour commencer introduire un certain nombre d’anneaux. Ces anneaux dépendront du choix d’une extension finie \(L \) de \(\mathcal{Q}_p \), le corps des coefficients des représentations, que nous fixons dans la suite.

3. Une filtration sur un \(\varphi \)-module \(D \) (resp. un \((\varphi,N) \)-module) est dite admissible si pour tout sous-objet \(D' \) de \(D \), le polygone de Hodge de la filtration vit en dessous du polygone de Newton de l’isocristal \(D' \), avec égalité si \(D' = D \). Noter qu’un \((\varphi,N) \)-module filtré peut être admissible sans que le \(\varphi \)-module filtré sous-jacent le soit.

4. Cette identification dépend d’un choix : il faut faire un choix de \(\log(p) \) pour plonger \(B_{\text{st}} \otimes_{K_0} K \) dans \(B_{\text{dR}} \).

5. La réciproque est facile.

6. Ce sera de toute façon le seul dont nous ayons besoin.
L’anneau de Robba \mathcal{R} est l’anneau des germes de fonctions analytiques au voisinage du cercle unité, qui est la limite inductive topologique des anneaux

$$\mathcal{E}^{[0,r_n]} = \left\{ \sum_{k \in \mathbb{Z}} a_k T^k, a_n \in L, \text{ convergente pour } 0 < v_p(T) \leq r_n \right\},$$

avec $r_n = 1/(p^{n-1}(p-1))$, munis de la topologie de Fréchet des normes sup sur les couronnes. L’anneau \mathcal{E}^\dagger est formé des éléments de \mathcal{R} tels que la suite $(v_p(a_n))_n$ soit minorée (il s’agit en fait d’un corps). On notera $\mathcal{E}^{(0,r_n)} = \mathcal{E}^{[0,r_n]} \cap \mathcal{E}^\dagger$. L’anneau \mathcal{E} est obtenu en complétant p-adiquement \mathcal{E}^\dagger : on a $\mathcal{E} = O_\mathcal{E}[1/p]$, avec

$$O_\mathcal{E} = \left\{ \sum_{n \in \mathbb{Z}} a_n T^n, a_n \in O_L, a_n \rightarrow 0 \right\},$$

un anneau local de corps résiduel $k_\mathcal{E} = k_L((T))$. La topologie naturelle sur $\mathcal{E} = \bigcup_n p^{-n} O_\mathcal{E}$ est la topologie limite inductive de la topologie faible sur $O_\mathcal{E}$, c’est-à-dire de la topologie la plus faible rendant continue la projection $O_\mathcal{E} \rightarrow k_\mathcal{E}$, $k_\mathcal{E}$ étant muni de la topologie T-adique.

Ces trois anneaux sont munis d’actions continues de φ et Γ définies par les formules :

$$\varphi(T) = (1 + T)^a - 1 ; \quad \sigma_a(T) = (1 + T)^a - 1, \quad a \in \mathbb{Z}_p.$$

On dispose enfin pour tout n d’une injection Γ-équivariante $\varphi^{-n} : \mathcal{E}^{(0,r_n)} \rightarrow L(\mu_{p^n})[[t]]$, $f \mapsto f(\varphi^{(n)} f) - 1$ (7) (ce qui a un sens comme élément de $L(\mu_{p^n})[[t]]$, puisque f converge en $\varphi^{(n)} - 1$).

Ces objets vivent dans le monde de l’analyse p-adique (même si l’on ne peut pas vraiment penser aux éléments de \mathcal{E} comme à des fonctions) et apparaissent naturellement, via la transformée de Fourier-Amice, dans l’étude de questions sur les mesures et les distributions sur des ensembles ouverts de \mathbb{Q}_p et par ce biais, dans la théorie des fonctions L p-adiques, par exemple.

Mais ils se relient aussi à d’autres anneaux obtenus par localisations et complétions successives à partir de l’anneau A_{inf} et ceci permet de les utiliser pour étudier les représentations galoisienne.

Soit $\tilde{\mathcal{B}}^\dagger = W(O_{C\mathcal{O}})[1/p] = A_{inf}[1/p]$ et $\tilde{\mathcal{B}} = W(C\mathcal{O})[1/p]$. Si $r > 0$, soit $\tilde{\mathcal{B}}^{[0,r]}$ l’ensemble des $\sum_{k \geq -\infty} x_k p^k$, tels que $\lim k v(x_k) + k/r = +\infty$ et $\tilde{\mathcal{B}}^\dagger$ la réunion des $\tilde{\mathcal{B}}^{[0,r]}$ dans $\tilde{\mathcal{B}}$. Si $x \in \tilde{\mathcal{B}}^{[0,r]}$ et $s \leq r$, on note

$$v_s(x) = \inf \{ v(x_k) + \frac{k}{s}, \quad k \in \mathbb{Z} \}$$

et $\tilde{\mathcal{B}}^{[0,r]}$ le complété de $\tilde{\mathcal{B}}^{[0,r]}$ pour la topologie de Fréchet définie par les v_s, $0 < s \leq r$. Enfin, on définit $\tilde{\mathcal{B}}_{rig}$ comme l’union des $\tilde{\mathcal{B}}^{[0,r]}$. En envoyant T sur $\mu = \varphi^{(e)} - 1$, on définit un plongement de \mathcal{E} dans $\tilde{\mathcal{B}}$. Soit \mathcal{B} l’adhérence pour la topologie p-adique de l’extension non ramifiée maximale de \mathcal{E} dans $\tilde{\mathcal{B}}$. Pour $r > 0$, on note $\mathcal{B}^{(0,r]} = \mathcal{B} \cap \tilde{\mathcal{B}}^{[0,r]}$ et on pose

$$\mathcal{B}^\dagger = \bigcup_{r > 0} \mathcal{B}^{(0,r]}$$

et $\mathcal{B}_{rig} = \mathcal{B}^\dagger \otimes_{\mathcal{E}^\dagger} \mathcal{R}$. On a :

$$(L \otimes_{\mathbb{Q}_p} \mathcal{B})^H = \mathcal{E} ; \quad (L \otimes_{\mathbb{Q}_p} \mathcal{B}^\dagger)^H = \mathcal{E}^\dagger ; \quad (L \otimes_{\mathbb{Q}_p} \mathcal{B}_{rig})^H = \mathcal{R}.$$

Soit \mathcal{R} un anneau topologique, muni d’actions continues et qui commutent de φ et Γ. Un (φ, Γ)-module sur \mathcal{R} est par définition un R-module libre de rang fini muni d’actions semi-linéaires continues et qui commutent de φ et Γ. Un (φ, Γ)-module D sur $O_\mathcal{E}$ est dit étale si $\varphi(D)$ engendre D ; un (φ, Γ)-module sur \mathcal{E} est étale s’il contient un $O_\mathcal{E}$-réseau stable par φ et Γ qui est un (φ, Γ)-module étale sur $O_\mathcal{E}$. La théorie du corps des normes de Fontaine-Wintenberger permet de prouver que l’on a une équivalence entre représentations continues de \mathcal{G}_q sur un L-espace vectoriel de dimension finie et (φ, Γ)-modules étas sur \mathcal{E}, donnée par

$$V \mapsto D(V) = (V \otimes_{\mathbb{Q}_p} \mathcal{B})^H.$$

7. Ici $t = \log(1 + T).$
De plus, si D est un (φ, Γ)-module étale sur \mathcal{E}, un théorème fondamental de Cherbonnier et Colmez affirme que D est « surconvergent » : il existe un entier $m(D)$ tel que $D^{[0, r_m(D)]} = (V \otimes_{\mathbb{Q}_p} B^{[0, \rho^{-\infty}(\mu)]})^H$ soit libre de rang $\dim_L V$ sur $\mathcal{E}^{[0, r_m(D)]}$ et $D = \mathcal{E} \otimes_{\mathcal{E}^{[0, r_m(D)]}} D^{[0, r_m(D)]}$. De plus, pour tout $n \geq m(D)$, $D^{[0, r_n]} = D^{[0, r_m(D)]} \otimes_{\mathcal{E}^{[0, r_m(D)]}} \mathcal{E}^{[0, r_n]}$. On posera

$$D^\dagger = D^{[0, r_m(D)]} \otimes_{\mathcal{E}^{[0, r_m(D)]}} \mathcal{E}^\dagger; \quad D_{\text{rig}} = D^{[0, r_m(D)]} \otimes_{\mathcal{E}^{[0, r_m(D)]}} \mathcal{R}.$$

Ces modules sont des (φ, Γ)-modules sur \mathcal{E}^\dagger et \mathcal{R} respectivement. Réciproquement, on peut récupérer D à partir de D^\dagger ou D_{rig}.

Les (φ, Γ)-modules sont très utiles pour étudier les représentations galoisiennes p-adiques. Ils interviennent par exemple en théorie d’Iwasawa ([33]). L’application la plus spectaculaire de la théorie est incontestablement la construction par Colmez de la correspondance de Langlands locale p-adique pour le groupe $GL_2(\mathbb{Q}_p)$, dont il sera question un peu plus bas : les représentations de $GL_2(\mathbb{Q}_p)$ associées à une représentation galoisienne p-adique V de dimension 2 sont fabriquées directement à partir des (φ, Γ)-modules $D(V)$ et $D_{\text{rig}}(V)$. C’est le (φ, Γ)-module $D_{\text{rig}}(V)$ qui jouera le rôle le plus important dans le premier chapitre de cette thèse.

(φ, Γ)-modules et théorie de Hodge p-adique. — Puisque le (φ, Γ)-module $D(V)$ sur \mathcal{E} attache à une représentation p-adique V permet de reconstruire V, on doit pouvoir déterminer les invariants $D_{\text{dif}}(V), D_{\text{cris}}(V), D_{st}(V)$ à partir de $D(V)$. Réciproquement, on doit pouvoir aller dans l’autre sens si l’on suppose V de Rham, cristalline ou semi-stable. Les constructions de tous ces objets à partir de V suivent un schéma similaire, mais les anneaux utilisés sont fort différents et la réponse à cette question est donc très loin d’être facile à obtenir. Elle se formule naturellement en termes du (φ, Γ)-module $D_{\text{rig}}(V)$ sur \mathcal{R} et est due à Fontaine et à Berger ([6], [8]). Pour simplifier nous nous contenterons de formuler les résultats dans le cas cristallin.

Concernant $D_{\text{cris}}(V)$, on a l’énoncé suivant : comme φ-modules, on a un isomorphisme (8)

$$D_{\text{cris}}(V) = (D_{\text{rig}}(V)[1/t])^\Gamma$$

et si V est cristallin, un isomorphisme de (φ, Γ)-modules sur $\mathcal{R}[1/t]$

$$D_{\text{cris}}(V) \otimes_L \mathcal{R}[1/t] \simeq D_{\text{rig}}(V) \otimes_\mathcal{R} \mathcal{R}[1/t].$$

On dispose comme dans le cas mentionné plus haut du (φ, Γ)-module trivial d’une application $\varphi^{-n} : D_{\text{dif}}(V) = (V \otimes B_{\text{dif}}^+)^H$ et pour tout $n \geq 1$, on note

$$D_{\text{dif}}^*, n = L(\mu_p^n)[[t]] \otimes_{\varphi^{-n}, \mathcal{E}^{[0, r_n]}} D^{[0, r_n]}$$

le sous-$L(\mu_p^n)[[t]]$-module de $(V \otimes B_{\text{dif}}^+)^H$ engendré par l’image de ce mophisme φ^{-n}. Si V est de Rham,

$$\text{Fil}^i(D_{\text{dif}}(V)) = (t^i D_{\text{dif}}^*, n)^\Gamma \subset D_{\text{dif}}(V),$$

pour tout $i \in \mathbb{Z}$.

Réciproquement, si V est cristallin, on récupère $D_{\text{rig}}(V)$ à partir du φ-module filtré $D_{\text{cris}}(V)$ comme suit (9):

$$D_{\text{rig}}(V) = \{ z \in D_{\text{cris}}(V) \otimes_L \mathcal{R}[1/t], \forall n \gg 0, \varphi^{-n}(z) \in \text{Fil}^0(L(\mu_p^n)[(t)] \otimes_L D_{\text{cris}}(V)) \}.$$

Notons au passage que le membre de droite permet de construire un (φ, Γ)-module sur \mathcal{R} à partir d’un φ-module filtré, sans hypothèse d’admissibilité. Berger vérifie en fait que ce (φ, Γ)-module est étale si et seulement si le φ-module filtré considéré est admissible, ce qui donne une jolie preuve du théorème de Colmez-Fontaine évoqué plus haut. Ces résultats sont essentiels dans l’étude du programme de Langlands p-adique pour $GL_2(\mathbb{Q}_p)$, car ils

8. D’apparence simple mais dont la preuve est très loin d’être une trivialité !

9. Il est instructif de considérer le cas de la représentation triviale pour voir d’où sort cet énoncé : comment retrouver \mathcal{R} à l’intérieur de $\mathcal{R}[1/t]$?
La courbe fondamentale en théorie de Hodge p-adique. — Ces dernières années ont vu l'émergence d’un point de vue « géométrique » sur la théorie de Hodge p-adique, suite à l’introduction par Fargues et Fontaine [66] de la courbe fondamentale en théorie de Hodge p-adique, qu’il est désormais d’usage d’appeler la courbe de Fargues-Fontaine. Bon nombre d’anneaux de Fontaine trouvent ainsi une interprétation géométrique. Comme on le verra dans le chapitre 2 de cette thèse, l’un des points de départ de leur construction fut la théorie des espaces de Banach-Colmez, où précisément certains anneaux de Fontaine font leur apparition de façon remarquable et inattendue.

On dispose maintenant de plusieurs points de vue sur la courbe de Fargues-Fontaine : le point de vue « algébrique », qui était la perspective initiale de Fargues et Fontaine ; le point de vue « analytique », qui est souvent le plus pratique ; et enfin le point de vue de la théorie des débasculements de Scholze, qui est le plus abstrait. La définition la plus économique de la courbe de Fargues-Fontaine est sa définition comme espace adique. On pose :

\[Y = \text{Spa}(A_{\inf}, A_{\inf}) \setminus V(p[p^n]), \]

[p^n] étant un élément de \(\mathcal{O}_C \), avec \(p^{(0)} = p \). Il s’agit d’un espace adique analytique (ce qui sous-entend en particulier que le préfaisceau structural de \(Y \) est un faisceau). On dispose

d’un opérateur \(\varphi \) sur \(Y \), agissant sur les fonctions par la formule :

\[\varphi : \sum_{n \geq 0} [a_n] p^n \mapsto \sum_{n \geq 0} [a_n p^n] p^n, \]

donc l’action sur \(Y \) est totalement proprement discontinue. L’espace adique \(X = Y/\varphi \mathbb{Z} \) a donc un sens : c’est la courbe de Fargues-Fontaine. L’algèbre des fonctions holomorphes sur \(X \) est l’algèbre \(B_{\inf} \) du paragraphe précédent, que l’on notera désormais simplement \(B \). Les points fermés de la courbe paramètrent naturellement les « débasculements » de \(\varphi \), dont l'action sur \(\mathbb{Z}/K_0 \), où précisément certains anneaux de Fontaine font leur apparition de façon remarquable et inattendue.

La courbe fondamentale en théorie de Hodge p-adique permet de relier la correspondance de Langlands locale \(p \)-adique à la correspondance de Langlands « classique » ; c’est pourquoi on les verra jouer un rôle central dans le chapitre 1.

Si l’on se donne en outre une filtration \(\Fil \) sur \(D \otimes_{K_0} K \), on peut fabriquer un autre fibré \(\mathcal{G}_K \)-équivariant \(\mathcal{E}(D, \varphi, \Fil) \) sur \(X_K \) en modifiant le fibré \(\mathcal{E}(D, \varphi) \) au point \(\infty \) à l’aide du réseau \(\Fil^0(D \otimes_{K_0} B_{\inf}^+) \). Ce fibré est semi-stable de pente 0 si et seulement si le \(\varphi \)-module filtré \((D, \varphi, \Fil) \) est admissible (ce qui permet de donner une preuve courte du théorème de Colmez-Fontaine, assez proche dans l’esprit de celui de Berger citée plus haut). Le théorème 2 se reformule ainsi dans ce langage : avec les notations de l’énoncé du théorème 2, la modification \(\mathcal{G}_K \)-équivariante \(\mathcal{E}(H^{\text{dR}}_{\text{crys}}(\mathbb{Z}/K_0), \varphi, \Fil) \) (Fil étant la filtration de Hodge sur \(H^{\text{dR}}_{\text{crys}}(\mathbb{Z}/K_0) \otimes_{K_0} K = H^{\text{dR}}(\mathbb{Z}/K) \)) est le fibré semi-stable de pente nulle \(H^{\text{dR}}_{\text{crys}}(\mathbb{Z}/K, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} \mathcal{O}_X \). Cette formulation rappelle fortement la théorie archimédienne des twisteurs de Deligne et Simpson [139]. Il y a ainsi une liste d’analogies troublantes entre certains phénomènes archimédiens et non archimédiens (dont certaines sont mentionnées dans [63] et brièvement dans le chapitre 2 de ce texte), qui laisse penser que la courbe est l’analogue \(p \)-adique de la droite projective complexe (sur \(\mathbb{C} \)) et de la forme tordue de la droite projective sans point réel (sur \(\mathbb{R} \)).
La courbe X est un espace adique analytique et possède donc un diamant associé X^\diamond, au sens de Scholze, qui est un faisceau sur la catégorie des espaces perfectoides de caractéristique p, munie, au choix de la topologie pro-étale ou de la v-topologie. La description du diamant X^\diamond est en fait très simple : on a

$$X^\diamond = (\text{Spa}(\mathbb{Q}_p) \times \text{Spa}(C))/\mathbb{F}_C.$$

Cette description un peu ésotérique a l’intérêt de faire comprendre pourquoi la courbe de Fargues-Fontaine est un objet naturel et fondamental pour la théorie p-adique. Ce point de vue sur la courbe ne sera pas utilisé dans cette thèse, mais il éclaire la signification géométrique de certaines constructions de la fin du chapitre 2.

Correspondance de Langlands p-adique et revêtements de Drinfeld

Théorie de Lubin-Tate non abélienne. — La correspondance de Langlands locale « classique » donne une bijection entre les représentations ℓ-adiques continues (pour ℓ premier différent de p) de degré 2 du groupe de Weil $W_{\mathbb{Q}_p}$ et les représentations lisses irréductibles de $G = GL_2(\mathbb{Q}_p)$, qui fait se correspondre les facteurs L et ε des deux côtés. La théorie de Lubin-Tate non abélienne de Carayol [27] prédit l’existence d’une réalisation géométrique de cette correspondance dans la cohomologie de certains espaces de modules de groupes p-divisibles et la mise en forme de ce principe a joué un rôle crucial dans la preuve de la correspondance de Langlands locale en dimension quelconque, sur un corps p-adique arbitraire. Rappelons rapidement de quoi il s’agit, avant de nous tourner vers l’analogue p-adique de cette histoire.

La tour de Drinfeld ([55], [116]) est une tour $(\mathcal{M}_n)_{n \geq 0}$ d’espaces rigides analytiques sur \mathbb{Q}_p, le complété de l’extension non ramifiée maximale \mathbb{Q}_p^{nr} de \mathbb{Q}_p, avec morphismes de transition fins étales. La base \mathcal{M}_0 de cette tour est la fibre générique rigide du schéma formel de Rapoport-Zink paramétrant les déformations par O_D-quasi-isogénies de l’unique O_D-module formel spécial (au sens de Drinfeld) X de dimension 2 et de hauteur 4 sur $\overline{\mathbb{F}}_p$. O_D désignant ici l’anneau des entiers de l’unique algèbre de quaternions ramifiée sur \mathbb{Q}_p.

L’espace \mathcal{M}_0 est isomorphe à \mathbb{Z} copies de $\tilde{\Omega} = \Omega \otimes_{\mathbb{Q}_p} \mathbb{Q}_p$, où Ω est le demi-plan de Poincaré, analogue non archimédien (de deux copies) du demi-plan de Poincaré : une variété analytique rigide dont les C-points sont $\mathbb{P}^1(C) \setminus \mathbb{P}^1(\mathbb{Q}_p)$. Les espaces rigides \mathcal{M}_n, $n \geq 1$, ont eux aussi une interprétation modulaire, obtenue en ajoutant au problème de modules des « structures de niveau », mais leur géométrie est nettement plus mystérieuse. L’intérêt de cette tour est qu’elle est munie d’actions qui commutent de deux groupes : une action « horizontale » de G à chaque niveau fini de la tour, donnée par l’identification de G avec le groupe des O_D-quasi-isogénies de \mathcal{X} dans lui-même [10] ; une action « verticale » de D^* qui agit sur \mathcal{M}_n à travers son quotient $D^*/1 + p^nO_D$ (le revêtement $\mathcal{M}_n \to \mathcal{M}_0$ est galoisien de groupe $O_D^*/1 + p^nO_D$).

Le théorème profond suivant montre que la cohomologie ℓ-adique de la tour de Drinfeld réalise à la fois la correspondance de Langlands locale et la correspondance de Jacquet-Langlands locale. Il est l’aboutissement des travaux d’un nombre considérable d’auteurs (parmi lesquels il faut citer au moins Drinfeld, Carayol et Harris et Taylor) et est connu dans une généralité bien plus grande, bien que nous ayons choisi de nous restreindre au cas de GL_2 sur le corps \mathbb{Q}_p.

10. L’action de $g \in G$ sur $\mathcal{M}_0 \simeq \tilde{\Omega} \times \mathbb{Z}$ est l’action usuelle de g par homographies sur le premier facteur, et le décalage par $v_p(\det g)$ sur le second facteur.
Théorème 3. — Soit $\ell \neq p$ premier, et soit ρ une représentation lisse irréductible de D^*. Supposons $\dim \rho > 1$. Alors

$$\text{Hom}_{D^*}(\rho, \varinjlim_n H^1_c(M_n \otimes_{\Qp} C, \overline{Q}_p)) = \pi(\rho)^{\vee} \otimes LL^{-1}(\pi(\rho)),$$

$\pi(\rho)$ étant la représentation lisse irréductible de G attachée à ρ par la correspondance de Jacquet-Langlands et LL la correspondance de Langlands locale.

Remarques 4. — a) Il y a une donnée de descente sur \mathcal{M}_n de \Qp à \Qp, qui n’est pas effective mais permet de définir une action du groupe de Weil W_{\Qp} sur le membre de gauche de l’égalité du théorème et lui donne donc un sens.

b) Rappelons que la correspondance de Jacquet-Langlands (locale) donne une bijection entre représentations lisses irréductibles de D^* et représentations lisses irréductibles de carré intégrable de G (c’est-à-dire les supercuspidales et les twists de la Steinberg). Il n’y a pas de réalisation géométrique de la correspondance de Langlands locale pour les représentations de la série principale – toutefois, la correspondance est nettement plus facile à construire pour ces représentations.

c) Si ρ est un caractère, i.e. si $\pi(\rho)$ est un twist de la Steinberg, l’énoncé doit être modifié : on ne récupère que la « moitié » de la représentation galoisienne, sans la monodromie. Pour obtenir un énoncé uniforme, valable pour tout ρ, il ne faut pas travailler avec les groupes de cohomologie ℓ-adiques individuels, mais avec les complexes, comme dans [47].

Le programme de Langlands p-adique. — On s’attache depuis les travaux fondateurs de Breuil à l’existence d’un analogue p-adique de la correspondance de Langlands locale. Que se passe-t-il si, au lieu de regarder des représentations ℓ-adiques continues du groupe de Galois absolu \mathcal{G}_{\Qp}, avec $\ell \neq p$, on regarde des représentations p-adiques continues de \mathcal{G}_{\Qp} ? Ces objets sont, on l’a dit, considérablement plus compliqués. La situation n’est bien comprise que pour le groupe $G = GL_2(\Qp)$. L’idée de départ de Breuil [21] est qu’au moins pour les représentations p-adiques qui sont de de Rham au sens de Fontaine et irréductibles, la représentation cherchée côté GL_2 devrait être une complétion banachique convenable d’une certaine représentation localement algébrique de G, que l’on peut associer naturellement à notre représentation galoisienne de départ via la correspondance de Langlands locale classique. Plus précisément, soit V une représentation continue absolument irréductible de \mathcal{G}_{\Qp} sur un L-espace vectoriel de dimension 2 (le corps des coefficients L étant une extension finie fixée de \Qp). Si V est de de Rham, à poids de Hodge-Tate $a < b$,

$$D_{\text{pot}}(V) := \bigcup_{[K : \Qp] < \infty} D_{\text{pot}}(V_{\varphi_{\alpha}}),$$

est un $(\varphi, N, \mathcal{G}_{\Qp})$-module de rang 2 sur $\Qp^\nr \otimes_{\Qp} L$, et $D_{\text{DR}}(V) = (D_{\text{pot}}(V) \otimes_{\Qp^\nr} \overline{\Qp})^\wedge_{\Qp}$ est équipé d’une filtration admissible. D’après Colmez-Fontaine, ces données permettent de reconstruire V. La donnée du $(\varphi, N, \mathcal{G}_{\Qp})$-module $M := D_{\text{pot}}(V)$ (sans filtration donc) est équivalente à la donnée d’une représentation de Weil-Deligne $WD(M)$ de dimension 2 (par une recette simple, due à Fontaine, consistant essentiellement à linéariser l’action de Galois et de Frobenius). L’espoir de Breuil était que la donnée de la filtration de Hodge sur $D_{\text{DR}}(V)$ détermine une norme G-invariante sur la représentation localement algébrique

$$\pi \otimes \text{Sym}^{b-a-1} \otimes \det^a,$$

telle que la complétion relativement à cette norme soit une représentation de Banach unitaire admissible de G, dont la connaissance soit équivalente à celle de V.

Cet espoir a été rendu très précis, grâce aux efforts d’un grand nombre d’auteurs : Berger, Dospinescu, Kisin, Paškūnas, et tout particulièrement Breuil lui-même et Colmez, pour le groupe $G = GL_2(\Qp)$. Colmez [38] a construit des foncteurs exacts entre certaines catégories de représentations, induisant des bijections entre l’ensemble des représentations de Banach
unitaires admissibles supersingulières \(^{(11)}\) absolument irréductibles de \(G\) et l’ensemble des représentations \(p\)-adiques continues absolument irréductibles de dimension 2 de \(\mathcal{G}_{\mathbb{Q}_p}\). Dans cet énoncé, aucune restriction de théorie de Hodge \(p\)-adique n’est faite du côté galoisien, ce qui est fondamental pour les arguments en familles et les applications arithmétiques. Toutefois, on peut préciser le théorème en ajoutant des conditions : un théorème splendide de Colmez [38] et Dospinescu [49] affirme que la représentation de Banach possède des vecteurs localement algébriques si et seulement si la représentation galoisienne correspondante est de de Rham à poids de Hodge-Tate distincts, et le sous-espaces des vecteurs localement algébriques en question est exactement donné par la recette ci-dessus \(^{(12)}\). L’ingrédient principal de la construction de Colmez est la théorie des \((\varphi, \Gamma)\)-modules de Fontaine, qui permet d’étudier les représentations galoisienne \(p\)-adiques par des techniques d’analyse \(p\)-adique.

Correspondance de Langlands locale \(p\)-adique et géométrie : représentations semi-stables non cristallines. — Vu l’importance des méthodes géométriques dans l’étude et la compréhension de la correspondance de Langlands locale classique, il est naturel de se demander s’il existe une réalisation géométrique locale de la correspondance de Langlands locale \(p\)-adique. Pour ce faire, il est raisonnable, du moins dans un premier temps, de se restreindre aux représentations galoisiennes qui sont de de Rham. Reprenons les notations introduites ci-dessus et faisons l’hypothèse additionnelle que \(M\) est indécomposable, ce qui revient à dire que \(\pi\) est essentiellement de carré intégrable \(^{(13)}\). Comment décrire géométriquement la représentation de Banach \(\Pi(V)\) correspondant à \(V\) par Langlands local \(p\)-adique ? Il est en fait plus simple de répondre à cette question pour le sous-espaces \(G\)-stable \(\Pi(V)_{\text{an}}\) de \(\Pi(V)\) formé des vecteurs \(\text{localement analytiques}\) pour l’action de \(G\). Ce sous-espaces de \(\Pi(V)\) est une représentation localement analytique admissible au sens de Schneider-Teitelbaum [123] et est toujours non nul ; mieux, sa connaissance est équivalente à celle de \(\Pi(V)\), puisque l’on peut récupérer \(\Pi(V)\) comme complété unitaire universel de \(\Pi(V)_{\text{an}}\) ([42]).

 Commençons par le cas où \(M\) n’est pas irréductible. Ce cas a été étudié en détail par Breuil [21] et est en fait à l’origine du programme de Langlands \(p\)-adique \(^{(14)}\). Dans ce cas, \(\pi\) est un twist de la Steinberg et \(V\) est semi-stable non cristalline. Quitte à tordre, on peut supposer que les poids de Hodge-Tate de \(V\) sont 0 et \(k\) et son caractère \(\chi^k\) (\(\chi\) est le caractère cyclotomique), et que \(D_{st}(V)\) a l’allure suivante :

\[
D_{st}(V) = Le_1 \oplus Le_2 ; \quad Ne_1 = e_2, Ne_2 = 0 ; \quad \varphi(e_1) = p^{-(k+1)/2}e_1, \varphi(e_2) = p^{-(k-1)/2}e_2
\]

et

\[
\text{Fil}^iD_{st}(V) = \begin{cases} D_{st}(V) & \text{si } i \leq -k \\ L(e_1 - Le_2) & \text{si } -k < i \leq 0 \\ 0 & \text{si } i > 0, \end{cases}
\]

pour un certain \(L \in L\). Notons \(\delta_1, \delta_2\) les caractères de \(\mathbb{Q}_p^*\) :

\[
\delta_1(x) = x^k|x|^{(k+1)/2} ; \quad \delta_2(x) = |x|^{(k-1)/2}.
\]

11. La condition d’admissibilité est une condition de « finitude » introduite par Schneider et Teitelbaum [123], qui permet d’isoler une classe de représentations de Banach raisonnable d’un groupe de Lie \(p\)-adique. Une représentation est dite supersingulière si elle n’est pas sous-quotient de l’induite parabolique continue d’un caractère unitaire du tore.

12. Pour obtenir cet énoncé de compatibilité à la correspondance classique, il faut – hélas ! – recourir à un argument global, dû à Emerton.

13. Cette hypothèse est raisonnable, puisqu’on a vu plus haut qu’il n’y avait même pas de réalisation géométrique locale de la correspondance classique pour les séries principales.

14. C’est en effet le premier exemple intéressant contre lequel tester la philosophie exposée plus haut : dans le cas cristallin, il y a une seule filtration admissible, donc une seule complétion unitaire admissible intéressante de la représentation localement algébrique – qui se trouve être son complété unitaire universel.
L’induite parabolique localement analytique $B^\text{an} k \left(\Delta_1, \Delta_2 \right)$ contient un sous-espace G-stable isomorphe à $\text{Sym}^k \left(L^2 \right) := \text{Sym}^k \left(L^2 \right) \otimes | \det |^{(k-1)/2}$. La représentation de Banach $\Pi(V)$ est le complété unitaire universel d’une représentation localement analytique admissible $\Pi(k, \mathcal{L})$ (15), qui est une extension

$$ (1) \quad 0 \to \Pi(k) := B^\text{an} \left(\Delta_1, \Delta_2 \right) / \text{Sym}^k \left(L^2 \right) \to \Pi(k, \mathcal{L}) \to \text{Sym}^k \left(L^2 \right) \to 0, $$

dont la classe est déterminée par la filtration de Hodge \mathcal{L}. La représentation $\Pi(k)$ a une description concrète comme espace de fonctions : $B^\text{an} \left(\Delta_1, \Delta_2 \right)$ s’identifie à l’espace

$$ \{ f : \mathbb{Q}_p \to L, f|_{\mathbb{Z}_p} \in \text{LA}(\mathbb{Z}_p, L), x \mapsto x^{(k-1)/2} f(1/x) |_{\mathbb{Z}_p^\times} \} $$

s’étend en un élément de $\text{LA}(\mathbb{Z}_p, L)$, avec action de G donnée par

$$ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \cdot f(x) = |ad - bc|^{(k-1)/2} |a - cx|^{k-1} f \left(\frac{dx - b}{a - cx} \right). $$

Le sous-espace des polynômes de degré $\le k - 1$ est G-stable et isomorphe à $\text{Sym}^k \left(L^2 \right)$.

Le groupe G agit sur le demi-plan de Drinfeld Ω par homographies (16), donc à gauche sur $\mathcal{O}(\Omega)$ par $g f = f(g^{-1})$. Pour k entier, notons $\mathcal{O}(k)(\Omega)$ la G-représentation qui est $\mathcal{O}(\Omega)$ comme espace vectoriel topologique, avec l’action de G tordue :

$$ (2) \quad \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \ast_k f(z) = |ad - be|^{-k-2}/2 (ad - be)(a - cz)^{-k} f \left(\frac{dz - b}{a - cz} \right). $$

La dualité de Morita donne un isomorphisme de G-représentations $\Pi(k) \simeq \mathcal{O}(k + 1)(\Omega)^*$, donné par la flèche

$$ \ell \in \mathcal{O}(k + 1)(\Omega)^* \mapsto (x \in \mathbb{Q}_p \mapsto \ell \left(\frac{1}{z - x} \right)). $$

Notons, pour $n \ge 1$, Z_n l’ensemble des points de Ω « à distance $\ge 1/n$ de $\mathbb{P}^1(\mathbb{Q}_p)$ » (les Z_n forment un recouvrement affinoïde admissible de Ω). Par définition, chaque $f \in \mathcal{O}(k)(\Omega)$ s’écrit en restriction à Z_n sous la forme :

$$ f(z) = \sum_{j=0}^{\infty} b_j z^j + \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{b_{i,j}}{(z - x_i)^j}, $$

avec $b_i, b_{i,j} \in L, |b_i| n^{-i} \to 0, |b_{i,j}| n^j \to 0$ et s entier et $x_1, \ldots, x_s \in \mathbb{Q}_p$ tels que

$$ \mathbb{P}^1(C) \setminus Z_n(C) = \bigcup_{i=1}^{s} B(x_i, 1/n) \cup B(\infty, 1/n). $$

Soit $\mathcal{O}(k, \mathcal{L})(Z_n)$ le L-espace vectoriel des fonctions sur Z_n de la forme

$$ \sum_{j=0}^{\infty} b_j z^j + \sum_{i=1}^{s} \sum_{j=1}^{\infty} \frac{b_{i,j}}{(z - x_i)^j} + \sum_{i=1}^{s} \sum_{j=0}^{k-2} c_{i,j} z^j \log(z - x_i), $$

avec $b_i, b_{i,j} \in L, |b_i| n^{-i} \to 0, |b_{i,j}| n^j \to 0$. C’est un espace de Banach, et on peut considérer le Fréchet

$$ \mathcal{O}(k, \mathcal{L})(\Omega) = \lim_{\frac{n}{\infty}} \mathcal{O}(k, \mathcal{L})(Z_n). $$

On le munit d’une action de G par la formule

$$ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \cdot f(z) = |ad - be|^{-k-1}/2 (ad - be)^{-k}(a - cz)^{-k} f \left(\frac{dz - b}{a - cz} \right). $$

Le sous-espace des polynômes de degré $\le k - 1$ est G-stable et isomorphe à $\text{Sym}^k \left(L^2 \right) \otimes \chi^{(k-1)}$ (17). Breuil montre alors que l’on a une suite exacte de G-représentations :

$$ (3) \quad 0 \to \text{Sym}^k \left(L^2 \right) \otimes \chi^{(k-1)} \to \mathcal{O}(k, \mathcal{L})(\Omega) \xrightarrow{\varphi_k} \mathcal{O}(k)(\Omega) \to 0, $$

15. Qui est une sous-représentation de l’espace des vecteurs localement analytiques $\Pi(V)^\text{an}$ de $\Pi(V)$!
16. On étend les scalaires à L, sans le préciser pour ne pas alourdir les notations.
17. On voit χ comme caractère de \mathbb{Q}_p^* par la théorie du corps de classes local : c’est le caractère $\nu \mapsto x|\nu|$.

et que l'on a un isomorphisme de G-représentations

$$\Pi(k, \mathcal{L}) \simeq \mathcal{O}(k + 1, \mathcal{L})(\Omega)^*,$$

qui met en dualité les suites exactes (1) et (3). C'est la réalisation géométrique\(^{(18)}\) cherchée de la représentation $\Pi(k, \mathcal{L})$.

Correspondance de Langlands locale p-adique et géométrie : représentations de de Rham non semi-stables. — Que se passe-t-il maintenant si l'on suppose M irréductible, c'est-à-dire π supercuspidale? Breuil et Strauch \([25]\) ont formulé une réponse conjecturale à cette question avant même le travail monumental de Colmez. Celle-ci fait intervenir les revêtements \mathcal{M}_n du demi-plan de Drinfeld et est en quelque sorte plus transparente que celle en « niveau zéro » de la tour. La première partie de cette thèse, qui est un travail en commun avec Gabriel Dospinescu ([53]), est une démonstration de la conjecture de Breuil-Strauch.

Soit ρ la représentation lisse irréductible de D^* attachée à π par Jacquet-Langlands. Supposons pour simplifier le caractère central de π trivial. La représentation ρ est alors triviale sur $1 + p^n\mathcal{O}_D$, pour n assez grand que nous fixons désormais. Contrairement à \mathcal{M}_n, le quotient $\mathcal{M}_n/p\mathcal{Z}$ descend à \mathbb{Q}_p (p est ici vu comme un élément du centre de G); soit Σ_n l'extension des scalaires à L de son modèle sur \mathbb{Q}_p. C'est un espace Stein : il n'a donc pas de cohomologie cohérente en degré strictement positif et l'on a une suite exacte $G \times D^*$-équivaliante, pour tout $k \geq 1$:

$$0 \rightarrow H^0_{\text{dr}}(\Sigma_n) \otimes_L \text{Sym}^{k-1} \chi^{-(k-1)} \rightarrow \mathcal{O}(1-k)(\Sigma_n) \xrightarrow{(\frac{d}{dz})^k} \mathcal{O}(k+1)(\Sigma_n)$$

$$\rightarrow H^1_{\text{dr}}(\Sigma_n) \otimes_L \text{Sym}^{k-1} \chi^{-(k-1)} \rightarrow 0,$$

où l'on a noté, pour k entier, $\mathcal{O}(k)(\Sigma_n)$ le L-espace vectoriel topologique $\mathcal{O}(\Sigma_n)$ muni de l'action tordue de G définie par la formule (2) ci-dessus\(^{(19)}\). Puisque $\dim \rho > 1$, on en déduit une suite exacte courte de G-représentations :

$$0 \rightarrow \mathcal{O}(1-k)(\Sigma_n)^\rho \rightarrow \mathcal{O}(k+1)(\Sigma_n)^\rho \rightarrow H^1_{\text{dr}}(\Sigma_n)^\rho \otimes \text{Sym}^{k-1} \chi^{-(k-1)} \rightarrow 0.$$

Le résultat principal du premier chapitre de cette thèse est le suivant.

Théorème 5. — a) On a un isomorphisme unique à scalaire près de représentations de G :

$$H^1_{\text{dr}}(\Sigma_n)^\rho \simeq M^*_{\text{dr}} \otimes \pi^*,$$

où l'on a noté $M_{\text{dr}} = (\mathcal{M} \otimes \mathbb{Q}_p^{\rho})^{\mathfrak{G}_\rho}$.

b) Soit $\mathcal{L} \in \mathcal{P}(M_{\text{dr}})$, et $V_\mathcal{L}$ la représentation de de Rham à poids $0, k$, avec $\det(V) = \chi^k$, telle que $D_{\text{rig}}(V) \simeq M(k-1)$\(^{(20)}\) et dont la filtration de Hodge soit donnée par \mathcal{L}\(^{(21)}\). La représentation localement analytique $\Pi(V_\mathcal{L})$ est le dual de la pré-image du sous-espace\(^{(22)}\)

$$\mathcal{L}^\perp \otimes \pi^* \otimes \text{Sym}^{k-1} \chi^{-(k-1)} \subset H^1_{\text{dr}}(\Sigma_n)^\rho \otimes \text{Sym}^{k-1} \chi^{-(k-1)}$$

dans $\mathcal{O}(k+1)(\Sigma_n)^\rho$.

\(^{(18)}\) Notons toutefois au passage qu'il semble bien difficile de montrer directement avec cette définition géométrique que le complété unitaire universel de $\Pi(k, \mathcal{L})$ est non nul ou que $\Pi(k, \mathcal{L})$ n'est pas isomorphe à $\Pi(k, \mathcal{L}')$ si $\mathcal{L} \neq \mathcal{L}'$. Breuil y parvient pour certains \mathcal{L} par un argument global indirect très élégant.

\(^{(19)}\) Prendre garde au fait que la normalisation des actions utilisée ici ne coïncide pas tout à fait avec celle employée dans le chapitre 1.

\(^{(20)}\) Cette notation signifie simplement qu'on a tordu l'action de φ sur M par $p^\rho-1$.

\(^{(21)}\) Toutes les filtrations sont admissibles dans ce cas.

\(^{(22)}\) Ce sous-espace est bien défini, car l'isomorphisme du a) est unique à scalaire près.
La description géométrique obtenue est remarquablement simple (en particulier quand on se restreint, comme on le fera dans le chapitre 1 pour simplifier, au cas \(k = 1 \)), mais la preuve en est extrêmement indirecte. Cela tient à la fois au fait que l’on ne sait pas décrire explicitement la géométrie de \(\Sigma_n \) et au fait que les constructions de Colmez reposent sur la théorie des \((\varphi, \Gamma)\)-modules, qui semble \textit{a priori} n’entretien aucune relation avec la tour de Drinfeld. Les arguments utilisés sont à la fois locaux et globaux, et font appel à de nombreux résultats profonds de la théorie. S’il faut n’en retenir que quelques uns, citons : le théorème d’uniformisation de Cerednik-Drinfeld ([116]) ; le théorème de compatibilité local-global d’Emerton [57] (adapté au cas d’une algèbre de quaternions sur \(\mathbb{Q} \) déficie et non ramifiée en \(p \)) ; la théorie du modèle de Kirillov de Comez pour les représentations localement algébriques. Un point clé de la démonstration consiste à munir certaines représentations localement analytiques de \(G \) fabriquées à l’aide de la théorie des \((\varphi, \Gamma)\)-modules d’une structure de \(\mathcal{O}(\Omega) \)-module. Cela fait intervenir de façon un peu mystérieuse la connexion sur l’équation différentielle \(p \)-adique attachée par Berger [6] à notre \((\varphi, \Gamma)\)-module de de Rham. Chemin faisant, nous obtenons aussi une description complète de la \(G \times D^* \)-représentation \(\mathcal{O}(\Sigma_n) \) en termes de la correspondance de Langlands locale \(p \)-adique et de la correspondance de Jacquet-Langlands classique.

Nous renvoyons à l’introduction du chapitre 1 pour un résumé détaillé des résultats démontrés et de leurs preuves et nous contentons ici d’indiquer quelques prolongements suggérés par le théorème 5.

Questions et perspectives. — Une première question vient à l’esprit lorsque l’on compare les théorèmes 3 et 5 : pour la correspondance locale \(p \)-adique, pourquoi ne pas regarder plutôt la cohomologie étale \(p \)-adique des revêtements de Drinfeld ? Ces groupes de cohomologie semblaient jusqu’à il y a peu très difficiles à décrire, mais dans un travail en cours [44], Colmez, Dospinescu et Nizioł montrent qu’une version \(p \)-adique du théorème 3 est effectivement valable. Ils arrivent à un tel résultat car ils réussissent à décrire de façon remarquable la cohomologie étale \(p \)-adique d’un espace Stein comme \(\Sigma_n \) en termes du complexe de de Rham et peuvent ainsi se raccrocher au théorème 5 ; leur preuve repose donc de façon cruciale sur celui-ci.

Une autre question très naturelle est de se demander comment se généralisent ces résultats à la tour de Lubin-Tate, ou à l’espace de Drinfeld « en niveau infini » (ces deux questions sont liées, puisque l’isomorphisme de Faltings-Fargues identifie l’espace de Drinfeld et l’espace de Lubin-Tate en niveau infini). On peut s’attendre à voir apparaître des représentations localement analytiques intéressantes de \(D^* \). Toutefois il semble très difficile de dire quoi que ce soit de non trivial à ce sujet (on ne sait même pas décrire l’espace des fonctions rigides analytiques sur l’espace de Lubin-Tate en niveau zéro, comme représentation de \(D^* ! \))...

On peut aussi essayer de pousser plus avant l’interprétation géométrique offerte par le théorème 5. La question suivante est expliquée en détail dans le premier chapitre, mais nous la reprenons ici.

\textbf{Question 6.} — Soit \((U_i) \) un recouvrement affinoïde Stein de \(\Omega \), et soit \(p_n : \Sigma_n \to \Omega \) l’application naturelle. Comme \(\Sigma_n \) est Stein, on montre facilement à l’aide de la dualité de Serre ([30]) qu’il y a une suite exacte de \(G \)-représentations (avec \(n \) et \(\rho \) comme avant) :

\[0 \to \mathcal{O}(\Sigma_n)\rho \to \lim_i \mathcal{O}(\Sigma_n \setminus p_n^{-1}(U_i))\rho \to (\Omega^1(\Sigma_n)\rho)^* \to 0. \]

Il est démontré dans le chapitre 1 de cette thèse que \(\mathcal{O}(\Sigma_n)\rho \) (resp. \(\Omega^1(\Sigma_n)\rho \)) s’identifie au dual d’une \(G \)-représentation \(\Pi(\pi, 0) \) (resp. \(\Pi(\pi, 2) \)) construite à l’aide des \((\varphi, \Gamma)\)-modules ; par constructions, elles vivent dans une suite exacte de \(G \)-représentations :

\[0 \to \Pi(\pi, 0)^* \to t \mathcal{N}_{\text{rig}} \boxtimes \mathbb{P}^1(\mathbb{Q}_p) \to \Pi(\pi, 2) \to 0. \]
Ici tN_{rig} est le (φ, Γ)-module (non étale) sur l’anneau de Robba déterminé par π, et $tN_{rig} \boxtimes P^1(Q_p)$ est l’espace des sections globales du faisceau G-équivariant sur $P^1(Q_p)$ associé à tN_{rig}. La construction de ce faisceau et l’existence de cette suite exacte sont au cœur de la construction de Colmez de la correspondance de Langlands p-adique.

Ces deux suites exactes de G-représentations sont-elles isomorphes ? On peut en fait même construire géométriquement un faisceau G-équivariant sur $P^1(Q_p)$ et se demander s’il s’identifie au faisceau de Colmez.

On pourrait tenter d’aller plus loin. La théorie des D-modules sur les espaces rigides analytiques est en cours d’élaboration (travaux d’Ardakov et Wadsley [3] d’une part, de Huyghe, Patel, Schmidt et Strauch [87] d’autre part). Un des objectifs de la théorie est d’obtenir un théorème de localisation « à la Beilinson-Bernstein » pour les modules coadmissibles sur l’algèbre des distributions $D(G)$ de G. Quelle qu’en soit la formulation précise, il semble raisonnable d’espérer que la composante ρ-isotypique du poussé en avant de \mathcal{O}_Σ, le long de $j \circ p_n$ (j désignant l’inclusion de Ω dans P^1) soit le D-module attaché au $D(G)$-module coadmissible $\mathcal{O}(\Sigma_n)^\rho$ par localisation. La question 6 revient à dire que le faisceau de Colmez est obtenu en tirant en arrière ce faisceau au bord $P^1(Q_p)$ de Ω dans P^1.

Question 7. — Si Π est une représentation localement analytique de G correspondant à un (φ, Γ)-module D sur l’anneau de Robba par la théorie de Colmez, comment reconstruire le faisceau G-équivariant de Colmez $U \mapsto D \boxtimes U$ sur $P^1(Q_p)$ à partir du D-module sur P^1 attaché à Π^* par la localisation de Beilinson-Bernstein ?

Terminons par une question un peu vague de théorie d’Iwasawa. Soit f une forme modulaire de poids 2, dont la composante locale en p, $\pi := \pi(f)_p$ de la représentation automorphe attachée à f soit supercuspidale. En combinaison des résultats de Colmez ([34], [38]) avec la preuve du théorème 5, on peut voir, de façon très détournée, le système d’Euler de Kato $z_{Kato}(f)$ ([90]) comme un élément de $\mathcal{O}(2)(\Sigma_n)^\rho = \Omega^1(\Sigma_n)^\rho$, bien que la construction de de Kato de son système d’Euler ait une forte coloration géométrique.

Question 8. — Y a-t-il une façon plus directe et naturelle de voir $z_{Kato}(f)$ comme un élément de $\Omega^1(\Sigma_n)^\rho$? Cela peut-il aider à construire une fonction L p-adique pour f ?

Avant [117], toutes les constructions connues de fonctions L p-adiques de formes modulaires étaient faites pour des formes dont la composante en p ne soit pas supercuspidale\(^{23}\). Dans le cas de la Steinberg, ces constructions sont reliées de façon intéressante au demi-plan de Drinfeld ([22]). Dans [117], Rodríguez Jácintz construit ce qui devrait être la restriction de « \mathcal{L} » fonction L p-adique de f à une partie de l’espace des poids suffisamment loin du caractère trivial de \mathbb{Z}_p.

Espaces de Banach-Colmez et faisceaux cohérents sur la courbe de Fargues-Fontaine

Les Espaces Vectoriels de dimension finie de Colmez. — Les espaces de Banach-Colmez ont été introduits par Colmez, motivé par certaines constructions antérieures de Fontaine, sous le nom d’*Espaces Vectoriels de dimension finie* (noter les lettres capitales) il y a quinze ans ([35]), avec pour objectif d’obtenir une nouvelle preuve de la conjecture « faiblement admissible implique admissible » en théorie de Hodge p-adique. Rappelons brièvement de quoi il s’agissait.

Soit C le complété d’une clôture algébrique de Q_p. Colmez définit les espaces de Banach-Colmez comme foncteurs sur la catégorie formée des C-algèbres perfectoïdes (au sens de

23. Ce qui dit exactement que f est de pente finie, ou en d’autres termes que la représentation galoisienne p-adique associée à f est (de Rham) trianguline en p.}
d’un certain type, les C-algèbres sympathiques, à valeurs dans les Q_p-espaces de Banach. Deux exemples simples de tels foncteurs sont les suivants : d’une part, si V est un Q_p-espace vectoriel de dimension finie, le foncteur qui à une algèbre sympathique $Λ$ associe V, noté encore V et que l’on appellera un Q_p-Espace Vectoriel de dimension finie ; d’autre part, si W est un C-espace vectoriel de dimension finie, le foncteur qui à une algèbre sympathique $Λ$ associe $Λ \otimes_C W$, noté encore W et que l’on appellera un C-Espace Vectoriel de dimension finie. Un espace de Banach-Colmez est alors un foncteur ne différant d’un C-Espace Vectoriel de dimension finie que par des Q_p-Espaces Vectoriels de dimension finie : par définition, tout espace de Banach-Colmez admet une présentation comme quotient par un Q_p-Espace Vectoriel de dimension finie V' d’une extension d’un C-Espace Vectoriel de dimension finie W par un Q_p-Espace Vectoriel de dimension finie V. Cela permet d’attacher à une telle présentation d’un espace de Banach-Colmez deux entiers : sa dimension $\text{dim}_C W$ et sa hauteur $\text{dim}_{Q_p} V - \text{dim}_{Q_p} V'$. Cette définition peut sembler un peu étrange, mais Colmez montre que la catégorie des espaces de Banach-Colmez est une catégorie abélienne, que le foncteur d’évaluation sur C est exact et conservatif et que les fonctions dimension et hauteur ne dépendent pas de la présentation et définissent deux fonctions additives sur cette catégorie. Voici un exemple non trivial d’espace de Banach-Colmez : le foncteur $B^+_{\text{cris}}(\cdot)^{\varphi=p}$ qui à une C-algèbre sympathique $Λ$ associe $B^+_{\text{cris}}(Λ^p)^{\varphi=p}$ ($Λ^p$ désignant l’ensemble des éléments de $Λ$ à puissances bornées). L’ensemble de ses C-points est $(B^+_{\text{cris}})^{\varphi=p}$ et le fait que $B^+_{\text{cris}}(\cdot)^{\varphi=p}$ soit un Banach-Colmez est relié à la suite exacte fondamentale de la théorie de Hodge p-adique :

\[
0 \to Q_p \to (B^+_{\text{cris}})^{\varphi=p} \xrightarrow{\varphi} C \to 0.
\]

Comme l’illustre cet exemple, l’étude des espaces de Banach-Colmez fait naturellement apparaître certains anneau de Fontaine utilisés en théorie de Hodge p-adique, ce qui est a priori suprenant, car leur définition n’en fait pas mention.

Les propriétés de la catégorie des espaces de Banach-Colmez ont ensuite été explorées par Fontaine (24) [72] et Plüt [115]. Elles font fortement penser aux propriétés bien connues de la catégorie des faisceaux cohérents sur une courbe. Ceci a amené Fargues et Fontaine, en conjonction avec d’autres indices, à deviner l’existence de la courbe de Fargues-Fontaine. Au terme de ces développements, il était naturel de se demander quelle relation précise entretiennent la catégorie des faisceaux cohérents sur la courbe de Fargues-Fontaine et celle des espaces de Banach-Colmez. La solution n’est pas immédiate, car on se convainc facilement que ces deux catégories abéliennes ne sont pas équivalentes. L’objet du deuxième chapitre de cette thèse est de répondre à cette question.

La catégorie des Banach-Colmez comme cœur abélien de $\text{Db}(\text{Coh}_X)$. — Nous commençons par redéfinir la catégorie des espaces de Banach-Colmez. Notons Perf_C la catégorie des espaces perfectoidés sur C. Nous munissons Perf_C de la topologie pro-étale (25).

Deux exemples simples de faisceaux sur ce site à valeurs dans la catégorie des Q_p-espaces vectoriels sont le faisceau G_a, qui à $S \in \text{Perf}_C$ associe $O_S(S)$, et le faisceau constant Q_p associé à Q_p.

Définition 9. — La catégorie BC des espaces de Banach-Colmez est la plus petite sous-catégorie abélienne stable par extensions contenant les faisceaux Q_p et G_a, de la catégorie des faisceaux de Q_p-espaces vectoriels sur $\text{Perf}_C^{\text{pro-ét}}$.

Nous montrons que cette définition est équivalente à la définition originale de Colmez.

Afin de relier la catégorie BC à la courbe de Fargues-Fontaine, il nous faut considérer une t-structure différente de la t-structure standard sur la catégorie dérivée bornée $D(X) = D^b(\text{Coh}_X)$ de la catégorie abélienne Coh_X des faisceaux cohérents sur X. La catégorie Coh_X

25. On pourrait aussi bien utiliser la v-topologie de Scholze.
est très bien comprise, grâce à [66] : on peut définir des fonctions rang et degré, et la filtration de Harder-Narasimhan d’un fibré vectoriel sur \(X \); on dispose d’un théorème de classification des fibrés sur \(X \), qui rappelle le théorème de Grothendieck pour les fibrés sur \(\mathbb{P}^1 \). L’existence de ce formalisme de Harder-Narasimhan sur \(X \) permet de fabriquer une nouvelle catégorie abélienne reliée à \(BC \). Considérons la sous-catégorie pleine suivante de \(D(X) \) :

\[
\text{Coh}_X = \{ \mathcal{F} \in D(X), H^i(\mathcal{F}) = 0 \text{ pour } i \neq -1, 0, H^{-1}(\mathcal{F}) < 0, H^0(\mathcal{F}) \geq 0 \},
\]

la notation \(\mathcal{G} < 0 \) (resp. \(\geq 0 \)), pour \(\mathcal{G} \in \text{Coh}_X \), signifiant que tous les quotients successifs de la filtration de Harder-Narasimhan de \(\mathcal{G} \) sont à pentes strictement négatives (resp. positives). La théorie générale des paires de torsion et du tilting ([5]) montre que \(\text{Coh}_X \) est un coeur abélien de \(D(X) \).

Le résultat principal du chapitre 2 est alors le suivant. Bien que la courbe \(X \) ne vive pas au-dessus de \(\text{Spa}(C) \), on peut définir un morphisme \(\tau \) du site des espaces perfectoïdes sur \(X \), muni de la topologie pro-étale, vers \(\text{Perf}_{C,\text{proét}} \), qui induit un morphisme \(\tau^* \) au niveau des topos correspondants. Dans l’énoncé qui suit, on utilise implicitement l’équivalence donnée par le théorème de pureté de Scholze ([128]) entre \(\text{Perf}_{C,\text{proét}} \) et \(\text{Perf}_{C^0,\text{proét}} \).

Théorème 10. — Le foncteur cohomologie \(R^0\tau_* \) induit une équivalence de catégories abéliennes entre \(\text{Coh}_X \) et \(BC \).

A titre d’exemple, la suite exacte mentionnée ci-dessus correspond à la suite exacte dans \(\text{Coh}_X \) :

\[
0 \to \mathcal{O}_X \to \mathcal{O}_X(1) \to i_{\infty,*}C \to 0.
\]

De même, la suite exacte de Banach-Colmez :

\[
0 \to \mathbb{Q}_p \to G_a \to G_a/\mathbb{Q}_p \to 0
\]

correspond à la suite exacte dans \(\text{Coh}_X \) :

\[
0 \to \mathcal{O}_X \to i_{\infty,*}C \to \mathcal{O}_X(-1)[1] \to 0.
\]

Remarque 11. — Le point le plus délicat de la preuve est le calcul de certains groupes d’extensions dans la catégorie des faisceaux de \(\mathbb{Q}_p \)-espaces vectoriels sur \(\text{Perf}_{C,\text{proét}} \) entre les faisceaux \(\mathbb{Q}_p \) et \(G_a \), en petit degré. Ces calculs sont réminiscents de ceux de Breen en caractéristique \(p \), même s’ils sont considérablement plus simples (la seule chose dont nous ayons besoin est la résolution partielle explicite utilisée par Berthelot-Breen-Messing dans [12]) et beaucoup moins forts. Dans le cas des extensions de \(G_a \) par lui-même, nous montrons que

\[
\text{Hom}(G_a, G_a) = C ; \text{Ext}^1(G_a, G_a) = C.
\]

Il ne fait aucun doute que l’on devrait avoir \(\text{Ext}^1(G_a, G_a) = 0 \) en tout degré \(> 1 \). Dans [20], Breen prouve que

\[
\text{Ext}^i(G_a, G_a) = 0
\]

tout \(i > 0 \), où cette fois-ci le groupe considéré est un groupe d’extensions dans la catégorie des faisceaux de \(\mathbb{F}_p \)-espaces vectoriels sur le site des schémas parfaits sur une base parfaite de caractéristique \(p \), muni de la topologie étale (ou fppf) ([26]).

Comme corollaire du théorème, on obtient que la catégorie \(BC \) ne dépend que de \(C^0 \), le fait que les espaces de Banach-Colmez sont des diamants (au sens de [133]) et une caractérisation cohomologique des algèbres sympathiques.

26. L’asymétrie apparente (pour \(i = 1 \)) entre les deux situations n’en est pas vraiment une : si dans la définition des espaces de Banach-Colmez, on remplace le corps \(\mathbb{Q}_p \) par un corps local \(E \) de caractéristique \(p \), \(\text{Ext}^1(G_a, G_a) \) s’annule aussi dans la catégorie des faisceaux de \(E \)-espaces vectoriels sur \(\text{Perf}_{C,\text{proét}} \).
Cohomologie pro-étale et cohomologie syntomique. — La preuve du théorème principal du chapitre 2 nécessite d’effectuer certains calculs de cohomologie pro-étale : il faut savoir décrire la cohomologie pro-étale des faisceaux \(\mathbb{Q}_p \) et \(G_a \) sur l’espace affine. Bien que ce ne soit pas nécessaire pour l’étude des espaces de Banach-Colmez, nous menons le calcul en tout degré et obtenons le résultat suivant.

Théorème 12. — Soit \(n \geq 1 \) et \(i \geq 0 \). Notons
\[
\mathcal{O}(\mathbb{A}_C^n) \xrightarrow{d_0} \Omega^1(\mathbb{A}_C^n) \xrightarrow{d_1} \ldots \xrightarrow{d_{n-1}} \Omega^n(\mathbb{A}_C^n)
\]
le complexe des sections globales du complexe de de Rham de \(\mathbb{A}_C^n \). Alors, d’une part, pour tout \(i \geq 0 \),
\[H^i(\mathbb{A}_C^n, G_a) = \Omega^i(\mathbb{A}_C^n)\].
D’autre part, \(H^0(\mathbb{A}_C^n, \mathbb{Q}_p) = \mathbb{Q}_p \) et pour tout \(i > 0 \), on a un isomorphisme :
\[H^i(\mathbb{A}_C^n, \mathbb{Q}_p) = \text{Ker}(d_i) = \text{Im}(d_{i-1}) \subset \Omega^i(\mathbb{A}_C^n)\].
Tous les groupes de cohomologie considérés sont des groupes de cohomologie pro-étale.

On obtiendrait un résultat analogue pour le disque unité ouvert en dimension quelconque. Notre démonstration repose sur la version “faisceautique” d’une variante de la suite exacte familière en théorie de Hodge \(p \)-adique :
\[0 \to \mathbb{Q}_p \to B^{\varphi=1}_{\text{cris}} \to B^{\varphi=1}_{\text{dR}}/B^{\varphi=1}_{\text{dR}} \to 0\],
et sur l’analyse de la cohomologie pro-étale des faisceaux de périodes correspondants.

Enfin, les techniques utilisées pour démontrer ce théorème et l’article [111] nous ont mené à nous intéresser à la cohomologie syntomique géométrique. Nizioł montre dans [111] que les groupes de cohomologie syntomique géométrique d’un schéma formel semi-stable \(\mathcal{S} \) sur une extension finie \(K \) de \(\mathbb{Q}_p \) sont les \(\mathbb{C} \)-points de certains espaces de Banach-Colmez. Notre objectif initial, au vu du théorème 10, était de redémontrer ce résultat dans le cas de bonne réduction, en le reliant plus directement à la courbe de Fargues-Fontaine, c’est-à-dire de fabriquer, pour chaque \(r \geq 0 \), un complexe de faisceaux cohérents \(\mathcal{F}_{\mathcal{S}}\{r\} \) sur la courbe, tel que pour tout \(i \geq 0 \),
\[H^i(X, \mathcal{F}_{\mathcal{S}}\{r\}) = H^i_{\text{syn}}(\mathcal{S}_{O_K}, \mathcal{F}_{\mathcal{S}}\{r\})[1/p]\].
Nous n’y sommes vraiment parvenu qu’en degré inférieur ou égal à \(r \), mais cela nous permet tout de même de donner une preuve synthétique du théorème de comparaison étale-syntomique. Chemin faisant, nous obtenons une réinterprétation de certaines constructions syntomiques dans le langage de Bhatt-Morrow-Scholze [14]. Le foncteur de décalage \(L_{\eta} \), étudié dans [13] et [14] et qui faisait déjà son apparition dans la démonstration du théorème 12, y joue un rôle crucial (27). C’est ce foncteur qui explique la différence entre cohomologies étale et syntomique.

Prolongements et perspectives. — La définition que nous donnons de la catégorie des espaces de Banach-Colmez rend frappante l’analogie entre la catégorie \(BC \) et celle des groupes quasi-algébriques unipotents (ou proalgébriques unipotents) de Serre ([136]). Non seulement les définitions de ces deux catégories ont un air de famille, mais ces objets font leur apparition dans des contextes similaires. Ils interviennent tous deux en théorie du corps de classes : voir respectivement [136] et [64]. Les groupes de cohomologie plate (fppf) de \(\mu_p \) sur une variété propre et lisse sur un corps parfait de caractéristique \(p \) sont les points de groupes quasi-algébriques unipotents, de même que la cohomologie syntomique géométrique donne naissance à des espaces de Banach-Colmez. Il serait intéressant de préciser et d’explorer cette analogie.

27. Même si pour des raisons techniques, c’est \(\mu \) plutôt que \(t \) que nous utilisons.
Les calculs effectués dans la section 2.3 du chapitre 2 pour démontrer le théorème 12 suggèrent aussi différentes questions. La plus évidente est celle de savoir si les méthodes employées pour décrire la cohomologie pro-étale à coefficients \mathbb{Q}_p de l’espace affine peuvent s’étendre au cas d’un espace Stein lisse Z quelconque (ou d’un espace affinoïde surconvergent lisse), défini sur une extension finie de \mathbb{Q}_p. La difficulté essentielle réside dans l’analyse de la cohomologie $H^*(Z_C, \mathbb{B}[1/t]^{p-1})$ du faisceau pro-étale $\mathbb{B}[1/t]^{p-1}$ (\mathbb{B} est l’analogue faisceautique de l’anneau B de Fargues et Fontaine). Plus précisément, il faudrait savoir relie la cohomologie de ce faisceau à la cohomologie de la fibre spéciale S_λ (cristalline, Hyodo-Kato, ...), sous l’hypothèse qu’il existe un modèle formel sympathique \mathfrak{F} de Z. Cette question est évoquée à la toute fin du chapitre (§2.8.5).

Il serait plus intéressant encore de ne pas inverser t : la cohomologie de B (avec son action de Frobenius) paraît horriblement compliquée à décrire, mais celle du complexe de faisceaux étalés $L\eta_t R\nu'_t B$ a l’air nettement plus agréable, ν' désignant le morphisme du topos pro-étale de Z_C vers le topos étale de Z_C. Les résultats du paragraphe final 2.8.5 sont très partiels et insatisfaisants en l’état ; néanmoins, ils semblent indiquer, même de façon ténue, qu’il devrait exister pour les espaces surconvergents ($[79]$) lisses et quasi-compacts sur un corps p-adique K une théorie cohomologique à valeurs dans la catégorie dérivée des fibrés G_K-équivariants sur la courbe, telle que la cohomologie du disque unité surconvergent soit nulle en degré positif. Cette observation va dans le sens de l’analogie entre la courbe de Fargues-Fontaine et la droite projective complexe X_C (sur \mathbb{C}) ou la forme tordue de la droite projective sans point réel (sur \mathbb{R}) : en effet, une structure de Hodge complexe (resp. réelle) peut-être vue comme un fibré W_C-équivariant sur X_C (resp. comme un fibré W_R-équivariant sur X_C), W_C (resp. W_R) désignant le groupe de Weil de \mathbb{C} (resp. \mathbb{R}) – cf. $[139]$ (28).

Comme le montre – sous une forme un peu différente – la dernière section du chapitre 2, ces questions sont reliées à l’étude de la cohomologie syntomique géométrique d’un modèle formel lisse de Z, lorsqu’un tel modèle existe. Il vaudrait la peine de reprendre la construction qui y est donnée d’un complexe calculant la cohomologie syntomique sans inverser p et sans hypothèse de bonne réduction. Nous espérons revenir sur ces différents problèmes dans un futur proche.

Enfin, pour pousser à son terme l’analogie mentionnée ci-dessous avec les résultats de Breen, il serait satisfaisant de réussir à décrire les groupes d’extensions entre les faisceaux \mathbb{Q}_p et G_α sur $\text{Perf}_{C, \text{proet}}$ en tout degré. Peut-on adapter à ce cadre les techniques de $[19]$ ou $[20]$? Le théorème de Breen concernant les extensions de G_α par lui-même peut se réinterpréter comme le calcul de la cohomologie de Hochschild topologique de \mathbf{F}_p ([75]) ; nous ignorons si des relations de même nature valent encore dans le cas qui nous intéresse.

28. Et l’interprétation de la cohomologie du complexe fabriqué en appliquant $L\eta_t$ comme q-déformation du complexe de de Rham ([14]) n’est pas sans rappeler la construction de twisteurs par l’astuce de Deligne des λ-connexions.
Les résultats de ce chapitre ont été obtenus en collaboration avec Gabriel Dospinescu ([53]).

1.1. Introduction

La correspondance de Langlands locale « classique » pour GL_n entretient un lien étroit avec la cohomologie du demi-espace de Drinfeld de dimension $n - 1$ et de ses revêtements : la théorie de Lubin-Tate non abélienne de Carayol [27] prédit que la correspondance pour les représentations supercuspidales se réalise dans la cohomologie étale ℓ-adique de la tour de Drinfeld [55] (ou de Lubin-Tate, selon les goûts, cf. [60] [67]) et la mise en forme de ce principe joue un rôle crucial dans la preuve d’Harris et Taylor [84] de la correspondance.

Par contraste, l’existence de la correspondance de Langlands p-adique, qui n’est à l’heure actuelle formulée et prouvée que pour le groupe $G = GL_2(\mathbb{Q}_p)$, repose [38] sur la théorie de Fontaine [69] des (φ, Γ)-modules. Elle n’a donc à première vue aucune relation avec la géométrie des revêtements du demi-plan de Drinfeld (1). Pourtant, le cas classique laisse espérer que celle-ci puisse expliquer la structure des représentations de G associées aux représentations galosienes de de Rham non triangulines. Ce chapitre se propose de montrer que c’est effectivement le cas. Les résultats obtenus ont été directement inspirés par une conjecture non publiée de Breuil et Strauch [25], qui donnait un sens précis à cet espoir, en décrivant le complexe de de Rham de ces revêtements (2) en termes de la correspondance de Langlands p-adique (3).

1.1.1. Les résultats principaux. — Nous aurons besoin de quelques préliminaires pour énoncer notre premier résultat principal. Soit D l’unique algèbre de quaternions ramifiée sur \mathbb{Q}_p (à isomorphisme près), \mathcal{O}_D son unique ordre maximal et soit ϖ_D une uniformisante de D. Soit \hat{M}_n l’espace rigide analytique sur $\overline{\mathbb{Q}}_p^{\text{nr}}$, fibre générique du schéma formel classifiant les déformations par quasi-isogénie \mathcal{O}_D-équivariante d’un \mathcal{O}_D-module formel spécial de dimension 2 et hauteur 4 sur \mathbb{F}_p, avec structure de niveau $1 + p^n \mathcal{O}_D$. Les espaces \hat{M}_n forment une tour d’espaces analytiques, les morphismes de transition $\hat{M}_{n+1} \rightarrow \hat{M}_n$ étant finis étales. Chacun (4) de ces espaces est muni d’actions qui commutent des groupes $G = GL_2(\mathbb{Q}_p)$ et D^*, compatible avec les morphismes de transition $\hat{M}_{n+1} \rightarrow \hat{M}_n$. De plus, les espaces \hat{M}_n

1. Pour certaines représentations galosienes, on sait cependant que la correspondance se réalise dans la cohomologie complétée de la tour des courbes modulaires [57]; ceci joue d’ailleurs un rôle capital ici.
2. Plus précisément, la conjecture était faite pour le premier revêtement.
3. La conjecture de Breuil-Strau ch et les résultats de ce travail ne disent rien sur les représentations de de Rham triangulines ; pour une explication, voir la remarque 1.1.5.
4. L’action « horizontale », i.e. sur chaque étage de la tour, est celle de G, le groupe D^* agissant « verticalement » sur la tour. Puisque $1 + p^n \mathcal{O}_D$ est distingué dans D^*, l’action par correspondances de Hecke de D^* sur la tour préserve chaque \hat{M}_n.

sont munis de données de descente canoniques à la Weil, qui ne sont pas effectives, mais qui le deviennent sur le quotient (5) de \mathcal{M}_n par p^2. On note Σ_n le modèle de $p^2\mathcal{M}_n$ sur \mathbb{Q}_p qui s’en déduit. L’espace rigide analytique Σ_n est un revêtement étale de Σ_0, de groupe de Galois le quotient

$$\text{Gal}(\Sigma_n/\Sigma_0) = \mathcal{O}_D^*/(1 + p^n\mathcal{O}_D).$$

Soit Ω le demi-plan de Drinfeld, un espace rigide sur \mathbb{Q}_p dont les C-points sont

$$\Omega(C) = \mathbb{P}^1(C) - \mathbb{P}^1(\mathbb{Q}_p).$$

Il admet une action de G, via l’action naturelle de G sur $\mathbb{P}^1(C)$, donnée par $g.z = \frac{az+b}{cz+d}$ si $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$, où z est « la » variable sur \mathbb{P}^1. L’espace Σ_0 n’est pas bien mystérieux : il s’agit simplement de deux copies de Ω, avec action triviale de \mathcal{O}_D^*, l’élément ϖ_D permutant les deux copies. L’action de $g \in G$ est l’action naturelle sur Ω et échange ou non les deux copies de Ω selon que le déterminant de g est impair ou pair. La géométrie des revêtements Σ_n et l’action de $G \times D^*$ sur Σ_n sont par contre bien plus compliquées.

Fixons maintenant une représentation lisse supercuspidale π de G, de caractère central trivial (pour simplifier) et notons

$$\rho = JL(\pi)$$

la représentation lisse irréductible (de dimension finie) de D^* qui lui est attachée par la correspondance de Jacquet-Langlands locale. Il existe (6) une extension finie L de \mathbb{Q}_p telle que ces représentations soient définies sur L. Il est sous-entendu dans la suite que le corps des coefficients de toutes les représentations qui apparaissent est L ; en particulier, si X est un espace rigide sur \mathbb{Q}_p et F est un faisceau cohérent sur X, on notera simplement $F(X)$ pour $\mathcal{H}^0(X, F) \otimes_{\mathbb{Q}_p} L$.

Soit $\text{Ban}^{\text{adm}}(G)$ la catégorie des représentations de G sur des L-espaces de Banach Π, qui ont un réseau ouvert, borné et G-invariant, dont la réduction modulo p est lisse admissible au sens usuel (i.e. le sous-espace des vecteurs invariants par un sous-groupe ouvert compact arbitraire de G est fini). Si $\Pi \in \text{Ban}^{\text{adm}}(G)$, on note Π^an (resp. Π^lisse) le sous-espace de Π formé des vecteurs localement analytiques (resp. localement constants), i.e. des vecteurs dont l’application orbite (7) est localement analytique (resp. localement constante). Les espaces Π^an et Π^lisse sont stables sous l’action de G et Π^an est dense dans Π [125] (alors que Π^lisse est la plupart du temps nul).

Définition 1.1.1. — On note $\mathcal{V}(\pi)$ l’ensemble des représentations absolument irréductibles $\Pi \in \text{Ban}^{\text{adm}}(G)$ telles que $\Pi^\text{lisse} \simeq \pi$.

La correspondance de Langlands locale p-adique pour G fournit une description complète de $\mathcal{V}(\pi)$ (voir la discussion suivant la remarque 1.1.3).

Le théorème suivant, qui est le premier résultat principal de ce texte, fournit une description géométrique de la représentation localement analytique $\Pi^\text{an}/\Pi^\text{lisse}$ quand $\Pi \in \mathcal{V}(\pi)$. Alternativement, on peut le voir comme une description de la $G \times D^*$ représentation $\mathcal{O}(\Sigma_n)$ en termes de la correspondance de Jacquet-Langlands et surtout de la correspondance de Langlands p-adique. Si V est un L-espace vectoriel localement convexe, on note V^* son dual topologique. On pose aussi

$$\sigma^p = \text{Hom}_D^*(\rho, \sigma)$$

pour toute L-représentation σ de $G \times D^*$.

5. On voit p comme élément du centre de G.

6. L’existence est un fait standard de la théorie, utiliser par exemple le fait que π est l’induite d’une représentation de dimension finie à partir d’un sous-groupe ouvert compact modulo le centre. Voir aussi le chapitre 4 de [24] pour une discussion de la rationalité dans un cadre beaucoup plus général.

7. Si $v \in \Pi$ est un tel vecteur, son application orbite est $G \rightarrow \Pi$, $g \mapsto g.v.$
Théorème 1.1.2. — Soit π une représentation supercuspidale de $G = \text{GL}_2(\mathbb{Q}_p)$, à caractère central trivial, et soit ρ = JL(π) comme ci-dessus. Pour tout $\Pi \in \mathcal{V}(\pi)$ et pour tout n assez grand (il suffit que p soit triviale sur $1 + p^n\mathcal{O}_D$), il existe un isomorphisme de G-modules topologiques unique à scalaire près

$$(\mathcal{O}(\Sigma_n)^{\rho})^* \cong \Pi_{\text{an}}/\Pi_{\text{lisse}}.$$

Remarque 1.1.3. —

a) Au lieu de partir de π, on aurait pu plus généralement partir d’une représentation localement algébrique de la forme $\pi \otimes \text{Sym}^k$, avec π supercuspidale (8). Tous les résultats de ce texte s’étendent, à condition de considérer des fibrés vectoriels différent sur Σ_n : voir la remarque 1.11.12. De même, l’hypothèse que le caractère central de π est trivial n’est pas essentielle, contrairement à l’hypothèse que π est supercuspidale (voir la remarque 1.1.5 pour plus de détails concernant ce dernier point).

b) Une conséquence importante du théorème 1.1.2 est que $(\mathcal{O}(\Sigma_n)^{\rho})^*$ est une G-représentation localement analytique admissible, au sens de Schneider et Teitelbaum [125]. Le caractère localement analytique s’établit sans trop de mal, mais l’admissibilité semble nettement plus délicate. Qu’en est-il pour GL$_2(F)$, ou même GL$_n(F)$? Notre méthode ne fournit aucune approche pour ce problème. On peut espérer que la théorie des D-modules p-adiques permette de dire quelque chose de l’admissibilité de ces représentations indépendamment de la correspondance de Langlands p-adique (voir [114] pour des résultats dans cette direction).

Le théorème 1.1.2 affirme en particulier que le quotient $\Pi_{\text{an}}/\Pi_{\text{lisse}}$ ne dépend pas du choix de $\Pi \in \mathcal{V}(\pi)$. Cela n’est cependant que de la poudre aux yeux : la preuve du théorème 1.1.2 utilise de manière essentielle cette indépendance, qui a été démontrée par voie très détournée dans [38, th. VI.6.43], et dont la preuve a été considérablement simplifiée dans un travail récent de Colmez [41]. Nous donnons aussi une preuve (9) dans la section 8 de ce chapitre, car nous avons besoin d’un certain nombre d’ingrédients de cette preuve pour montrer le théorème 1.1.4 ci-dessous.

Pour comprendre l’importance de l’indépendance discutée dans le paragraphe précédent, il convient d’expliciter davantage l’ensemble $\mathcal{V}(\pi)$. La correspondance de Langlands « classique » pour G, normalisée à la Tate, combinée avec une recette de Fontaine [70] (complétée par la proposition 4.1 de [24], qui permet « d’inverser » cette recette pour attacher des $(\varphi, N, \mathcal{G}_{Q_p})$-modules à des représentations de Weil-Deligne, cf. le dernier paragraphe des notations et conventions) permet d’associer à π un $(\varphi, \mathcal{G}_{Q_p} := \text{Gal}(\overline{\mathbb{Q}}_p/Q_p))$-module $M(\pi)$, libre de rang 2 sur $L \otimes_{Q_p} Q_p^\text{nr}$, ainsi qu’un L-espace vectoriel de dimension 2

$$M_{\text{an}}(\pi) = (\overline{\mathbb{Q}}_p \otimes_{Q_p^\text{nr}} M(\pi))^{\mathcal{G}_{Q_p}}.$$

Un des résultats principaux de [45], qui utilise la compatibilité entre les correspondances de Langlands « classique » et p-adique [57], montre que le foncteur de Colmez [38] induit une bijection

$$\Pi \mapsto \mathcal{V}(\Pi)$$

entre $\mathcal{V}(\pi)$ et l’ensemble des L-représentations absolument irréductibles V de dimension 2 de \mathcal{G}_{Q_p}, potentiellement cristallines à poids de Hodge-Tate 0, 1 et telles que

$$D_{\text{pat}}(V) \cong M(\pi).$$

On a $\det V(\Pi) = \chi_{\text{cyc}}$ pour tout $\Pi \in \mathcal{V}(\pi)$, car le caractère central de π est trivial (aussi innocente qu’elle puisse paraître, cette assertion est en fait la partie la plus technique de [45]...). En combinant cela avec le théorème de Colmez-Fontaine [43], et l’observation que, la représentation de Weil attachée à $M(\pi)$ par la recette de Fontaine étant irréductible,

8. Côté Galois, cela revient à passer des poids de Hodge-Tate 0, 1 aux poids 0, $k + 1$, comme on le verra plus bas.

9. En utilisant encore un certain nombre de résultats de [38], ainsi qu’une astuce de [41].
toutes les filtrations sur $M(\pi)$ sont automatiquement faiblement admissibles (voir la preuve du théorème 5.2 de [24]), on en déduit une bijection canonique
\[V(\pi) \simeq \text{Proj}(M_{\text{dR}}(\pi)), \quad \Pi \mapsto \text{Fil}^0(D_{\text{dR}}(V(\Pi))), \]
en considérant Fil$^0(D_{\text{dR}}(V(\Pi)))$ comme une L-droite de $M_{\text{dR}}(\pi)$ via l'isomorphisme $D_{\text{dR}}(V(\Pi)) \simeq M_{\text{dR}}(\pi)$ induit par (10) $D_{\text{dR}}(V(\Pi)) \simeq M(\pi)$. Notons $\mathcal{L} \rightarrow \Pi_{\mathcal{L}}$ l'inverse de cette bijection. Ainsi, \mathcal{L} est la filtration de Hodge sur $D_{\text{dR}}(V(\Pi))$. L'indépendance de $\Pi_{\mathcal{L}}^{an}/\Pi_{\mathcal{L}}^{lisse}$ pour $\Pi \in V(\pi)$ équivaut alors à l'indépendance de $\Pi_{\mathcal{L}}^{an}/\Pi_{\mathcal{L}}^{lisse}$ par rapport à la filtration de Hodge \mathcal{L} sur $M_{\text{dR}}(\pi)$. Cela est surprenant et n'a rien de gratuit : la représentation $\Pi_{\mathcal{L}}^{an}$ permet de récupérer Π, et donc la filtration de Hodge sur $M_{\text{dR}}(\pi)$, grâce au résultat principal de [42], tandis que le quotient par les vecteurs lisses ne dépend que de $M(\pi)$. Autrement dit, les représentations $\Pi_{\mathcal{L}}^{an}$ pour $\Pi \in V(\pi)$ sont des extensions
\[0 \rightarrow \pi \rightarrow \Pi_{\mathcal{L}}^{an} \rightarrow \Pi(\pi, 0) \rightarrow 0 \]
d'une représentation $\Pi(\pi, 0)$ qui ne dépend que de $M(\pi)$, par π. La filtration de Hodge encode cette extension. Nous verrons plus loin comment récupérer cette filtration. Une conséquence essentielle de l'indépendance par rapport à la filtration de Hodge est qu'elle nous permet de choisir un $\Pi \in V(\pi)$ convenable, et ainsi d'utiliser des méthodes globales pour montrer l'existence d'un morphisme non nul entre les deux objets du théorème 1.1.2. Nous montrerons ensuite par voie locale que tout tel morphisme est un isomorphisme, et qu'il est unique à scalaire près : c'est le coeur technique de l'argument, voir la section suivante pour plus de détails.

La description géométrique de $\Pi_{\mathcal{L}}^{an}/\Pi_{\mathcal{L}}^{lisse}$ étant acquise grâce au théorème 1.1.2, nous voulons maintenant décrire $\Pi_{\mathcal{L}}^{an}$ géométriquement, et récupérer ainsi la filtration de Hodge. C'est ici qu'intervient le complexe de de Rham de \mathcal{L}, pour plus de détails.

Pour tout objet \mathcal{L} de M_{dR}, nous permet de récupérer
\[0 \rightarrow \Omega_{\mathcal{L}}^{1}(\Sigma_{\pi})^{\rho} \rightarrow \Omega_{\mathcal{L}}^{1}(\Sigma_{\pi})^{\rho} \rightarrow H_{\text{dR}}^{1}(\Sigma_{\pi})^{\rho} \rightarrow 0. \]
En passant aux composantes $\rho := JL(\pi)$-isotypiques (11), on obtient une suite exacte (12) de \mathcal{G}-représentations sur des espaces de Fréchet
\[0 \rightarrow \mathcal{O}(\Sigma_{\pi})^{\rho} \rightarrow \Omega_{\mathcal{L}}^{1}(\Sigma_{\pi})^{\rho} \rightarrow H_{\text{dR}}^{1}(\Sigma_{\pi})^{\rho} \rightarrow 0. \]

**Théorème 1.1.4. — Il existe un isomorphisme canonique (à scalaire près) de \mathcal{G}-modules de Fréchet
\[H_{\text{dR}}^{1}(\Sigma_{\pi})^{\rho} \simeq M_{\text{dR}}^{*} \otimes_{\mathcal{L}} \pi^{*}, \]
tel que pour toute L-droite \mathcal{L} de M_{dR}, l'image inverse de $\mathcal{L}^{\perp} \otimes_{\mathcal{L}} \pi^{*} \subset H_{\text{dR}}^{1}(\Sigma_{\pi})^{\rho}$ dans $\Omega_{\mathcal{L}}^{1}(\Sigma_{\pi})^{\rho}$ est isomorphe à $(\Pi_{\mathcal{L}}^{an})^{*}$ et la suite exacte
\[0 \rightarrow \mathcal{O}(\Sigma_{\pi})^{\rho} \rightarrow (\Pi_{\mathcal{L}}^{an})^{*} \rightarrow \mathcal{L}^{\perp} \otimes_{\mathcal{L}} \pi^{*} \simeq \pi^{*} \rightarrow 0 \]
qui s'en déduit est duale de celle fournie par le théorème 1.1.2.**

Ce théorème, qui est le deuxième résultat principal du chapitre, donne donc une recette géométrique simple pour construire $\Pi_{\mathcal{L}}^{an}$ à partir de la donnée de $M(\pi)$ (ou de façon équivalente, de π) et de la filtration de Hodge, à partir du complexe de de Rham. C'était l'objet de la conjecture originale de Breuil-Strauch [25] (qui était toutefois formulée de manière un peu différente, voir la remarque 1.11.13).

10. Ce dernier isomorphisme est unique à scalaire près, dont tout est « canonique à scalaire près » dans ce qui précède, et l'identification $V(\pi) \simeq \text{Proj}(M_{\text{dR}}(\pi))$ est canonique tout court....
11. Cela utilise de manière cruciale le fait que ρ est de dimension > 1, ce qui fournit $H_{\text{dR}}^{0}(\Sigma_{\pi})^{\rho} = 0$, grâce à [141] et [67].
12. La suite reste exacte, ρ agissant à travers un quotient fini de D^{*}.
Remarque 1.1.5. — Si π est une représentation de la série principale, et $\Pi \in \mathrm{Ban}^{\text{adm}}(G)$ contient π, on ne dispose pas d’une telle description géométrique de Π^∞ : la situation est bien sûr similaire à celle de la correspondance de Langlands locale classique, où les représentations de la série principale n’apparaissent pas dans la cohomologie ℓ-adique à supports de la tour de Drinfeld. Si π est un twist de la Steinberg, les premiers travaux de Breuil [21] sur la correspondance de Langlands p-adique fournissent une description partielle de Π^∞ utilisant le demi-plan Ω, mais la situation est plus compliquée : il ne suffit pas de copier les énoncés précédents avec π triviale. Cela s’explique en partie par le fait que dans ce cas la cohomologie de de Rham est non triviale aussi en degré 0, cf. le paragraphe 1.12.2.

Toutefois, dans ces deux cas, la représentation galoisienne attachée à une telle Π est trianguline, et on dispose donc d’une description très précise des vecteurs localement analytiques [40] [101].

Remarque 1.1.6. — Remplaçons Σ_n par le premier revêtement $\Sigma_{1+n\sigma_B}O_B$ et considérons comme dans l’énoncé du théorème le dual de l’image inverse de $\mathcal{L}^1 \otimes_{L\mathcal{P}} H^1_{\mathrm{DR}}(\Sigma_{1+n\sigma_B}O_B)^p$ dans $\Omega^1(\Sigma_{1+n\sigma_B}O_B)^p$, pour ρ représentation lisse irréductible non triviale de D^+, triviale sur $1+n\sigma_BO_B$. Dans un travail récent [103] et dans une formulation un peu différente, Lue Pan montre que le complété unitaire universel de cette représentation est admissible et que sa réduction modulo π_L coïncide avec la réduction modulo π_L de $V(\Pi_C)$ par la correspondance de Langlands semi-simple « modulo p ». Sa preuve exploite la géométrie d’un modèle formel explicite de $\Sigma_{1+n\sigma_B}O_B$.

1.1.2. Survol de la preuve. — Comme nous l’avons déjà précisé, la preuve du théorème 1.1.2 combine des arguments globaux et locaux. La plupart des ingrédients apparaissant dans sa preuve sont aussi utilisés pour démontrer le théorème 1.1.4, donc nous allons nous concentrer uniquement sur la preuve du théorème 1.1.2 dans la suite.

Commençons par la partie globale. Le but est de construire dans un premier temps un morphisme non nul, G-équivariant et continu, de $(\Omega^1(\Sigma_n)^p)^*$ dans Π^{an}, pour un certain (13) $\Pi \in V(\pi)$. Considérons une algèbre de quaternions B sur \mathbb{Q} ramifiée en p et déployée à l’infini. Elle donne naissance à une tour de courbes de Shimura $(Sh_K)_K$ indexée par les sous-groupes ouverts compacts K de $B^*(A_f)$ (on voit B^* comme un groupe algébrique sur \mathbb{Q} dans la suite). Fixons un sous-groupe ouvert compact suffisamment petit K^p de $B^*(A_f^p)$ et considérons $K = (1+p^nO_B)K^p \subset B^*(A_f)$. Le théorème d’uniformisation de Cerednik-Drinfeld (plus quelques contorsions topologiques) permet d’obtenir un isomorphisme

\begin{equation}
\Omega^1(Sh_K \otimes \mathbb{Q} Q_p)^p \cong \mathrm{Hom}_G^{\text{cont}}((\Omega^1(\Sigma_n)^p)^*, \mathrm{LA}(X(K^p))),
\end{equation}

où

\[X(K^p) = \tilde{B}^*(\mathbb{Q})/\tilde{B}^*(A_f)/K^p, \]

\tilde{B} étant l’algèbre de quaternions sur \mathbb{Q} ayant les mêmes invariants que B aux places différentes de p et ∞, et des invariants échangés en ces places (\tilde{B} est donc compacte modulo centre à l’infini). L’espace $X(K^p)$ est une variété analytique, au sens naïf du terme, compacte, avec une action localement analytique de G. L’espace $\mathrm{LA}(X(K^p))$ des fonctions localement analytiques sur $X(K^p)$ à valeurs dans L est muni d’une action de l’algèbre de Hecke hors p, et cette action commute à l’action de G.

Ce qui précède n’utilise pas le fait que l’on travaille avec $\mathrm{GL}_2(\mathbb{Q}_p)$, mais à partir de maintenant nous allons pleinement exploiter ce qu’on connaît sur ce groupe. Le point clé est de comprendre les espaces Hecke-propres dans $\mathrm{LA}(X(K^p))$. Comme \tilde{B} est déployée en p, cela se fait en reprenant mot à mot les arguments qui ont permis à Emerton [57] de

\[\mathrm{composant de straté} \]
comprendre la cohomologie complétée de la tour des courbes modulaires. En fait, en globalisant convenablement (14) la représentation π nous pouvons nous placer dans une situation relativement simple - mais qui demande quand même toute la force de la correspondance de Langlands locale p-adique ! Ainsi, en regardant les espaces p-propres des deux côtés de l’isomorphisme (4) pour un idéal maximal convenable p de l’algèbre de Hecke sphérique et en utilisant la version (15) du théorème de compatibilité local-global d’Emerton pour comprendre l’espace propre LA(X(Kp))|p], on obtient un morphisme G-équivariant non nul continu |g|/Π∗ → Πan, pour un certain Π ∈ V(π), ce qui induit par dualité un morphisme (Πan)∗ → Ω1(Σn)p. On vérifie sans mal que ce morphisme se restreint en un morphisme non nul G-équivariant continu

\[\Phi : (\Pi^\text{an}/\Pi^\text{fis})^* \rightarrow \mathcal{O}(\Sigma_n)^p. \]

D’après les résultats de Colmez évoqués plus haut, le membre de gauche, tout comme le membre de droite, ne dépend que de M (ou, de façon équivalente, de π, ou de ρ), et pas du choix de Π ∈ V(π) : on notera désormais Π(π, 0) = Πan/Πfis.

La suite de la preuve, qui représente la partie la plus technique du texte, consiste à montrer que Φ est un isomorphisme, et qu’il est unique à scalaire près. L’argument est un peu acrobatique. Nous commençons par munir Π(π, 0)∗ d’une structure de \(\mathcal{O}(\Omega) \)-module telle que Φ soit \(\mathcal{O}(\Omega) \)-linéaire. Cela se fait en exploitant la construction explicite de Π via les \((\varphi, \Gamma) \)-modules, et la compréhension de l’action de l’algèbre de Lie \(\mathfrak{gl}_2 \) de G sur \(\Pi^\text{an} \). Pour motiver un peu la construction, notons que l’opérateur \(\partial : \mathcal{O}(\Sigma_n)^p \rightarrow \mathcal{O}(\Sigma_n)^p \) de multiplication par \(z \in \mathcal{O}(\Omega) \) encode la structure de \(\mathcal{O}(\Omega) \)-module de \(\mathcal{O}(\Sigma_n)^p \), et est uniquement caractérisé par l’égalité d’opérateurs sur \(\mathcal{O}(\Sigma_n)^p \)

\[a^+ - 1 = u^+ \circ \partial, \]

où \(a^+ \) (respectivement \(u^+ \)) désigne l’action infinitésimale de \(\mathbb{Z}_p^0 \) (respectivement \(\mathbb{Z}_p^1 \)) sur \(\mathcal{O}(\Sigma_n)^p \). Notons que l’opérateur \(u^+ \) agit comme \(-\frac{d}{dz} \).

Le point est alors de refaire ces constructions du côté des \((\varphi, \Gamma) \)-modules (tous cela est fortement inspiré d’un travail en cours de Colmez [41]). On démontre ainsi l’existence d’un automorphisme \(\partial \) du L-espace vectoriel topologique \(\Pi(\pi, 0)^* \) uniquement caractérisé par le fait que

\[a^+ - 1 = u^+ \circ \partial. \]

L’existence de \(\partial \) est un théorème délicat de Colmez [41], dont on donne une nouvelle preuve. La notation \(\partial \) peut paraître pour le moins étrange, sachant qu’il s’agit d’un opérateur de « multiplication par \(z \) » : elle vient du fait que \(\partial \) encode la connexion sur le \((\varphi, \Gamma) \)-module (sur l’anneau de Robba) attaché à \(V(\Pi) \). Au vu des remarques précédentes, le théorème suivant ne devrait pas surprendre le lecteur, mais nous insistons sur le fait qu’il requiert un certain nombre d’estimées pas totalement triviales et qu’il joue un rôle décisif dans la preuve des résultats principaux du chapitre.

Théorème 1.1.7. — *Pour tout \(\Pi \in V(\pi) \) il existe une unique structure de \(\mathcal{O}(\Omega) \)-module sur \(\Pi(\pi, 0)^* \) qui étend sa structure de L-espace vectoriel, et telle que \(z \in \mathcal{O}(\Omega) \) agit comme \(\partial \).*

14. De telle sorte que la représentation galoisienne associée à la forme automorphe globalisant \(\pi \) soit irréductible en réduction mod \(p \) et en restriction à \(\mathbf{G}_p \).

15. Notons que l’on a besoin d’une version forte de cette compatibilité, i.e. il ne suffit pas de savoir que \(\Pi^\text{an} \) apparaît dans l’espace propre \(LA(X(Kp))|p] \), mais qu’en plus \(\Pi^\text{an} \) est l’unique sous-quotient irréductible de cet espace.
Un ingrédient crucial dans la preuve de ce théorème est la dualité de Morita ([109, 122], par exemple), i.e. l’isomorphisme de G-modules topologiques

$$\Omega^1(\Omega) \simeq (\text{St}^{an})^*,$$

$\mu \in (\text{St}^{an})^* \mapsto \omega_f = \left(\int_{\mathbb{P}_k^1(Q_p)} \frac{1}{z-x} \mu(x) \right) dz.$

Ici z est « la » variable sur \mathbb{P}_k^1, St^{an} est la Steinberg localement analytique, quotient de l’espace $\text{LA}(\mathbb{P}_k^1(Q_p))$ des fonctions localement analytiques sur $\mathbb{P}_k^1(Q_p)$ par les fonctions constantes. La structure de $\mathcal{O}(\Omega)$-module du théorème précédent est alors donnée par

$$\left(\int_{\mathbb{P}_k^1(Q_p)} \frac{1}{z-x} \mu(x) \right) \cdot l = \int_{\mathbb{P}_k^1(Q_p)} (\partial - x)^{-1}(l) \mu(x),$$

pour tout $l \in (\Pi^{an}/\Pi^{lisse})^*$ (bien sûr, il faut donner un sens à ces expressions!).

Un résultat frappant que l’on obtient, comme corollaire du résultat final, est que $\Pi(\pi, 0)^*$ est localement libre de rang $\dim_L(\rho)$ comme $\mathcal{O}(\Omega)$-module. Cela semble très délicat à démontrer, et même à deviner, en utilisant seulement la théorie des (φ, Γ)-modules, qui sert à construire $\Pi(\pi, 0)$ et l’opérateur ∂.

Une fois le théorème 1.1.7 démontré, nous montrons que $\Phi : \Pi(\pi, 0)^* \to \mathcal{O}(\Sigma_n)^0$ est surjectif. Cela se fait en deux étapes : nous montrons d’abord que Φ est d’image dense, et ensuite qu’il est surjectif. La densité de l’image de Φ vient de l’irréductibilité du fibré G-équivariant sur Ω dont les sections globales sont $\mathcal{O}(\Sigma_n)^0$, résultat qui se démontre en utilisant les résultats de Kohlhaase [97], permettant de « transférer le problème » sur la tour de Lubin-Tate : via ce transfert, l’irréductibilité se ramène à l’irréductibilité du fibré D^*-équivariant $\rho^* \otimes \mathcal{O}_{\mathbb{P}^1}$, qui est nettement plus facile à établir (16)

Expliquons enfin rapidement l’argument pour l’injectivité de Φ. On note $\mathcal{O}(k)(\Sigma_n)$ la représentation de G sur $\mathcal{O}(\Sigma_n)$ obtenue en tordant l’action naturelle comme suit (17)

$$\left(\begin{array}{cc} a & b \\ c & d \end{array} \right)_k f = (a - cz)^{-k} \cdot \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) . f.$$

Puisque Σ_n est étale sur Σ_0, on a une trivialisation $\Omega^1(\Sigma_n) \simeq \mathcal{O}(\Sigma_n)dz$, qui induit un isomorphisme de G-représentations

$$\Omega^1(\Sigma_n) \simeq \mathcal{O}(2)(\Sigma_n) \otimes \text{det}.$$

On peut faire les mêmes constructions purement à partir des (φ, Γ)-modules, ce qui permet de définir une représentation $\Pi(\pi, 2)^*$ en faisant agir G sur $\Pi(\pi, 0)^*$ par

$$\left(\begin{array}{cc} a & b \\ c & d \end{array} \right)_* v := \text{det} \cdot (a - cz)^{-2} \cdot \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) . v.$$

Le morphisme Φ étant $\mathcal{O}(\Omega)$-linéaire, G-équivariant et surjectif, il induit un morphisme G-équivariant continu et surjectif $\Phi : \Pi(\pi, 2)^* \to \Omega^1(\Sigma_n)$, et il suffit de démontrer que ce morphisme est injectif. Cela se fait en plusieurs étapes. D’abord, nous utilisons encore une fois l’uniformisation de Cerednik-Drinfeld et un argument avec la suite spectrale de Hochschild-Serre comme dans [83] et [61] pour montrer que $H^1_{\text{dR}}(\Sigma_n)^0$ admet deux copies de π^* comme quotient. Ensuite, la « théorie du modèle de Kirillov » de Colmez permet (18) de montrer que le conoyau de $u^+ : \Pi(\pi, 0)^* \to \Pi(\pi, 2)^*$ est canoïquement (à scalaire près) isomorphe à $M^*_{\text{dR}} \otimes \pi^*$. On déduit de ce qui précède que le morphisme

$$\Phi : \Pi(\pi, 2)^*/u^+ (\Pi(\pi, 0))^* \to \Omega^1(\Sigma_n)/d(\mathcal{O}(\Sigma_n)^0)$$

16. Mais qui utilise de manière cruciale le fait que ρ est irréductible et lisse.
17. Comme $\mathcal{O}(\Sigma_n)$ est un $\mathcal{O}(\Omega)$-module (l’isomorphisme étant donné par le plongement diagonal de $\mathcal{O}(\Omega)$ dans $\mathcal{O}(\Sigma_n)$), et comme $(a - cz)^{-k} \in \mathcal{O}(\Omega)$, la formule précédente a un sens.
est forcément un isomorphisme, ce qui fournit au passage un isomorphisme\(^{(19)}\)
\[H^1_{\text{dR}}(\Sigma_n)^p \simeq M^*_{\text{dR}} \otimes \pi^* . \]

De cela on déduit assez facilement l’injectivité de \(\Phi \), en prouvant qu’il n’existe pas de sous-espace \(G \)-stable dans \(\cap_{n \geq 0} (u^+)^\kappa (\Pi(\pi, 2)^*) \). Ce dernier espace est en fait nul (cela découle de [41] ou [52] et utilise de manière cruciale le fait que les représentations auxquelles on travaille ne sont pas triangulines), ce qui joue un rôle important dans la preuve du théorème 1.1.10 ci-dessous.

Ce qui précède montre que l’application \(u^+ : \Pi(\pi, 0)^* \rightarrow \Pi(\pi, 2)^* \) induit une suite exacte de \(G \)-modules de Fréchet
\[0 \rightarrow \Pi(\pi, 0)^* \rightarrow \Pi(\pi, 2)^* \rightarrow M^*_{\text{dR}} \otimes \pi^* \rightarrow 0 \]
et que l’isomorphisme \(\Pi(\pi, 0)^* \simeq O(\Sigma_n)^p \) induit un isomorphisme de \(G \)-modules topologiques
\[\Omega^1(\Sigma_n)^p \simeq \Pi(\pi, 2)^*. \]

Le théorème 1.1.4 s’en déduit en suivant soigneusement ces identifications.

Remarque 1.1.8. — Colmez a démontré [41] que la représentation \(\Pi(\pi, 0) \) est (topologiquement) irréductible, ce qui fournit une preuve directe de l’injectivité. Nous avons toutefois besoin de tous les ingrédients ci-dessus pour la preuve du théorème 1.1.4.

1.1.3. Compléments

Nombre des objets construits à l’aide des \((\varphi, \Gamma)\)-modules mentionnés précédemment trouvent donc une interprétation géométrique, à l’exception notable du faisceau \(G \)-équvariant \(U \rightarrow tN_{\text{rig}} \otimes U \) sur \(P^1(Q_p) \) construit par Colmez\(^{(20)}\), dont l’espace des sections globales contient \(\Pi(\pi, 0)^* \) et joue un rôle capital dans la théorie. Dans la dernière section de ce chapitre, nous proposons une interprétation géométrique naturelle de ce faisceau, qui prolonge naturellement la conjecture de Breuil-Strauch. Le lecteur est renvoyé à 1.12.3 pour un énoncé précis. Contentons-nous pour finir cette partie de citer deux autres conséquences de nos résultats.

Soit \(D(\Gamma) \) l’algèbre des distributions sur \(\Gamma = \text{Gal}(Q_p^{\text{cyc}}/Q_p) \simeq \mathbb{Z}_p^* \) à valeurs dans \(L \). Si \(V \) est une représentation de \(D(\Gamma) \) de \(G_K := \text{Gal}(\overline{Q}_p/K) \), avec \(K \) une extension finie de \(Q_p \), on note \(H^1(\mathcal{G}_K, V) \) l’image de l’exponentielle de Bloch-Kato. Soit maintenant \(V \in V(\pi) \). On dispose d’applications naturelles
\[\int_{1+p^n \mathbb{Z}_p} : H^1(\mathcal{G}_K, D(\Gamma) \otimes_L V) \rightarrow H^1(\mathcal{G}_{F_n}, V), \]
on où \(F_n = Q_p(\mu_{p^n}) \).

Théorème 1.1.9. — Il existe un isomorphisme de \(D(\Gamma) \)-modules libres de rang 2
\[(O(\Sigma_n)^p)^{\phi(0,1)} = \{ \mu \in H^1(\mathcal{G}_K, D(\Gamma) \otimes_L V) \mid \int_{1+p^n \mathbb{Z}_p} \mu \in H^1(\mathcal{G}_{F_n}, V) \quad \forall n \geq 0 \}. \]

Enfin, la trivialisation \(\Omega^1(\Sigma_n) = O(\Sigma_n)dz \) permet de définir une application \(\frac{dz}{\pi} : O(\Sigma_n) \rightarrow O(\Sigma_n) \). On dit qu’une fonction \(f \in O(\Sigma_n) \) est infiniment primitivable si \(f \) est dans l’image de \(\frac{dz}{\pi^k} \) pour tout \(k \). En d’autres termes, \(f \) est infiniment primitivable si \(f \in \cap_{k \geq 0} (u^+)^k O(\Sigma_n) \).

Théorème 1.1.10. — Soit \(f \in O(\Sigma_n) \) une fonction infiniment primitivable sur \(\Sigma_n \). Alors \(f \in O(\Omega) \).

19. Une méthode plus naturelle serait d’utiliser la cohomologie d’Hyodo-Kato d’un modèle de \(\Sigma_n \), mais cela pose un certain nombre de problèmes...

20. Pour une définition, voir le § 1.8.1.
1.2. NOTATIONS ET CONVENTIONS

Remarque 1.1.11. — Dans un article ultérieur [54], nous discuterons le lien entre $O(\Sigma_n)$ et la courbe de Fargues-Fontaine : soit $O(\Sigma_n, \infty)$ le sous-espace de $O(\Sigma_n)$ des fonctions f telles que

$$\lim_{v_p(b) \to -\infty} \left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array} \right) f = 0.$$

Géométriquement, $O(\Sigma_n, \infty)$ est le sous-espace de $O(\Sigma_n)$ formé des fonctions qui tendent vers zéro quand « on s’approche dans les directions rationnelles du point ∞ du bord ». Soient

$$B^+_\text{rig} = \bigcap_{n \geq 0} \varphi^n(B^+_{\text{cris}}), \quad \mathcal{H}_{Q_p} = \text{Gal}(\overline{O}_p/Q_p^{\text{cy}}).$$

On démontre alors [54] qu’il existe un isomorphisme de représentations de $B = \left(\begin{array}{cc} Q_p^* & Q_p^* \\ 0 & Q_p^* \end{array} \right)$

$$O(\Sigma_n, \infty)^\wedge \simeq (B^+_\text{rig} \otimes Q_p^* M(\pi))^\mathcal{H}_{Q_p} \otimes \delta,$$

où $\delta : B \to Q_p^*$ est le caractère $\delta (\left(\begin{array}{cc} a & b \\ 0 & 1 \end{array} \right)) = a$. Précisons simplement que l’action de $\left(\begin{array}{cc} Z_p^* & 0 \\ 0 & 1 \end{array} \right)$ sur le terme de droite se fait à travers l’action naturelle de $\Gamma = \text{Gal}(Q_p^{\text{cy}}/Q_p)$, via l’isomorphisme $\left(\begin{array}{cc} Z_p^* & 0 \\ 0 & 1 \end{array} \right) \simeq \Gamma$ induit par le caractère cyclotomique. L’action de $\left(\begin{array}{cc} p & 0 \\ 0 & 1 \end{array} \right)$ correspond à l’action du Frobenius sur $(B^+_\text{rig} \otimes Q_p^* M(\pi))^\mathcal{H}_{Q_p}$. Notons aussi que tous les objets dans l’énoncé précédent ont un sens pour $GL_2(F)$. On peut naturellement se demander si c’est plus qu’une coïncidence...

1.1.4. Plan du chapitre. — L’enchainement des parties de ce chapitre suit essentiellement le cheminement de la preuve esquissée ci-dessus, dont nous reprenons les notations. La construction du morphisme $\Phi : (\Pi^{\text{disc}}/\Pi^{\text{disc}})^* \to O(\Sigma_n)^\wedge$ est l’objet de la section 1.5. Les deux chapitres précédents contiennent des résultats préliminaires à cette construction : description de la tour de Drinfeld et propriétés de l’action des groupes G et D^+ sur la tour (section 1.3) ; théorème d’uniformisation p-adique (section 1.4), rappels sur les formes automorphes sur les algèbres de quaternions (section 1.4) et enfin le calcul de la π-partie de la cohomologie de Rham à supports compacts des revêtements de Drinfeld qui sera utile plus tard. La preuve du théorème de compatibilité local-global (d’après Emerton) est repoussée en appendice. Le chapitre 1.6 est constitué de quelques rappels standard sur la théorie des (φ, Γ)-modules, tandis que le chapitre 1.7 contient des rappels, moins standard et fondamentaux pour la suite, sur la correspondance de Langlands p-adique : en particulier, la description de l’action infinitésimale de G sur les vecteurs localement analytiques et la théorie du modèle de Kirillov de Colmez. Ces résultats sont pleinement utilisés dans la section 1.8 pour construire $\Pi(\pi, 0)$, puis dans la section 1.9 pour munir $\Pi(\pi, 0)^*$ d’un opérateur ∂ et d’une structure de $O(\Omega)$-module. La démonstration de la surjectivité de Φ est alors possible et exposée dans le chapitre 1.10. La fin de la preuve des théorèmes principaux est l’objet du chapitre 1.11 et fait encore appel aux résultats du chapitre 1.7. Enfin, la section 1.12 contient quelques corolaires et une question.

1.2. Notations et conventions

1. On fixe une clôture algébrique \overline{O}_p de Q_p et on note C son complété. Toutes les extensions de Q_p considérées dans la suite seront à l’intérieur de C. On note Q_{p^∞} l’unique extension non ramifiée quadratique de Q_p, et on note \overline{Q}_p le complété de l’extension maximale non ramifiée Q_{p^∞} de Q_p dans \overline{O}_p. Pour $n \geq 1$, on note $F_n = Q_p(\mu_{p^n})$ et Q_p^{cy} le complété de la réunion des F_n. On pose, enfin,

$$G_{Q_p} = \text{Gal}(\overline{O}_p/Q_p), \quad \mathcal{H}_{Q_p} = \text{Gal}(\overline{O}_p/Q_p^{\text{cy}}), \quad \Gamma = \text{Gal}(Q_p^{\text{cy}}/Q_p).$$
(2) Dans tout le texte, $G = GL_2(Q)$.

On note $G_0 = GL_2(Z)$ et $G_n = 1 + p^nM_2(Z)$, pour tout $n \geq 1$. On note aussi B le sous-groupe de Borel (supérieur) de G et $P = \left(\begin{array}{cc} Q^* & Q \\ Q & -1 \end{array} \right)$ le mirabolique. Enfin, on pose $g = gl_2 = Lie(G)$ et on considère la base de g donnée par

$$a^+ = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \quad a^- = \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right), \quad u^+ = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \quad u^- = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right).$$

On note $h = a^+ - a^- \in U(g)$.

(3) On fait la convention importante que toutes les actions de G seront à gauche. En particulier, si G agit sur un espace rigide analytique (ou un schéma) X, on transmet l'action naturelle à droite de G sur les sections globales d’un fibré G-équivariant sur X en une action à gauche (via l’anti-involution $g \mapsto g^{-1}$ de G).

(4) On note D l’unique algèbre de quaternions non déployée sur Q (à isomorphisme près), O_D son unique ordre maximal, $D_0 = O_D^+$, et $D_n = 1 + p^nO_D$, pour tout $n \geq 1$. Fixons, une fois pour toutes, un plongement de $Q_\mathfrak{p}$ dans D. Soit ϖ_D une uniformisante de O_D telle que

$$O_D = Z_{\mathfrak{p}^2}[\varpi_D], \quad \varpi_D^2 = p, \quad \varpi_Dx = \sigma(x)\varpi_D, \quad \forall x \in Q_{\mathfrak{p}^2},$$

où σ est le Frobenius de $Q_{\mathfrak{p}^2}$.

(5) La représentation supercuspidale π, de caractère central trivial et définie sur une extension finie L de Q (qui grandira selon les besoins...) sera fixée une fois pour toutes. La représentation irréductible de D^* attachée à π par la correspondance de Jacquet-Langlands locale sera notée $\rho = JL(\pi)$. Noter que ρ est aussi à caractère central trivial.

(6) Si X est un espace rigide analytique sur Q, on note $O(X) = L \otimes Q \mathcal{H}^0(X, \mathcal{O}_X)$ et $\Omega^1(X) = L \otimes Q \mathcal{H}^0(X, \Omega^1_X)$. Même convention pour $\mathcal{H}^1_{\mathcal{D}}(X)$ (on n’utilisera la cohomologie de de Rham que pour des espaces rigides analytiques lisses et Stein).

(7) Soit X est une variété analytique p-adique avec action localement analytique de G. Si V est un $Q_\mathfrak{p}$-module topologique, on note $\mathcal{C}^0(X, V)$ (resp. $\mathcal{L}C(X, V)$) l’ensemble des fonctions continues (resp. localement constantes) $\phi : X \rightarrow V$. On note simplement $\mathcal{C}^0(X)$ (resp. $\mathcal{L}C(X)$, resp. $\mathcal{L}A(X)$) au lieu de $\mathcal{C}^0(X, L)$ (resp. $\mathcal{L}C(X, L)$, resp. les fonctions localement analytiques $\phi : X \rightarrow L$). Tous ces espaces de fonctions sont munis d’actions naturelles (à gauche) de G.

(8) Si H est un groupe de Lie p-adique, on écrit $D(H)$ pour l’algèbre des distributions sur H à valeurs dans L. C’est le dual topologique fort de $LA(H)$.

(9) Si B est une L-représentation de Banach de G, on note B^{an} (resp. B^{alg}, resp. B^{lisse}) le sous-espace de B formé des vecteurs v tels que l’application $G \rightarrow B, g \mapsto g.v$ soit localement analytique (resp. localement polynomiale, resp. localement constante).

Si Alg(G) est l’ensemble des (classes d’isomorphisme de) représentations algébriques irréductibles de G définies sur L, alors B^{alg} est l’image du morphisme naturel (injectif)

$$\bigoplus_{W \in \text{Alg}(G)} W \otimes_L \text{Hom}_g(W, B^{an}) \rightarrow B^{an},$$

où $g = Lie(G)$, alors que B^{lisse} est le sous-espace $(B^{an})^{g=0}$ de B^{an} des vecteurs tués par tout élément de g. Enfin, si K_p est un sous-groupe ouvert compact de G, on note $B_{K_p-\text{alg}}$ l’image du morphisme

$$\bigoplus_{W \in \text{Alg}(G)} W \otimes_L \text{Hom}_{K_p}(W, B) \rightarrow B.$$

(10) Soit K'/K une extension finie galoisienne (K et K' étant des extensions finies de Q_p), et soit L une extension finie de Q_p telle que $|\text{Hom}_{Q_p}(K'_p, L)| = [K'_p : Q_p]$, où
1.3. Revêtements du demi-plan de Drinfeld et fibrés vectoriels

Nous rappelons dans ce chapitre un certain nombre de résultats relativement standard sur la tour de Drinfeld et nous établissons le caractère localement analytique de l’action de G sur $\mathcal{O}(\Sigma_n)$, ainsi que le caractère lisse de la G-représentation $H^1_{\text{dR}}(\Sigma_n)$. Le lecteur pourra consulter [17, 47, 55, 67, 116] pour plus de détails concernant la tour de Drinfeld.

1.3.1. L’espace de Drinfeld et ses revêtements. — Soit S un \mathbb{Z}_p-schéma. Un \mathcal{O}_D-module formel spécial sur S est un groupe formel p-divisible X sur S, de dimension 2 et hauteur 4, muni d’une action de \mathcal{O}_D telle que l’action induite de \mathbb{Z}_p sur l’algèbre de Lie de X fait de celle-ci un $\mathcal{O}_S \otimes_{\mathbb{Z}_p} \mathbb{Z}_p$-module localement libre de rang 1. Il existe une unique classe de \mathcal{O}_D-isogénie de \mathcal{O}_p-modules formels spéciaux sur F_p. Fixons un tel \mathcal{O}_D-module formel spécial X. Le foncteur des déformations de X par quasi-isogénies \mathcal{O}_D-équivariantes (22) est représentable [116] par un schéma formel p-adique sur \mathbb{Z}_p. On note \mathcal{M}_0 la fibre générique rigide de ce schéma formel. Un théorème fondamental de Drinfeld [55] fournit un isomorphisme

$$\mathcal{M}_0 \simeq \tilde{\Omega} \times \mathbb{Z},$$

où $\tilde{\Omega} = \Omega \otimes_{\mathbb{Q}_p} \mathbb{Q}_p$ et Ω est le demi-plan de Drinfeld, un espace rigide sur \mathbb{Q}_p dont les C-points sont

$$\Omega(C) = \mathbb{P}^1(C) - \mathbb{P}^1(\mathbb{Q}_p).$$

L’espace \mathcal{M}_0 est muni d’une action à gauche de G donnée par

$$g.(X, \rho) = (X, \rho \circ g^{-1}),$$

qui correspond par l’isomorphisme de Drinfeld à l’action usuelle par homographies de G sur le demi-plan et au décalage par $-v_p(\det g)$ sur \mathbb{Z}, ainsi que d’une donnée de descente à la Weil (23), qui correspond via l’isomorphisme de Drinfeld au composé de la donnée de descente canonique et du décalage par 1. Elle n’est donc pas effective, mais pour tout entier $t > 0$, cette donnée de descente sur le quotient $p^t \mathcal{M}_0$ de \mathcal{M}_0 par l’action de l’élément p^t du centre de G devient effective. En prenant $t = 1$, on obtient un modèle Σ_0 de $p^2 \mathcal{M}_0$ sur \mathbb{Q}_p.

21. Ce sont donc des $K'_0 \otimes_{\mathbb{Q}_p} L$-modules libres de type fini avec un Frobenius bijectif semi-linéaire, un opérateur linéaire (nilpotent) N satisfaisant $N \varphi = p \varphi N$ et une action semi-linéaire (par rapport à K'_0) de $\text{Gal}(K'/K)$, commutant à φ et N.

22. Il s’agit du foncteur qui à S un \mathbb{Z}_p-schéma sur lequel p est nilpotent associe l’ensemble des classes d’isomorphisme de couples (X, ρ), avec X un \mathcal{O}_D-module formel spécial sur S et ρ une quasi-isogénie \mathcal{O}_D-équivariante entre X_S et $X_{S'}$; ici S est le sous-schéma fermé de S défini par $p = 0$.

23. Pour mémoire, une donnée de descente à la Weil sur un schéma X sur \mathbb{Z}_p est un isomorphisme de schémas $X \rightarrow \sigma \ast X = X \otimes_{\mathbb{Z}_p, \sigma} \mathbb{Z}_p$ sur \mathbb{Z}_p, où σ est le Frobenius.
Soit X^un le groupe p-divisible rigide universel sur \mathcal{M}_0. Si $n \geq 1$, on définit
\[\mathcal{M}_n = X^un[p^n] - X^un[p^{2n-1}] \]
C’est un revêtement étale galoisien de \mathcal{M}_0 de groupe de Galois $O_{D/}(1 + p^n O_D)$. Une fois encore, son quotient par l’action de p^2 descend à Q_p pour tout $t > 0$. Pour $t = 1$, cela fournit un modèle Σ_n de $p^2 \backslash \mathcal{M}_n$ sur Q_p. Il est muni d’actions à gauche de G et à droite de D^*, qui commutent.

1.3.2. Quelques rappels sur les espaces Stein. — Nous renvoyons le lecteur à [79, 80, 95, 121] pour les preuves des résultats énoncés dans ce paragraphe.

Soit K un corps de caractéristique 0, complet pour une valuation discrète, et soit X un espace rigide Stein sur K. Rappelons que cela veut dire que X admet un recouvrement croissant admissible $(X_n)_{n \geq 0}$ par des ouverts affinoïdes tels que $O(X_{n+1}) \to O(X_n)$ soit d’image dense pour tout n. Dans ce cas, la flèche naturelle $O(X) \to \lim_n O(X_n)$ est un isomorphisme d’espaces vectoriels topologiques, ce qui fait que $O(X)$ est naturellement un K-espace de Fréchet (c’est en fait une algèbre de Fréchet-Stein au sens de Schneider et Teitelbaum [125]). Le théorème de Kiehl [95] montre que les faisceaux cohérents sur X n’ont pas de cohomologie en degré > 0.

Supposons en outre que X est lisse. D’après le théorème de Kiehl mentionné ci-dessus, la cohomologie de de Rham de X se calcule comme la cohomologie du complexe des sections globales du complexe de de Rham de X. De plus, les différentielles $d^k_{\omega} : \Omega^k(X) \to \Omega^{k+1}(X)$ sont des morphismes stricts d’image fermée. En particulier, les groupes de cohomologie de de Rham de X sont des espaces de Fréchet (voir [79, cor.3.2] pour tout ceci). Si $d = \dim X$, alors $H^k(X, \mathcal{F}) = 0$ pour tout fibré \mathcal{F} sur X et tout $k < d$. On définit alors $H^{d-k}_{dr,c}(X)$ comme le k-ème groupe de cohomologie du complexe
\[\cdots \to H^d_c(X, \Omega^k) \to H^d_c(X, \Omega^{k+1}) \to \cdots \]
La dualité de Serre pour les variétés Stein [30] montre que ce complexe est dual du complexe des sections globales du complexe de de Rham de X, tordu par $\Omega^d(X)$. Cela permet de montrer [80, th. 4.11] que si X est pure de dimension d, alors pour tout k on a des isomorphismes canoniques
\[H^k_{\text{DR}}(X) \simeq H^{2d-k}_{\text{DR,c}}(X)^* \quad \text{et} \quad H^k_{\text{dr,c}}(X) = H^{2d-k}_{\text{dr}}(X)^* \]
les deux étant topologiques (comme toujours dans cet article). La preuve de [79, cor.3.2] montre que pour tout k l’espace vectoriel topologique $H^k_{\text{DR}}(X)$ est isomorphe à la limite inverse d’une suite $(V_n)_n$ d’espaces de dimension finie sur K. En particulier $H^0_{\text{DR}}(X)$ est un Fréchet réflexif et son dual topologique $H^{2d-k}_{\text{DR,c}}(X)$ est la limite inductive des V_n^*. On en déduit que $H^k_{\text{DR}}(X)$ est aussi le dual algébrique de $H^{2d-k}_{\text{DR,c}}(X)$. Puisque Ω est un espace Stein (24), il en est de même de Σ_0 et puisque Σ_n est un revêtement étale fini de Σ_0, on obtient la

Proposition 1.3.1. — Pour tout $n \geq 0$, l’espace rigide Σ_n est un espace Stein.

Notons τ_n la compoïsée du morphisme $\Sigma_n \to \Sigma_0$ et de la rétraction de Σ_0 sur l’arbre de Bruhat-Tits, dont on fixe l’origine en le réseau standard et B, la boule centrée en l’origine de rayon i dans l’arbre. Alors la famille des $U_i = \tau_n^{-1}(B_i)$ (n est sous-entendu dans la notation) forme un recouvrement de Stein de Σ_n. De plus, U_i est stable par l’action de $G_i = 1 + p^i M_2(Z_p)$ pour tout $i \geq 1$.

24. Voir la discussion suivant la proposition 1.3.1 pour une explication de ce fait standard.
1.3.3. Le caractère localement analytique de $O(\Sigma_n)^\ast$. — Soit $n \geq 0$ et $k \in \mathbb{Z}$. On note $O(k)(\Sigma_n)$ l’espace des fonctions rigides analytiques sur Σ_n, muni de l’action de G

$$g.f = \frac{1}{(a - c z)^k} \cdot (g.f), \quad \text{si} \quad g = (\frac{a}{c} \frac{b}{d}) \in G$$

où $g.f$ (dans le terme à droite) est l’action naturelle de $g \in G$ sur $O(\Sigma_n)$ déduite de l’action de G sur Σ_n. On a utilisé la structure naturelle de $O(\Omega)$-module de $O(\Sigma_n)$ pour donner un sens à la multiplication par $\frac{1}{(a - cz)^k} \in O(\Omega)$. Comme Σ_n est Stein, $O(k)(\Sigma_n)$ est l’espace des sections globales d’un fibré G-équivariant sur Σ_n, noté $O(k)$.

Notons qu’en tout niveau le faisceau $O(2) \otimes \det$ est simplement le faisceau des différentielles Ω^1 : on le voit facilement en niveau 0 et en niveau plus grand le faisceau Ω^1 est simplement le tiré en arrière du faisceau Ω^1 en niveau 0, puisque le revêtement est étale.

Théorème 1.3.2. — L’action de G sur $O(k)(\Sigma_n)^\ast$ est localement analytique, pour tout $k \in \mathbb{Z}$. De manière équivalente, $O(k)(\Sigma_n)$ est un $D(G)$-module séparément continu pour tout k. En particulier, $H^1_dR(\Sigma_n)$ est un $D(G)$-module séparément continu.

Démonstration. — Il suffit de démontrer que $O(\Sigma_n)$ est un $D(G)$-module séparément continu, le reste s’en déduit facilement.

Soit $g_1, ..., g_4$ une famille génératrice minimale de $G_2 = 1 + p^2 M_2(\mathbb{Z}_p)$. Notons pour $\alpha = (\alpha_1, ..., \alpha_4) \in \mathbb{N}^4$

$$b^\alpha = (g_1 - 1)^{\alpha_1}...(g_4 - 1)^{\alpha_4} \in \mathbb{Z}_p[G_2].$$

Les éléments de $D(G_2)$ (l’algèbre de distributions sur G_2 à valeurs dans L) s’écrivent de manière unique

$$\lambda = \sum_{\alpha \in \mathbb{N}^4} a_\alpha b^\alpha$$

avec $a_\alpha \in L$ et $\lim_{\alpha \rightarrow \infty} v_p(a_\alpha + r|\alpha|) = \infty$ pour tout $r > 0$, où $|\alpha| = \alpha_1 + ... + \alpha_4$. On veut montrer que $a_\alpha b^\alpha f$ tend vers 0 dans $O(\Sigma_n)$ pour toute telle suite (a_α) et tout $f \in O(\Sigma_n)$. Considérons le recouvrement de Stein $(U_i)_{i \geq 0}$ de Σ_n introduit après la proposition 1.3.1, chaque U_i étant stable sous l’action de G_i. Comme $O(\Sigma_n) = \lim_{i \rightarrow \infty} O(U_i)$, il suffit de démontrer que pour chaque i fixé $a_\alpha b^\alpha f$ tend vers 0 dans $O(U_i)$ pour tout $f \in O(\Sigma_n)$ (noter que $b^\alpha f \in O(\Sigma_n) \subset O(U_i)$ pour tout α). Comme

$$D(G_2) = \bigoplus_{g \in G_1 \setminus G_2} D(G_i) \delta_g,$$

et $G_1 \setminus G_2$ est fini on se ramène (en travaillant séparément avec chaque $\delta_g f = g.f$) à démontrer que $O(U_i)$ est un $D(G_i)$-module topologique (ce qui a un sens, puisque G_i agit sur U_i).

Soit b^α l’analogue de b^α pour G_i (i.e. $b^\alpha_i = (g_{i,1} - 1)^{\alpha_1}...(g_{i,4} - 1)^{\alpha_4}$, où $g_{i,j}$ forment une famille génératrice minimale de G_i) et soit $D_h(G_i)$ le complété de $D(G_i)$ pour

$$||\lambda|| = \sum_{\alpha} a_\alpha b^\alpha ||h|| = \sup_{\alpha} |a_\alpha| p^{-|\alpha|}.$$

Nous allons montrer que l’on peut trouver h tel que l’action de G_i sur $O(U_i)$ s’étende en une structure de $D_h(G_i)$-module topologique, ce qui suffira pour conclure.

Soit $g = \text{Lie}(G_i)$ et soit $X_1, ..., X_4$ une base de g. On note $X_\alpha = X_1^{\alpha_1}...X_4^{\alpha_4} \in U(g)$. D’après un résultat de Frommer [76, 1.4, lemma 3, corollaries 1, 2, 3], $D_h(G_i)$ est un module libre de type fini (à gauche et à droite) sur l’adhérence $U_h(g)$ de $U(g)$ dans $D_h(G_i)$, et a une base formée d’éléments de $\mathbb{Z}_p[G_i]$. De plus, les éléments de $U_h(g)$ s’écrivent de manière unique $\lambda = \sum_{\alpha} a_\alpha X_\alpha$, avec $v_p(a_\alpha) - c_h |\alpha| \rightarrow \infty$, où $c_h > p^{h-1}$ ne dépend que de h.

Lemme 1.3.3. — L’action de G_i sur $O(U_i)$ est différentiable : pour tout $\mathfrak{x} \in g$ et $f \in O(U_i)$ la limite

$$\mathfrak{x}.f = \lim_{n \rightarrow \infty} e^{p^n \mathfrak{x}} f - f$$
existe dans $\mathcal{O}(U_i)$. Cela munit $\mathcal{O}(U_i)$ d’une structure de g-module, et $f \mapsto X.f$ sont des endomorphismes continus du L-Banach $\mathcal{O}(U_i)$ (muni de la norme spectrale).

Démonstration. — Le morphisme étale fini $\Sigma_n \to \Sigma_0$ induit un morphisme étale fini G_i-équivariant $\pi : U_i \to U_{0,i}$, où $U_{0,i}$ est l’analogue de U_i en niveau 0. Le lemme précédent se vérifie sans aucun mal sur $\mathcal{O}(U_{0,i})$, qui est donc muni d’une structure de g-module. Notons ∂_X la dérivation continue de $\mathcal{O}(U_{0,i})$ attachée à $X \in g$. Comme $\pi : U_i \to U_{0,i}$ est fini étale, cette dérivation s’étend de manière unique en une dérivation continue de $\mathcal{O}(U_i)$, que nous notons encore ∂_X. Nous allons montrer que pour tout $f \in \mathcal{O}(U_i)$

$$\lim_{n \to \infty} \frac{e^{p^n X} f - f}{p^n} = \partial_X f,$$

le lemme s’en déduit sans mal. Notons $g_n = e^{p^n X} \in G_i$, $f_n = g_n.f \in \mathcal{O}(U_i)$, et soit $P = X^d + a_{d-1}X^{d-1} + \ldots + a_0$ le polynôme minimal de f sur $\mathcal{O}(U_{0,i})$. Comme $g_n.P(f_n) = g_n.(P(f)) = 0$, on obtient

$$P(f_n) - P(f) + (g_n.P - P)(f_n) = 0.$$

On divise cette relation par p^n et on fait $n \to \infty$, en utilisant le fait que $\lim_{n \to \infty} \frac{g_n.P - P}{p^n} = \partial_X(P)$ puisque les a_i sont dans $\mathcal{O}(U_{0,i})$ et $\lim_{n \to \infty} f_n = f$ (cela découle de la continuité de l’action de G_i, qui se déduit grâce au théorème d’Elkik - voir [134, lemme 2.5] - de l’énoncé analogue en niveau 0 et du fait que $\Sigma_n \to \Sigma_0$ est un revêtement fini étale). Comme de plus

$$\lim_{n \to \infty} \frac{P(f_n) - P(f)}{f_n - f} = P'(f) \neq 0,$$

on en déduit que $\lim_{n \to \infty} \frac{f_n - f}{p^n}$ existe et

$$P'(f) \lim_{n \to \infty} \frac{f_n - f}{p^n} + \partial_X(P)f = 0.$$

Mai en appliquant ∂_X à la relation $P(f) = 0$ on obtient aussi

$$P'(f)\partial_X(f) + \partial_X(P)(f) = 0.$$

En comparant les deux formules et en utilisant le fait que $P'(f) \neq 0$ (puisque le revêtement est étale), le résultat s’en déduit.

Revenons à la preuve du théorème 1.3.2. on dispose de quatre connexions continues ∂_X sur le Banach $\mathcal{O}(U_i)$. Elles sont toutes C-lipschitziennes pour un certain $C > 0$. Ainsi, la norme de l’opérateur continu X^a sur $\mathcal{O}(U_i)$ (déduit de la structure de $U(g)$-module donnée par le lemme) est majorée par C^α pour tout $\alpha \in \mathbb{N}$. Donc, si $p^{h/2} > C$, alors $\sum_\alpha a_\alpha X^a$ converge faiblement dans $\mathcal{O}(U_i)$, ce qui permet de conclure que pour h assez grand $D_h(G_i)$ agit continûment sur $\mathcal{O}(U_i)$. Cela permet de conclure.

Remarque 1.3.4. — Le même argument s’applique aux revêtements du demi-espace de Drinfeld en toute dimension, en utilisant [126], Prop. 1.

1.3.4. Numérologie et lissité de $H^1_{\text{dR.c.}}(\Sigma_n)$. — Rappelons que l’on utilise la base

$$a^+ = \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right), \quad a^- = \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right), \quad u^+ = \left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right), \quad u^- = \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right).$$

de $g = \text{Lie}(G)$. Soit z « la » coordonnée sur Ω. La trivialisation $\Omega^1(\Sigma_n) = \mathcal{O}(\Sigma_n)dz$ induit une application

$$\frac{d}{dz} : \mathcal{O}(\Sigma_n) \to \mathcal{O}(\Sigma_n), \quad df = \frac{df}{dz}dz \quad \forall f \in \mathcal{O}(\Sigma_n).$$

L’énoncé peu appétissant suivant sera utilisé très souvent dans la suite.
Lemme 1.3.5. — Soit $\partial : \mathcal{O}(\Sigma_n) \to \mathcal{O}(\Sigma_n)$ l’opérateur\(^{25}\) de multiplication par z. On a les formules suivantes pour l’action de l’algèbre de Lie :

- a) Sur $\mathcal{O}(k)(\Sigma_n)$
 $$a^+ = u^+ \partial + 1 - k, \quad a^- = -\partial a^+, \quad u^- = -\partial^2 u^+ + k\partial.$$

- b) Sur $\mathcal{O}(k)(\Sigma_n)^*$
 $$a^+ = \partial u^+ + k - 1, \quad a^- = -u^+ \partial, \quad u^- = -k\partial - u^+ \partial^2.$$

- c) Sur $\Omega^1(\Sigma_n)^*$
 $$a^+ = \partial u^+, \quad a^- = -\partial u^+, \quad u^- = -\partial^2 u^+.$$

De plus, on a $\partial u^+ + u^+ \partial = 1$ sur tous ces espaces, et $u^+ = -\frac{d}{dz}$ sur $\mathcal{O}(\Sigma_n)$.

Démonstration. — L’égalité $\partial u^+ + u^+ \partial = 1$ est immédiate, car u^+ est une connexion telle que $u^+(z) = -1$. Le b) découle directement de a) (ne pas oublier que $(Xl, v) = -\langle l, Xv \rangle$, si $X \in \mathfrak{gl}_2$, $l \in \mathcal{O}(k)(\Sigma_n)^*$ et $v \in \mathcal{O}(k)(\Sigma_n)$). Le c) découle de b), du fait que $\Omega^1(\Sigma_n)^* \simeq \Omega(2)(\Sigma_n)^* \otimes \det^{-1}$ et de l’égalité $2\partial + u^+ \partial^2 = \partial^2 u^+$ (appliquer deux fois l’identité $\partial u^+ - u^+ \partial = 1$).

Il reste donc à démontrer le a), et il suffit de le faire pour $k = 0$. Si $n = 0$, il s’agit d’un exercice amusant\(^{26}\) laissé au lecteur. Dans le cas général, on utilise le fait que Σ_n est un revêtement étale de Σ_0. Toutes les égalités ci-dessus sont des égalités entre des dérivations continues sur $\mathcal{O}(\Sigma_n)$, qui sont valides sur $\mathcal{O}(\Sigma_0)$; elles sont donc valables sur $\mathcal{O}(\Sigma_n)$ tout entier. L’égalité $u^+ = -\frac{d}{dz}$ sur $\mathcal{O}(\Sigma_n)$ se démontre de la même manière. □

Proposition 1.3.6. — La G-représentation $H^1_{\text{dR,c}}(\Sigma_n)$ est lisse.

Démonstration. — Puisque $u^+ = -\frac{d}{dz}$ sur $\mathcal{O}(\Sigma_n)$ et que $H^1_{\text{dR,c}}(\Sigma_n)$ est le dual de $\Omega^1(\Sigma_n)/d(\mathcal{O}(\Sigma_n))$, on voit qu’il suffit de montrer la lissité de $(\Omega^1(\Sigma_n)^*)^{u^+=0}$. Mais $\Omega^1(\Sigma_n)^*$ est une G-représentation localement analytique (théorème 1.3.2) et le point c) du lemme précédent montre que tout élément de $\Omega^1(\Sigma_n)^*$ tué par u^+ est en fait tué par \mathfrak{gl}_2, et donc il est lisse. Cela permet de conclure. □

Remarque 1.3.7. — Comme nous l’a fait remarquer le rapporteur, si un groupe de Lie p-adique G agit de manière localement analytique sur une courbe analytique lisse Stein X, alors $H^1_{\text{dR,c}}(X)$ est un G-module lisse. Le point crucial est l’identité

$$(\mathfrak{X}, f) dg = (\mathfrak{X}, g) df$$

valable pour des fonctions analytiques f, g sur X et pour $\mathfrak{X} \in \text{Lie}(G)$. Elle se démontre en calculant les deux côtés explicitement en termes d’une coordonnée locale z (les deux termes valent alors $\frac{\partial f}{\partial z} \frac{\partial g}{\partial z} (\mathfrak{X}, z) dz$, comme le montre un calcul direct). Cela permet d’obtenir l’identité

$$(\mathfrak{X}, (f) dg) = df \cdot (\mathfrak{X}, g)),$$

qui montre que $\mathfrak{X}. \Omega^1(X) \subset d\mathcal{O}(X)$ et permet de conclure.

\(^{25}\) Le lecteur trouvera certainement étrange d’appeler cet opérateur ∂. Nous verrons plus loin qu’il est relié à une connexion ∂ sur les (φ, Γ)-modules.

\(^{26}\) ou pas... Se rappeler que l’action de G sur $\mathcal{O}(\Omega)$ est donnée par

$$f \cdot \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) (z) = f \left(\frac{dz - b}{a - cz} \right).$$
1.4. Uniformisation p-adique et cohomologie de de Rham

On fixe dans la suite un entier n tel que \(p = JL(\pi) \) se factorise par \(D^*/(1 + p^nO_D) \). Le but de cette section est de démontrer le théorème suivant. Sa démonstration devrait s’adapter assez facilement à d’autres situations.

Théorème 1.4.1. — On a

\[
\dim_L \text{Hom}_G(H^1_{\text{dR},c}(\Sigma_n)^\omega, \pi) = 2.
\]

De manière équivalente,

\[
\dim_L \text{Hom}_G(\pi^*, H^1_{\text{dR}}(\Sigma_n)^\omega) = 2.
\]

La preuve de ce résultat se fait par voie globale : elle utilise le théorème d’uniformisation de Cerednik-Drinfeld des courbes de Shimura par les revêtements de Drinfeld et est directement inspirée du calcul de la cohomologie \(\ell \)-adique de certains espaces de Rapoport-Zink par Harris [83] et Fargues [61]. Nous allons voir plus loin que l’on a en fait un isomorphisme (27)

\[
H^1_{\text{dR}}(\Sigma_n)^\omega \simeq \pi^* \oplus \pi^*;
\]

mais cela demande plus de travail : l’argument global utilisé permet de démontrer facilement qu’il n’y a pas d’autre représentation de la série discrète (ainsi que beaucoup de séries principales) parmi les sous-quotients de \(H^1_{\text{dR},c}(\Sigma_n)^\omega \), mais il ne semble pas facile d’exclure la présence de n’importe quelle série principale avec ce genre d’argument (dans le cas \(\ell \)-adique, ce genre de difficulté est contourné en utilisant l’isomorphisme de Faltings-Fargues [60, 67] ; cela semble plus délicat dans notre situation, mais c’est effectivement ce qui est fait dans [?], où le résultat est démontré avec GL2(Qp) remplacé par GL2(F, avec F une extension finie quelconque de Qp).

Remarque 1.4.2. — a) La cohomologie de de Rham de \(\Omega \) vue comme représentation de \(G \) (même en dimension quelconque) a été calculée par Schneider et Stuhler, de Shalit, Orlik, par des méthodes diverses et variées, cf. [121, 138, 112]. Leur preuve ne s’adapte pas en niveau supérieur, mais a la vertu de ne pas faire appel à la théorie automorphe.

b) Pour le revêtement de la tour de Drinfeld de niveau \(1 + \omega_D O_D \), le calcul de la cohomologie de de Rham est nettement plus simple grâce à l’existence d’un modèle formel explicite [144] (voir [103] pour les détails). En particulier, pour ce revêtement le théorème précédent admet une preuve purement locale, qui fournit d’ailleurs un isomorphisme \(H^1_{\text{dR}}(\Sigma_n)^\omega \simeq \pi^* \oplus \pi^* \).

1.4.1. Formes modulaires quaternioniques classiques et \(p \)-adiques. — Soit \(\tilde{B} \) une algèbre de quaternions sur \(Q \), non ramifiée en \(p \) et ramifiée à l’infini. On garde \(\tilde{B}^* \) comme un groupe algébrique sur \(Q \) (donc \(\tilde{B}^*(R) = (R \otimes_Q \tilde{B})^* \) pour toute \(Q \)-algèbre \(R \)). On fixe une identification \(\tilde{B}^*(Q_p) \simeq G \), ainsi qu’un sous-groupe ouvert compact \(K^p \) de \(\tilde{B}^*(A_f^p) \). On supoose que \(K^p = \prod_{\ell \neq p} K_\ell \), où \(K_\ell \) est un sous-groupe ouvert compact de \(\tilde{B}^*(Q_\ell) \), et on suppose qu’il existe au moins un premier \(\ell_0 \) tel que \(K_{\ell_0} \) soit sans torsion.

Définition 1.4.3. — On note

\[
X = X(K^p) = \tilde{B}^*(Q) \backslash \tilde{B}^*(A_f)/K^p
\]

e et, si \(K_p \) est un sous-groupe ouvert compact de \(G \), on note

\[
X(K_p) = X/K_p = B^*(Q) \backslash B^*(A_f)/K^p K_p.
\]

27. On en construira en fait un raisonnablement canonique.
L'espace X est la limite projective des ensembles finis $X(K_p)$. Il est muni d'une action naturelle (à droite) de G. L'espace $C^0(X)$ est l'espace des formes automorphes p-adiques pour le groupe B^*. On va voir tout de suite que c'est un espace vectoriel topologique tout à fait raisonnable. Le résultat suivant est standard et nous laissons sa preuve au lecteur.

Lemme 1.4.4. — L'ensemble $\tilde{B}^*(\mathbb{Q}) \backslash \tilde{B}^*(\mathbb{A}_F^p)/K^p$ est fini. Écrivons

$$\tilde{B}^*(\mathbb{A}_F^p)/K^p = \prod_{i=1}^r \tilde{B}^*(\mathbb{Q}) y_i,$$

et notons Γ_i le stabilisateur de y_i dans $\tilde{B}^*(\mathbb{Q})$, vu comme un sous-groupe de $G \simeq \tilde{B}^*(\mathbb{Q}_p)$. Alors Γ_i est discret cocompact dans G et on a un isomorphisme de G-modules topologiques

$$X = \prod_{i=1}^r \Gamma_i \backslash G.$$

En particulier X est une variété analytique p-adique compacte et l'action de G y est localement analytique.

Venons-en maintenant au lien avec les formes automorphes classiques (l'argument est tout à fait similaire à celui de [143, § 1]). Rappelons que $\text{Alg}(G)$ désigne l'ensemble des (classes d'isomorphisme de) L-représentations algébriques irréductibles de G. Fixons $W \in \text{Alg}(G)$ et notons $\mathcal{A}_{K_p}(W)$ l'espace des fonctions continues $f : X \to W$ telles que $f(xk) = k^{-1}f(x)$ pour tous $x \in X$ et $k \in K_p$ (on peut y penser comme l'espace des formes automorphes p-adiques de poids W et de niveau K^pK_p).

Lemme 1.4.5. — Il existe un isomorphisme canonique

$$\text{Hom}_{K_p}(W^*, C^0(X)) \simeq \mathcal{A}_{K_p}(W).$$

Démonstration. — On a des isomorphismes canoniques

$$\text{Hom}_{K_p}(W^*, C^0(X)) \simeq ((W^*)^* \otimes_L C^0(X))^{K_p} \simeq (W \otimes_L C^0(X))^{K_p} \simeq C^0(X, W)^{K_p}.$$

En suivant les actions de K_p, on voit que le dernier espace est précisément $\mathcal{A}_{K_p}(W)$, ce qui permet de conclure (notons que l'inverse de cet isomorphisme envoie simplement $f \in \mathcal{A}_{K_p}(W)$ sur $\phi_f \in \text{Hom}_{K_p}(W^*, C^0(X))$ défini par $\phi_f(l)(x) = l(f(x))$ si $l \in W^*$ et $x \in X$).

Fixons une fois pour toutes un isomorphisme $\iota : \overline{Q_p} \simeq \mathbb{C}$, ce qui induit un plongement $L \to \mathbb{C}$ (en se rappelant que l'on a fixé un plongement de L dans $\overline{Q_p}$). Alors $W_{\infty} = W \otimes_L \mathbb{C}$ devient, via l'isomorphisme ι, une \mathbb{C}-représentation de $\tilde{B}^*(\mathbb{C})$, et donc de $B^*(\mathbb{R})$ aussi.

On note $\text{Aut}(K^pK_p)$ l'espace des fonctions lisses à valeurs complexes sur $\tilde{B}^* \backslash B^*(\mathbb{A})/K^pK_p$ (ce sont les formes automorphes classiques de $\tilde{B}^*(\mathbb{A})$, de niveau K^pK_p). Cet espace admet une action naturelle de $\tilde{B}^*(\mathbb{R})$, via l'action à droite de ce groupe sur $\tilde{B}^* \backslash B^*(\mathbb{A})/K^pK_p$.

Lemme 1.4.6. — On a un isomorphisme canonique

$$\mathcal{A}_{K_p}(W) \otimes_{L, \iota} \mathbb{C} \simeq \text{Hom}_{B^*(\mathbb{R})}(W^\infty_\infty, \text{Aut}(K^pK_p)).$$

Démonstration. — Nous allons nous contenter de décrire la flèche en question. Si $f \in \mathcal{A}_{K_p}(W)$, on l'envoie sur $\phi_f \in \text{Hom}_{B^*(\mathbb{R})}(W^\infty_\infty, \text{Aut}(K^pK_p))$ défini par

$$\phi_f(l)(g) = (g^{-1}(g_1 \cdot (g_1 f(g_{\infty} \otimes 1))),$$

si $g = (g_1)_{\infty} = g_{\infty} \cdot g_{\infty} \in \tilde{B}^*(\mathbb{A})$ et $l \in W^\infty_\infty$. Un exercice standard montre que $f \mapsto \phi_f$ est un isomorphisme.

La discussion précédente entraîne alors directement le résultat suivant (il suffit de remplacer W par W^* dans ce qui précède).
Lemme 1.4.7. — Soit $W \in \text{Alg}(G)$ et $\iota : \overline{Q}_p \simeq C$. On a un isomorphisme canonique
\[\text{Hom}_{K_p}(W, C^0(X)) \otimes_{L, \iota} C \simeq \bigoplus \pi_f^{K_p}, \]
la somme directe portant sur les représentations automorphes $\pi = \pi_\infty \otimes \pi_f$ de $\tilde{B}^*(A)$ telles que $\pi_\infty \simeq W_\infty$. Ainsi,
\[C^0(X)_{K_p, \text{alg}} \otimes_{L, \iota} C \simeq \bigoplus_{W \in \text{Alg}(G)} W_\infty \otimes \pi_f^{K_p}. \]

Rappelons que si B est une algèbre de quaternions sur \mathbf{Q}, dont on note $S(B)$ l’ensemble (fini) des places de ramification, la correspondance de Jacquet-Langlands globale met en bijection naturelle $\pi \mapsto \pi'$ les représentations automorphes (de dimension infinie) sur $\tilde{B}^*(A)$ et les représentations automorphes sur $GL_2(A)$ telles que π'_v est dans la série discrète pour toute place $v \in S(B)$.

1.4.2. La π-partie de la cohomologie de de Rham à supports de Σ_n. — Soit B une algèbre de quaternions sur \mathbf{Q}, déployée à l’infini et de discriminant p^ℓ, où ℓ est un nombre premier différent de p fixé (28). Fixons un isomorphisme $B \otimes_{\mathbf{Q}} \overline{Q}_p \simeq D$, ainsi qu’un sous-groupe compact ouvert $K = K_p.K^p$ de $B^*(A_f)$, avec $K_p = 1 + p^\ell \mathcal{O}_D$. A ces données correspond une courbe de Shimura Sh_{K_p} sur \mathbf{Q}, classifiant des surfaces abéliennes avec action de \mathcal{O}_B et structure de niveau K. Les \mathbf{C}-points de cette courbe sont donnés par
\[\text{Sh}_K(C) = B^*(\mathbf{Q}) \backslash ((C \setminus \mathbf{R}) \times B^*(A_f)/K), \]
où $B^*(\mathbf{Q})$ agit sur $C \setminus \mathbf{R}$ via le plongement $B^*(\mathbf{Q}) \to B^*(\mathbf{R}) \simeq GL_2(\mathbf{R})$ et l’action naturelle de ce dernier groupe sur X.

Nous allons voir dans la suite Sh_K comme une courbe sur \overline{Q}_p, i.e. nous allons écrire $\text{Sh}_K \otimes_{\mathbf{Q}} \overline{Q}_p$. Le théorème d’uniformisation s’énonce alors ainsi (29) (pour une démonstration, cf. [18, Theorem 3.1]).

Théorème 1.4.8 (Cerednik-Drinfeld). — Si K^p est suffisamment petit, il existe un isomorphisme d’espaces analytiques rigides sur \overline{Q}_p, compatible avec les données de descente à la Weil
\[\tilde{B}^*(\mathbf{Q}) \backslash \left(\tilde{M}_n \times \tilde{B}^*(A_f^{p})/K^p \right) \simeq (\text{Sh}_K \otimes_{\mathbf{Q}_p} \tilde{Q}_p)^{an}, \]
où \tilde{B} désigne l’algèbre de quaternions sur \mathbf{Q} isomorphe à B hors de $\{p, \infty\}$, non ramifiée en p et ramifiée en ∞.

On se place maintenant dans le cadre de la partie 1.4.1, et on utilise les notations du lemme 1.4.4 (avec un sous-groupe $K^p \subset B^*(A_f)_{\mathbf{Q}_p}$ suffisamment petit). Le choix des y_i induit un isomorphisme
\[\prod_{i=1}^r \Gamma_i \backslash \tilde{M}_n \simeq B^*(\mathbf{Q}) \backslash \left(\tilde{M}_n \times \tilde{B}^*(A_f^{p})/K^p \right), \]
Soit N tel que $p^N \in \Gamma_i$ pour tout i, soit $\tilde{M}_{n,N} = p^{N\mathbf{Z}} \setminus \tilde{M}_n$ et soit $\Sigma_{n,N}$ la descente à \mathbf{Q}_p de $p^{N\mathbf{Z}} \setminus \tilde{M}_n$, via la donnée de descente à la Weil. La suite exacte de Hochschild-Serre [121, par. 5] pour le revêtement galoisien $\tilde{M}_{n,N} \to \Gamma_i \setminus \tilde{M}_n$ et la compatibilité de l’isomorphisme de Cerednik-Drinfeld avec la donnée de descente à la Weil fournissent une suite spectrale
\[E^{2,q}_2 = \prod_{i=1}^r H^p(\Gamma_i, H_{dR}^q(\Sigma_{n,N})) \Rightarrow H_{dR}^{p+q}(\text{Sh}_K). \]

28. Ceci simplement pour fixer les idées et appliquer tels quels les résultats du paragraphe 1.5.1.
29. Rappelons que \tilde{M}_n est l’espace de Rapoport-Zink de niveau $1+p^\ell \mathcal{O}_D$ attaché à un \mathcal{O}_D-module formel spécial sur \mathbf{F}_p, cf. l’introduction.
Puisque $H^k_{\text{dR}}(\Sigma_{n,N})$ est le dual algébrique de $H^2_{\text{dR},c}(\Sigma_{n,N})$, la suite spectrale précédente se réécrit

$$E_p^{r,q} = \prod_{i=1}^r \text{Ext}^p_{\Gamma_i}(H^2_{\text{dR},c}(\Sigma_{n,N}), 1) \Rightarrow H^p_{\text{dR}}(\text{Sh}_K).$$

Le groupe Γ_i étant discret et les G-représentations $H^2_{\text{dR},c}(\Sigma_{n,N})$ étant lisses (cela est trivial si $q = 0$ ou $q = 2$, et découle de la proposition 1.3.6 si $q = 1$), la réciprocité de Frobenius (lisse) permet d’écrire

$$\prod_{i=1}^r \text{Ext}^p_{\Gamma_i}(H^2_{\text{dR},c}(\Sigma_{n,N}), 1) = \prod_{i=1}^r \text{Ext}^p_G(H^2_{\text{dR},c}(\Sigma_{n,N}), \text{Ind}^G_{\Gamma_i} 1).$$

Enfin, en remarquant que par définition

$$\prod_{i=1}^r \text{Ind}^G_{\Gamma_i} 1 = \text{LC}(X(K^p)),$$

on obtient une suite spectrale

$$E_p^{r,q}(K^p) = \text{Ext}^p_G(H^2_{\text{dR},c}(\Sigma_{n,N}), \text{LC}(X(K^p))) \Rightarrow H^p_{\text{dR}}(\text{Sh}_K).$$

On vérifie que cette suite spectrale ne dépend pas du choix des représentants y_i [61, prop. 4.3.11]. Le groupe D^* agit sur les groupes $E_p^{r,q}(K^p)$ ainsi que sur l’aboutissement de la suite spectrale, puisque le sous-groupe $1 + p^i \mathcal{O}_D$ est distingué dans D^*, et la suite spectrale est D^*-équivariante (cela se vérifie comme dans [61, lemme 4.3.13-4.3.14]).

Regardons maintenant la composante ρ-isotypique de la suite spectrale obtenue. Notons que $H^k_{\text{dR},c}(\Sigma_{n,N})^{\rho^r} = H^k_{\text{dR},c}(\Sigma_{n,N})^{\rho^{r'}}$ puisque le caractère central de ρ est trivial. Comme ρ n’est pas de dimension 1, $H^k_{\text{dR},c}(\Sigma_{n,N})^{\rho^r}$ est nul sauf pour $k = 1$ (en effet, D^* agit par la norme réduite sur l’ensemble des composantes connexes géométriques de Σ_n ; cela se déduit des résultats de Strauch [141] pour la tour de Lubin-Tate et de l’isomorphisme de Faltings-Fargues [60, 67], même s’il est probable qu’un argument plus simple existe...). La $(\rho$-partie de la) suite spectrale dégénère donc trivialement et fournit un isomorphisme

$$(5) \quad \text{Hom}_G(H^1_{\text{dR},c}(\Sigma_n)^{\rho^r}, \text{LC}(X(K^p))) \simeq H^1_{\text{dR}}(\text{Sh}_K)^{\rho^r}$$

compatible au changement de niveau K^p, ce qui fournit un isomorphisme $\tilde{B}^*(\mathbb{A}_F^p)$-équivariant

$$(6) \quad \lim_{K^p} \text{Hom}_G(H^1_{\text{dR},c}(\Sigma_n)^{\rho^r}, \text{LC}(X(K^p))) \simeq \lim_{K^p} H^1_{\text{dR}}(\text{Sh}_K)^{\rho^r}.$$

Du théorème 1.5.5, on déduit (30) en particulier l’existence d’une forme modulaire quaternionique f de poids 2 pour le groupe \tilde{B}^*, telle que si $\pi(f)$ est la représentation automorphe de $\tilde{B}^*(\mathbb{A}_F)$, $\pi(f)_p = \pi$. Rappelons que $\tilde{B}^*(\mathbb{A}_F^p) \simeq \tilde{B}^*(\mathbb{A}_F^p)$ et que l’on peut donc voir $\pi(f)^p$ alternativement comme une représentation de l’un ou l’autre groupe. On a alors d’une part (en utilisant le lemme 1.4.7 pour W triviale)

$$\lim_{K^p} \text{LC}(X(K^p))|\pi(f)^p| \simeq \pi$$

et (en utilisant des théorèmes de comparaison standard)

$$\lim_{K^p} H^1_{\text{dR}}(\text{Sh}_K)^p|\pi(f)^p| \simeq E,$$

30. Notons que pour le calcul de la cohomologie de de Rham, on a besoin d’un énoncé bien plus faible que le théorème 1.5.5, puisque π est de Browseur, il suffirait, pour $p > 2$, de choisir pour f une forme donnée par l’induite automorphe d’un caractère de Hecke d’un corps quadratique imaginaire.
CHAPITRE 1. REVÊTEMENTS DE DRINFELD ET LANGLANDS p-ADIQUE

où E est de dimension 2. La composante $π(f)^p$-isotypique de l’égalité (6) s’écrit donc

$$\text{Hom}_G(H^1_{\text{DR},c}(\Sigma_n)^p, π) = E.$$

On en déduit le théorème 1.4.1.

1.5. Construction d’un morphisme G-équivariant

L’objectif de cette section est la preuve du théorème suivant :

Théorème 1.5.1. — Il existe $Π ∈ \mathcal{V}(π)$ et un morphisme G-équivariant continu non nul

$$Φ : (Π_{\text{an}}/Π_{\text{isosc}})^* → \mathcal{O}(Σ_n)^p.$$

Nous verrons plus tard que le terme de gauche ne dépend pas du choix de $Π ∈ \mathcal{V}(π)$, que $Φ$ est automatiquement un isomorphisme et qu’il est unique à scalaire près, mais cela coûtera nettement plus cher. Tout comme le calcul de la cohomologie de de Rham dans le paragraphe précédent, l’argument repose sur le théorème d’uniformisation p-adique et un ingrédient global, mais contrairement au chapitre précédent (qui s’applique tel quel à toute extension finie de \mathbb{Q}_p), le résultat de compatibilité local-global 1.5.4, dû à Emerton, est pour l’instant connu uniquement pour G.

1.5.1. Compatibilité local-global (d’après Emerton). — Nous rappelons dans ce paragraphe un résultat de compatibilité local-global pour l’algèbre de quaternions B. Comme celle-ci est déployée en p, il suffit de copier l’argument d’Emerton [57]. Aucune idée nouvelle n’est donc requise. Cependant, comme les arguments n’ont jamais été écrits *stricto sensu* pour ces algèbres de quaternions, et comme ce contexte permet pas mal de simplifications, nous avons choisi de les rédiger, pour la commodité du lecteur, dans un appendice.

Nous allons nous placer encore une fois dans le contexte de la section 1.4.1 et utiliser les notations introduites dans cette section. On fixe un ensemble fini $Σ = Σ(K^p)$ de nombres premiers contenant p et les places où $K^p = \prod_{ℓ ≠ p} K_ℓ$ est ramifié. Si $ℓ ∉ Σ$, on note $H(Κ_ℓ \setminus \hat{B}(\mathbb{Q}_ℓ))^*/K_ℓ, \mathcal{O}_L)$ l’algèbre de Hecke sphérique correspondante. Cette algèbre est isomorphe à $\mathcal{O}_L[T_ℓ, S_ℓ^{±1},] (T_ℓ, S_ℓ)$ étant la fonction caractéristique de $K_ℓ (1_{0,0}) K_ℓ$ (resp. $K_ℓ (1_{0,0}, K_ℓ)$) et agit par des opérateurs continus sur $\mathcal{O}^0(X(K_p), M)$ et $\mathcal{O}^0(X, M)$ pour tout \mathcal{O}_L-module topologique M et tout sous-groupe ouvert compact K_p de G. On note $T_Σ := \mathcal{O}(\ell ∈ Σ) H(K_ℓ \setminus \hat{B}(\mathbb{Q}_ℓ)^*/K_ℓ, \mathcal{O}_L)$ et, si K_p est un sous-groupe ouvert compact de $\hat{B}^*(\mathbb{Q}_p)$, on note $\overline{T}_Σ(K_p)$ l’image de $T_Σ$ dans $\text{End}_{\mathcal{O}_L}(\mathcal{O}(\mathcal{O}^0(X(K_p), \mathcal{O}_L)))$. Enfin, $\overline{T}_Σ = \lim_{\longrightarrow, K_p} \overline{T}_Σ(K_p)$ désigne l’adhérence faible de l’image de $T_Σ$ dans $\text{End}_{\mathcal{O}_L}^\text{cont}(\mathcal{O}(\mathcal{O}^0(X, \mathcal{O}_L)))$. L’algèbre $\overline{T}_Σ(K_p)$ est une \mathcal{O}_L-algèbre commutative, libre de type fini comme \mathcal{O}_L-module. L’algèbre $\overline{T}_Σ$ est une \mathcal{O}_L-algèbre compacte, réductive, commutative (tous ces résultats sont standard).

Définition 1.5.2. — a) Soit $φ : \overline{T}_Σ → R$ un morphisme continu d’anneaux topologiques. Une représentation continue $r : \mathcal{G}_Σ → \text{GL}_2(R)$ est associée à $φ$ si

$$\det(X - r(\text{Frob}_ℓ)) = X^2 - φ(T_ℓ)X + ℓφ(S_ℓ) ∈ R[X], \quad ∀ℓ ∉ Σ.$$

b) Une représentation continue $\overline{r} : \mathcal{G}_Σ → \text{GL}_2(k_L)$ est dite *modulaire* (de niveau modéré K^p) si elle est associée à la projection canonique $\overline{T}_Σ → \overline{T}_Σ/\mathfrak{m}$ pour un idéal maximal \mathfrak{m} de $\overline{T}_Σ$, de corps résiduel k_L.

Fixons désormais une représentation modulaire $\tilde{\pi} : G_{Q,\Sigma} \to \text{GL}_2(k_L)$ (de niveau modéré K^p) et notons m l’idéal maximal correspondant de T_Σ. On fait l’hypothèse suivante, qui simplifie considérablement les arguments :

Hypothèse. La représentation $\tilde{\pi}|_{Q_p}$ est absolument irréductible.

Définition 1.5.3. — On note A le complété \mathfrak{m}-adique de T_Σ. C’est une O_L-algèbre plate, locale, noethérienne, réduite de corps résiduel k_L, facteur direct de T_Σ. Si M est un T_Σ-module, on note $M_m = A \otimes_{T_\Sigma} M$. Ainsi, M_m est facteur direct de M.

Comme l’hypothèse ci-dessus implique en particulier que $\tilde{\pi}$ est irréductible, il existe, d’après un théorème de Carayol [28, th. 3], pour tout K_p suffisamment petit une unique représentation continue

$$r^m(K_p) : G_{Q,\Sigma} \to \text{GL}_2(T_\Sigma(K_p)_m)$$

associée au morphisme canonique $T_\Sigma \to T_\Sigma(K_p)_m$. La représentation

$$r^m = \lim_{\to} r^m(K_p)$$

est alors associée au morphisme canonique $T_\Sigma \to A$ et $\bar{r}^m = \bar{r}$.

Notons MaxSpec$(A[1/p])$ l’ensemble des idéaux maximaux de $A[1/p]$. Puisque $A[1/p]$ est un anneau de Jacobson, pour tout $p \in \text{MaxSpec}(A[1/p])$ le corps résiduel $k(p)$ de p est une extension finie de L et l’image du morphisme canonique $A \to k(p)$ est contenue dans l’anneau des entiers de $k(p)$. Soit $r(p) : G_{Q,\Sigma} \to \text{GL}_2(k(p))$ la spécialisation de r^m via $A[1/p] \to k(p)$, et soit $\Pi(p)$ la représentation de Banach unitaire de G attachée à $r(p)|_{G_{Q_p}}$ via la correspondance de Langlands locale p-adique pour G. Le résultat de compatibilité local-global dont nous aurons besoin est alors (31)

Théorème 1.5.4. — Pour tout idéal maximal p de $A[1/p]$, on a un isomorphisme de représentations de G :

$$C^0(X)[p] \simeq \Pi(p)^{\otimes r},$$

pour un certain entier $r > 0$.

Démonstration. — Voir l’appendice.

Le théorème suivant, dont la preuve est aussi adaptée d’un argument d’Emerton [57], nous permettra d’appliquer la théorie globale dans notre situation. Le lecteur pourra trouver plus de détails dans la preuve du théorème 5.1 de [23].

Théorème 1.5.5. — Il existe une forme modulaire quaternionique f de poids 2 pour le groupe B^*, telle que si $\pi(f)$ est la représentation automorphe correspondante de $B^*(A)$, $\pi(f)_p = \pi \otimes \xi \circ \det$, où ξ est un caractère non ramifié, et telle que $\tau_f : G_{Q} \to \text{GL}_2(F_p)$ soit absolument irréductible en restriction à G_{Q_p}.

Démonstration. — Soit σ un $\text{GL}_2(Z_p)$-type minimal de π. Choisissons un réseau $\text{GL}_2(Z_p)$-stable σ_0 dans σ, et notons $\sigma_0 = \sigma_0 \otimes_{O_L} k_L$. Fixons un poids de Serre $W \in \text{soc}_{\text{GL}_2(Z_p)}(\sigma_0)$.

Lemme 1.5.6. — Il existe une forme modulaire quaternionique g pour B^* telle que si $r : G_{Q} \to \text{GL}_2(L)$ est la représentation galoisienne associée à g, alors :

a) La restriction $\tau_p := \tau|_{G_{Q_p}}$ de la réduction (modulo p) $\tau : G_{Q} \to \text{GL}_2(F_p)$ est absolument irréductible, et

b) Si $\bar{\pi}$ est la représentation lisse de G correspondant à τ_p par la correspondance de Langlands locale modulo p, alors $W \in \text{soc}_{\text{GL}_2(Z_p)}(\bar{\pi})$.

31. Nous rappelons qu’il est entièrement dû à Emerton.
Démonstration. — On peut supposer $W = \text{Sym}^r \mathbf{F}_p^2$ pour un certain $0 \leq r \leq p - 1$. La description explicite de la correspondance de Langlands locale modulo p montre qu’il suffit d’imposer que $\pi_p = \text{Ind}_{Q_p^\omega}^{\mathbb{Q}_p} \omega_2^{-1}$, à twist par un caractère non ramifié près. Donc il suffit de trouver π modulaire telle que π_p soit cette induite. Soit F un corps quadratique imaginaire avec $p \equiv \ell \pmod{\ell}$ inertes dans F. Soit χ un caractère de Hecke χ de F tel que $\pi_p = \omega_2^{-1}$, $\chi_\infty(z) = z^{-1}$ et χ_ℓ choisi de sorte que l’induite automorphe locale (pour le groupe GL_2) $\text{Ind}_{E_p}^{\mathbb{Q}_p^\omega} \chi_\ell$ soit supercuspidale. La théorie de Hecke dit alors que l’induite automorphe globale de χ est la représentation automorphe associée à une forme modulaire de poids 2, qui se transfère (grâce à la correspondance de Jacquet-Langlands globale) en une forme quaternionique pour notre algèbre de quaternions \mathcal{B}. Cette forme satisfait aux conditions imposées.

Soit g une forme comme dans le lemme précédent, choisissons un ensemble Σ suffisamment grand et notons m l’idéal de l’algèbre de Hecke \mathcal{T}_Σ correspondant à π. Soit p l’idéal maximal de $A[1/p]$ associé à r. Le théorème 1.5.4 (32) fournit un plongement $\Pi(p) \to C^0(X(K_p))[p]$, et donc en réduisant mod p, on en déduit que $\pi = \Pi(p)$ se plonge dans $C^0(X(K_p), k_L)[m]$. En particulier,

$$\text{Hom}_{\text{GL}_2}(\mathbb{F}_p), C^0(X(K_p), k_L)_m) \neq 0,$$

De plus, le foncteur $\text{Hom}_{\text{GL}_2}(\mathbb{F}_p), C^0(X(K_p), \mathcal{O}_L/\pi_L^m)_m)$ est exact pour tout $n \geq 1$ (lemme 1.13.1 dans l’appendice). On en déduit dans un premier temps (en prenant $n = 1$) que

$$\text{Hom}_{\text{GL}_2}(\mathbb{F}_p), (\mathcal{O}_L/\pi_L^m)_m) \neq 0$$

puis, par récurrence sur n et en passant à la limite projective que

$$\text{Hom}_{\text{GL}_2}(\mathbb{F}_p), (\mathcal{O}_L/\pi_L^m)_m) \neq 0.$$

Ensuite, comme σ est lisse, on a

$$\text{Hom}_{\text{GL}_2}(\mathbb{F}_p), (\mathcal{O}_L/\pi_L^m)_m)[1/p] = \text{Hom}_{\text{GL}_2}(\mathbb{F}_p), (\mathcal{O}_L/\pi_L^m)_m)[1/p]$$

et ce L-espace vectoriel est de dimension finie. Il existe donc un idéal maximal p_1 de $(\mathbb{F}_p)[1/p]$ tel que

$$\text{Hom}_{\text{GL}_2}(\mathbb{F}_p), (\mathcal{O}_L/\pi_L^m)[p_1]) \neq 0.$$

L’idéal p_1 correspond à une forme modulaire f pour B^\ast et la non annulation obtenue nous dit donc que σ se plonge dans $\pi(f)_p$ (utiliser le lemme 1.4.7) et donc [85] que $\pi(f)_p \simeq \pi \otimes \xi \otimes \det$, avec ξ un caractère non ramifié. La propriété de τ_f découle du choix de p_1.

1.5.2. Nouvelle application du théorème d’uniformisation p-adique. — Le but de cette partie est d’expliquer la preuve du résultat suivant, qui est une réformulation très simple, modulo quelques précautions topologiques, mais bien pratique, du théorème de Cerednik-Drinfeld. On écrira Hom_G au lieu de Hom_G^cont dans la suite. Nous renvoyons le lecteur aux sections 1.4.1 et 1.4.2 pour les objets apparaissant dans l’énoncé suivant.

Théorème 1.5.7. — On a un isomorphisme de modules de Hecke

$$\text{Hom}_G(LA(X(K_p))^\ast, \Omega^1(\Sigma_n)^p) \simeq \Omega^1(\text{Sh}_K)^p.$$

Démonstration. — Reprenons les notations du lemme 1.4.4. En calculant les sections globales de Ω^1 des deux côtés de l’isomorphisme de Cerednik-Drinfeld, puis en prenant les parties ρ-isotypiques, on obtient un isomorphisme

$$\bigoplus_{i=1}^r ((\Omega^1(\Sigma_n))^p)^{\Gamma_i} \simeq \Omega^1(\text{Sh}_K)^p.$$

Pour simplifier les formules, nous allons poser

$$W = ((\Omega^1(\Sigma_n))^p)^\ast \quad \text{et} \quad X = X(K_p) = \coprod_{i=1}^r \Gamma_i \backslash G.$$

32. Pour cet argument, l’énoncé plus faible 1.13.5 de l’appendice serait en fait suffisant.
dans la suite de cette preuve. Le théorème 1.3.2 montre que \(W \) est une représentation localement analytique de \(G \) sur un espace de type compact. Puisque \(\text{LA}(X) \) et \(W \) sont réflexifs, le théorème 1.5.7 est une conséquence du résultat suivant, qui est une application simple de la réciprocité de Frobenius, modulo quelques problèmes topologiques.

Lemme 1.5.8. — On a un isomorphisme de modules de Hecke

\[
\bigoplus_{i=1}^{r}((\Omega^1(\Sigma_n))^\rho_i)^{\Gamma_i} \simeq \text{Hom}_G(W, \text{LA}(X)).
\]

Démonstration. — Soit \(\omega = (\omega_i)_{i=1,\ldots,r} \in \bigoplus_{i=1}^{r}((\Omega^1(\Sigma_n))^\rho_i)^{\Gamma_i} \). On lui associe \(\phi_\omega : W \to \text{LA}(X) \), qui envoie \(\ell \in W \) sur la fonction \(\phi_\omega(\ell) : \Gamma_i g \mapsto \ell(g^{-1} \omega_i) \) sur \(X = \prod \Gamma_i \setminus G \). Montrons tout d’abord que cette définition a un sens : si \(g' = \gamma g \), avec \(\gamma \in \Gamma_i \), \(1 \leq i \leq r \), on a bien

\[
\ell((g')^{-1} \omega_i) = \ell(g^{-1} \gamma^{-1} \omega_i) = \ell(g^{-1} \omega_i),
\]

puisque \(\omega_i \) est invariante par \(\Gamma_i \). Pour voir que \(\phi_\omega(\ell) \) est bien localement analytique, il suffit de noter que \(\ell(g^{-1} \omega_i) = (g,\ell)(\omega_i) \) et d’utiliser le fait que \(G \to \Omega^1(M_n), g \mapsto g.\ell \) est localement analytique (cf. 1.3.2). De plus, \(\phi_\omega \) est \(G \)-équivariante, puisque

\[
\phi_\omega(g.\ell)(\Gamma_i g) = (g.\ell)((g')^{-1} \omega_i) = \ell(g^{-1} (g')^{-1} \omega_i) = \ell((g' g)^{-1} \omega_i) = \phi_\omega(\ell)(\Gamma_i (g' g)) = (g.\phi_\omega(\ell))(\Gamma_i g'),
\]

Il reste à voir que \(\phi_\omega \) est un morphisme continu. Cela revient évidemment à montrer que

\[
W \to \text{LA}(G), \ell \mapsto (g.\ell)(\omega_i)
\]

est continue, pour chaque \(i = 1,\ldots,r \), ce qui découle du résultat général suivant (en prenant \(\lambda = ev_{\omega_i}, w = \ell \)) :

Lemme 1.5.9. — Soit \(W \) une représentation localement analytique d’un groupe de Lie \(p \)-adique \(G \) sur un espace de type compact. Fixons \(\lambda \in W^* \). Le morphisme

\[
F : W \to \text{LA}(G), w \mapsto (g \mapsto \lambda(g.w))
\]

est continu.

Démonstration. — En décomposant \(G \) selon les classes à gauche modulo un sous-groupe ouvert compact de \(G \), on peut supposer que \(G \) est compact. Comme \(W \) et \(\text{LA}(G) \) sont des espaces réflexifs, il suffit de montrer que \(F^* : D(G) \to W^* \) est continue. Puisque \(D(G) \) et \(W \) sont tous deux des espaces de Fréchet, on peut tester la continuité de \(F^* \) avec des suites. Soit \((\mu_n) \) une suite d’éléments de \(D(G) \) convergant vers 0. Par définition, \(F^* \) envoie \(\mu \in D(G) \) sur l’élément \(w \mapsto \int_G \lambda(g.w) \mu \). Or cette dernière quantité est exactement \(\lambda(I(\rho_\mu)(\mu)) = \lambda(\mu * w) \) dans les notations de [123]. D’après [123, prop. 3.2], \(\mu \to \mu * w \) est continue. En particulier, pour chaque \(w \in W \), la suite \((\mu_n * w)_n \) tend vers 0. On conclut alors avec le très utile lemme suivant, appliqué à \(V = W^* \):

Lemme 1.5.10. — Soit \(V \) un espace vectoriel localement convexe sur un corps sphériquement complet. Une suite \((v_n)_n \) de \(V \) converge vers 0 si et seulement si elle converge faiblement vers 0.

□

Pour conclure la preuve du lemme 1.5.8, il suffit d’exhiber un inverse de l’application déjà construite : cet inverse envoie \(\psi \in \text{Hom}_G(W, \text{LA}(X)) \) sur le \(r \)-uplet des éléments de \(\Omega^1(\Sigma_n)^\rho = W^* \) correspondant à \(\ell \in W \mapsto \psi(\ell)(\gamma_i) \), pour un \(\gamma_i \in \Gamma_i \) quelconque. On vérifie que l’isomorphisme construit commute à l’action de l’algèbre de Hecke hors \(p \).

□

Cela finit la preuve du théorème 1.5.7.
Remarque 1.5.11. — La flèche naturelle déduite de la surjection \(\Omega^1(\Sigma_n)^p \to H^{1,\text{dR}}(\Sigma_n)^p \): \(\text{Hom}_G((\Omega^1(\Sigma_n)^p)^*, LA(X(K^p))) \to \text{Hom}_G(H^{1,\text{dR},c}(\Sigma_n)^p, LC(X(K^p))) \) s'identifie via les isomorphismes de la proposition 1.5.7 et de (6) à la filtration de Hodge \(\Omega^1(\text{Sh}_K)^p \to H^{1,\text{dR}}(\text{Sh}_K)^p \).

Pour le voir, on se ramène immédiatement au cas du revêtement étale de la variété propre et lisse \(X_T = \Gamma \backslash \tilde{\mathcal{M}}_n \), avec \(\Gamma \) discret cocompact dans \(G \), par la variété Stein \(\tilde{\mathcal{M}}_n \); dans ce cas, la filtration de Hodge sur \(H^{1,\text{dR}}(X_T) = H^1(\Gamma, \Omega(\tilde{\mathcal{M}}_n)) \) est donnée par

\[\text{Im}\left(H^1(\Gamma, \Omega^1(\tilde{\mathcal{M}}_n)[1]) \to H^1(\Gamma, \Omega(\tilde{\mathcal{M}}_n)) \right). \]

1.5.3. Preuve du théorème 1.5.1. — On peut maintenant appliquer le théorème 1.5.5 : il existe une forme modulaire quaternionique \(f \) de poids 2 pour le groupe \(B^* \), telle que \(\pi(f) \) est la représentation automorphe correspondante de \(B^*(A) \). \(\pi(f) \) est un caractère non ramifié, et telle que \(\tau_f : G_K \to \text{GL}_2(\mathbb{F}_p) \) soit absolument irréductible en restriction à \(G_K \). Soit \(A \) un ensemble fini de premiers contenant \(p \) et suffisamment grand pour que \(\tau_f \) définisse un idéal maximal \(m \) de l'algèbre de Hecke \(T_S(m) \); soit \(A \) le complet \(m \)-adique de \(T_S \) et \(p \) l'idéal maximal de \(A[1/p] \) associé à la forme \(f \).

On a d'après le théorème 1.5.7

\[\text{Hom}_G((LA(X(K^p))[p])^*, \Omega^1(\Sigma_n)^p) \simeq \Omega^1(\text{Sh}_K)^p[p] \neq 0, \]

par la correspondance de Jacquet-Langlands entre représentations automorphes de \(B^*(A) \) et \(B^*(A) \). Le théorème 1.5.4 permet d'obtenir ainsi l'existence d'un morphisme \(G \)-équivariant continu non nul

\[\Phi_0 : (\Pi^\text{an})^* \to \Omega^1(\Sigma_n)^p, \]

où \(\Pi = \Pi(p) \in V(\pi) \) (modulo un twist non ramifié que l'on va ignorer dans la suite). Le morphisme \(\Phi_0 \) induit, par restriction, un morphisme continu \(G \)-équivariant

\[\Phi : (\Pi^\text{an}/\Pi^\text{disc})^* \to \Omega^1(\Sigma_n)^p. \]

Montrons que ce morphisme est non nul. S'il était nul, \(\Phi_0 \) se factoriserait par le quotient \((\Pi^\text{disc})^* \) de \((\Pi^\text{an})^* \). Comme \(\Phi_0 \) n'est pas nul et \(\Pi^\text{disc} \simeq \pi \) est irréductible, \(\pi^* \) se plongerait dans \(\Omega^1(\Sigma_n)^p \), ce qui est absurde puisque \(u^+ \) n'annule aucun élément de \(\Omega^1(\Sigma_n)^p \) (se rappeler que \(u^+ = -\frac{i}{\sqrt{2}} \) sur \(\mathbb{O}(\Sigma_n) \), cf. lemme 1.3.5). On en déduit que \(\Phi \) est effectivement non nul.

En outre, la composée de \(\Phi \) avec la surjection canonique \(\Omega^1(\Sigma_n)^p \to H^{1,\text{dR},c}(\Sigma_n)^p \) est nulle : en dualisant cette flèche on obtient en effet un morphisme \(G \)-équivariant \(H^{1,\text{dR},c}(\Sigma_n)^p \to \Pi^\text{an}/\Pi^\text{disc} \), qui est forcément nul car \(\Pi^\text{an}/\Pi^\text{disc} \) n'a pas de vecteurs lisses non nuls (exercice), alors que \(H^{1,\text{dR},c}(\Sigma_n)^p \) est lisse (proposition 1.3.6). Par conséquent, \(\Phi \) se factorise par \(\mathbb{O}(\Sigma_n)^p \), ce qui finit la preuve du théorème 1.5.1.

1.6. \((\varphi, \Gamma)\)-modules sur l'anneau de Robba et équations différentielles \(p \)-adiques

Ce chapitre ne contient aucun résultat original et sert uniquement comme référence pour la suite. Le lecteur pourra consulter [6], [8], [71], [106] pour plus de détails concernant l'équation différentielle \(p \)-adique attachée à une représentation de de Rham de \(G_K \). Nous contenterons d'énoncer les principaux résultats concernant cette construction.

Rappelons que l'on a fixé une suite \((\zeta_{p^n})_{n \geq 1} \), où \(\zeta_{p^n} \) est une racine primitive de l'unité d'ordre \(p^n \), et \(\zeta_{p^n}^p = \zeta_{p^n} \). Soit \(\mathcal{E}^{[0,r_n]} \) l'anneau des fonctions analytiques (définies sur \(L \)) sur la couronne \([\zeta_{p^n} - 1] \leq |T| < 1 \), et soit

\[\mathcal{R} = \lim_{n \to \infty} \mathcal{E}^{[0,r_n]} \subset L[[T, T^{-1}]]. \]

33. Pour les notations relatives aux algèbres de Hecke, voir le paragraphe 1.5.1.
l’anneau de Robba. L’anneau \mathcal{R} est muni d’actions continues de $\Gamma = \text{Gal}(\mathbb{Q}_p^{nc}/\mathbb{Q}_p)$ et d’un Frobenius φ, commutant entre elles, en posant

$$\varphi(T) = (1 + T)^p - 1 \quad \text{et} \quad \sigma_a(T) = (1 + T)^a - 1, \quad a \in \mathbb{Z}^*_p,$$

où $\sigma_a \in \Gamma$ est tel que $\chi_{\text{cyc}}(\sigma_a) = a$ (en d’autres termes $\sigma_a(\zeta) = \zeta^a$ pour tout $\zeta \in \mu_{p^\infty}$).

Définition 1.6.1. — Un (φ, Γ)-module Δ sur \mathcal{R} est un \mathcal{R}-module libre de type fini muni d’actions semi-linéaires continues de φ et Γ, commutant entre elles et telles que l’application naturelle $\mathcal{R} \otimes_{\varphi(\mathcal{R})} \varphi(\Delta) \to \Delta$ soit un isomorphisme.

Soit Δ un (φ, Γ)-module sur \mathcal{R}. D’après un résultat standard de Berger (voir [6, lemme 4.1]), l’action de Γ sur Δ se détermine, d’où une connexion

$$\nabla : \Delta \to \Delta, \quad \nabla(z) = \lim_{a \to 1} \frac{\sigma_a(z) - z}{a - 1}.$$

Par exemple, si $\Delta = \mathcal{R}$ est le (φ, Γ)-module trivial, alors

$$\nabla = t \partial, \quad \text{où} \quad \partial = (1 + T) \frac{d}{dT} \quad \text{et} \quad t = \log(1 + T) \in \mathcal{R}.$$

Notons que $\varphi(t) = pt$ et $\gamma(t) = \chi_{\text{cyc}}(\gamma)t$ pour $\gamma \in \Gamma$, ce qui fait que si Δ est un (φ, Γ)-module sur \mathcal{R}, alors $t^\Delta \Delta$ est aussi, pour tout entier k.

Exemple 1.6.2. — a) La théorie de Fontaine [69] combinée au théorème de surconvergence de Cherbonnier-Colmez [32] permettent d’attacher à toute L-représentation V de $\mathcal{G}_{\mathbb{Q}_p}$ un (φ, Γ)-module (étale) $D_{\text{rig}}(V)$ sur \mathcal{R}, de rang $\dim_L(V)$. Berger a montré [6] que le foncteur $V \to D_{\text{rig}}(V)$ est pleinement fidèle.

b) Soit V une L-représentation de de Rham de $\mathcal{G}_{\mathbb{Q}_p}$. Un théorème fondamental de Berger [6] montre l’existence d’un unique sous-(φ, Γ)-module $N_{\text{rig}}(V) \subset D_{\text{rig}}(V)[1/t]$ tel que

$$N_{\text{rig}}(V)[1/t] = D_{\text{rig}}(V)[1/t] \quad \text{et} \quad \nabla(N_{\text{rig}}(V)) \subset t \cdot N_{\text{rig}}(V).$$

Le (φ, Γ)-module $N_{\text{rig}}(V)$ devient une équation différentielle p-adique avec structure de Frobenius sur \mathcal{R}, grâce à la connexion $\partial = \frac{1}{t} \nabla$. Ce (φ, Γ)-module jouera un rôle fondamental (c’est précisément cette construction qui a permis à Berger de démontrer le théorème de monodromie p-adique [6]). Contrairement à $V \to D_{\text{rig}}(V)$, le foncteur $V \to N_{\text{rig}}(V)$ n’est pas pleinement fidèle (34).

Lemme 1.6.3. — Soit $P \in L[X]$ un polynôme non nul et soit V une L-représentation absolument irréductible de dimension 2 de $\mathcal{G}_{\mathbb{Q}_p}$, non trianguline (au sens de [39]). Alors $P(\nabla)$ est injectif sur $D_{\text{rig}}(V)$.

Démonstration. — D’après [51, prop 2.1] le noyau X de $P(\nabla)$ sur $D_{\text{rig}}(V)$ est de dimension finie sur L. Comme il est stable par φ, on en déduit que si $X \neq 0$, alors φ a des vecteurs propres sur $D_{\text{rig}}(V)$ (éventuellement après avoir remplacé L par une extension finie). Cela contredit [39, lemme 3.2].

Le résultat suivant est une observation importante de Colmez, qui joue un rôle clé dans [41]. Nous nous en servirons aussi dans le chapitre suivant.

Proposition 1.6.4. — Soit V une L-représentation de de Rham, absolument irréductible de dimension 2 de $\mathcal{G}_{\mathbb{Q}_p}$. Si V n’est pas trianguline, alors $\partial = \frac{1}{t} \nabla$ est bijectif sur $N_{\text{rig}}(V)$.

34. On perd la filtration de Hodge ; voir la fin de ce chapitre pour un énoncé plus précis.
Démonstration. — Soient $N_{\text{rig}} = N_{\text{rig}}(V)$ et $D_{\text{rig}} = D_{\text{rig}}(V)$, et soit h tel que $t^h N_{\text{rig}} \subseteq D_{\text{rig}}$.

Puisque $(\nabla - h)(t^h x) = t^{h+1} \partial x$ et $D_{\text{rig}}^{\text{rig}} = 0$ (lemme 1.6.3), ∂ est injectif sur N_{rig}. La surjectivité est plus subtile, et utilise le théorème de monodromie p-adique. Plus précisément, \cite[prop. 20.4.2]{[94]} fournit un appauvirement parfait

$$N_{\text{rig}}/\partial(N_{\text{rig}}) \otimes \hat{N}_{\text{rig}}^{\partial = 0} \to L$$

où $\hat{N}_{\text{rig}} = N_{\text{rig}}(V)$ est l’équation différentielle attachée au dual de Cartier $V = V^* \otimes \chi_{\text{cyc}}$ de V. Puisque V n’est pas trianguline, la première partie de la preuve montre que $\hat{N}_{\text{rig}}^{\partial = 0} = 0$, ce qui permet de conclure.

Soit Δ un (φ, Γ)-module sur \mathcal{R}. Berger montre \cite[th. I.3.3]{[8]} que pour tout n assez grand (dépendant de Δ) il existe un unique sous $\mathcal{E}^{[0,r_n]}$ de Δ (35) tel que $\mathcal{R} \otimes_{\mathcal{E}^{[0,r_n]}} \Delta^{[0,r_n]} \to \Delta$ soit un isomorphisme et que $\mathcal{E}^{[0,r_{n+1}]} \otimes_{\mathcal{E}^{[0,r_n]}} \Delta^{[0,r_n]}$ admette une base contenue dans $\mathcal{E}^{[0,r_n]}$ (pour l’existence, il suffit de prendre pour $\Delta^{[0,r_n]}$ le sous $\mathcal{E}^{[0,r_n]}$ module de Δ engendré par une base fixée de Δ). De plus, $\Delta^{[0,r_n]}$ est stable sous l’action de Γ et ∇, et $\varphi(\Delta^{[0,r_n]}) \subseteq \Delta^{[0,r_{n+1}]}$ pour tout n assez grand.

Notons $L_n = L \otimes_{\mathcal{Q}_p} \mathcal{Q}_p(\zeta^{p^n})$. On dispose pour tout $n \geq 1$ d’une injection Γ-équivariante d’anneaux $\varphi^{-n} : \mathcal{E}^{[0,r_n]} \to L_n[[t]]$, qui envoie s sur $f(s \zeta^{p^n} - 1)$. Si Δ est un (φ, Γ)-module sur \mathcal{R}, on note (pour n assez grand)

$$\Delta^+_{\text{diff}, n} = L_n[[t]] \otimes_{\mathcal{E}^{[0,r_n]}} \Delta^{[0,r_n]}, \quad \Delta^+_{\text{diff}} = \lim_n \Delta^+_{\text{diff}, n},$$

le morphisme de transition $\Delta^+_{\text{diff}, n} \to \Delta^+_{\text{diff}, n+1}$ étant donné par $u \otimes z \mapsto u \otimes \varphi(z)$ pour $u \in L_n[[t]] \subseteq L_{n+1}[[t]]$ et $z \in \Delta^{[0,r_n]}$ (noter que $\varphi(z) \in \Delta^{[0,r_{n+1}]}$).

Ainsi, Δ^+_{diff} est un $L_{\infty}[[t]] := \lim_n L_n[[t]]$-module libre de même rang que Δ et il est muni d’une action de Γ, qui respecte $\Delta^+_{\text{diff}, n}$ pour n assez grand. La dérivée de cette action fournit une connexion ∇ sur Δ^+_{diff} qui respecte $\Delta^+_{\text{diff}, n}$ pour n assez grand, et qui satisfait

$$\nabla(fz) = t\frac{df}{dt} \cdot z + f \cdot \nabla z, \quad \forall f \in L_{\infty}[[t]], \quad z \in \Delta^+_{\text{diff}}.$$

Exemple 1.6.5. — L’exemple suivant sera systématiquement utilisé dans la suite. Soit V une L-représentation de de Rham de $\mathcal{G}_{\mathcal{Q}_p}$. Si n est assez grand, on dispose d’un morphisme de localisation (37)

$$\varphi^{-n} : D^{[0,r_n]}(V) \to (B^+_{\text{dr}} \otimes \mathcal{Q}_p, V)_{\mathcal{H}_{\mathcal{Q}_p}}^\circ,$$

qui est Γ-équivariant et induit un morphisme injectif

$$\varphi^{-n} : D^+_{\text{diff}, n}(V) \to (B^+_{\text{dr}} \otimes \mathcal{Q}_p, V)_{\mathcal{H}_{\mathcal{Q}_p}}^\circ.$$

Fontaine a montré \cite{[71]} que ce morphisme induit un isomorphisme canonique de $L_n[[t]]$-modules avec action semi-linéaire de Γ

$$D^+_{\text{diff}, n}(V) = \text{Fil}^0(L_n((t)) \otimes_L D_{\text{dr}}(V)),$$

où l’on considère la filtration t-adique sur $L_n((t))$ et la filtration de Hodge sur $D_{\text{dr}}(V)$. Berger a montré \cite{[6, 8]} que via cet isomorphisme on peut décrire $N^+_{\text{diff}, n}(V) := N_{\text{rig}}(V)_{\text{diff}, n} \subseteq D^+_{\text{diff}, n}(V)[1/t]$ par

$$N^+_{\text{diff}, n}(V) = L_n[[t]] \otimes_L D_{\text{dr}}(V).$$

On peut aussi décrire simplement $N_{\text{rig}}(V)$ à partir de $D_{\text{rig}}(V)$ via

$$N_{\text{rig}}(V) = \{ z \in D_{\text{rig}}(V)[1/t] | \varphi^{-n}(z) \in N^+_{\text{diff}, n}(V) \quad \forall n \gg 0 \}.$$
De plus, pour \(n \) assez grand
\[
N^{[0,r_n]}(V) := N_{\text{rig}}(V)^{[0,r_n]} = \{ z \in D_{\text{rig}}(V)[1/t] \mid \varphi^{-k}(z) \in N^+_{\text{diff}}(V) \quad \forall k \geq n \}.
\]

Enfin, on peut reconstruire \(D_{\text{rig}}(V) \) à partir de \(N_{\text{rig}}(V) \) et de la filtration de Hodge, via
\[
D_{\text{rig}}(V) = \{ z \in N_{\text{rig}}(V)[1/t] \mid \varphi^{-n}(z) \in \text{Fil}^0(L_0([t]) \otimes_L D_{\text{an}}(V)) \quad \forall n > 0 \}.
\]

On a une description similaire de \(D^{[0,r_n]}(V) \) pour \(n \) assez grand.

Nous aurons aussi besoin d’une description plus précise de \(N_{\text{rig}}(V) \). Supposons que \(V \) est une représentation potentiellement cristalline (pour simplifier) de \(\mathcal{G}_{Q_p} \), et prenons une extension finie galoisienne \(K \) de \(Q_p \) telle que \(V \) soit cristalline en tant que représentation de \(\text{Gal}(Q_p/K) \). Soit \(\mathcal{R}_K \) l’extension maximale non ramifiée de \(Q_p \) dans \(K \). Une construction standard utilisant la théorie du corps des normes de Fontaine-Wintenberger (voir le chapitre 1 de [8] pour les détails) permet d’associer à l’extension de corps perfectoides \(K^{nc}/Q_p^{nc} \) une extension finie étale \(\mathcal{R}_K \) de l’anneau de Robba \(\mathcal{R} \). De plus, \(\mathcal{R}_K \) est muni d’un Frobenius \(\varphi \) et d’une action de \(\text{Gal}(K^{nc}/Q_p) \), qui sont compatibles avec les actions correspondantes sur \(\mathcal{R} \), et telles que \(\mathcal{R}_K^{\text{Gal}(K^{nc}/Q_p^{nc})} = \mathcal{R} \) et \(\mathcal{R}_K^{\text{Gal}(K^{nc}/K)} = K \). Berger [8, 106] montre l’existence d’un isomorphisme de comparaison, compatible avec toutes les structures supplémentaires
\[
\mathcal{R}_K \otimes \mathcal{R}_{N_{\text{rig}}(V)} = \mathcal{R}_{K \otimes K_0} D_{\text{cris},K}(V),
\]

où
\[
D_{\text{cris},K}(V) = (\mathcal{B}_{\text{cris}} \otimes_{Q_p} V)^{\text{Gal}(Q_p/K)} = D_{\text{pot}}(V)^{\text{Gal}(Q_p/K)}.
\]

En prenant les invariants par \(\text{Gal}(K^{nc}/Q_p^{nc}) \), on obtient la description suivante de \(N_{\text{rig}}(V) \)
\[
N_{\text{rig}}(V) = \left(\mathcal{R}_K \otimes_{K_0} D_{\text{pot}}(V)^{\text{Gal}(Q_p/K)} \right)^{\text{Gal}(K^{nc}/Q_p^{nc})}.
\]

Cette description montre que \(N_{\text{rig}}(V) \) ne dépend que du \((\varphi, \mathcal{G}_{Q_p})\)-module \(D_{\text{pot}}(V) \), sans sa filtration de Hodge.

Éxemple 1.6.6. — Revenons maintenant à notre contexte usuel et considérons le \((\varphi, \mathcal{G}_{Q_p})\)-module \(M(\pi) \) attaché à \(\pi \) (cf. le dernier paragraphe des notations et conventions). Au vu de la discussion précédente, la définition suivante n’est pas bien surprenante :

Définition 1.6.7. — Soit \(K \) une extension finie galoisienne de \(Q_p \), qui contient \(L \) et telle que l’inertie \(I_K \) de \(\text{Gal}(Q_p/K) \) agisse trivialement sur \(M(\pi) \). On pose
\[
N_{\text{rig}}(\pi) = \left(\mathcal{R}_K \otimes_{K_0} M(\pi)^{\text{Gal}(Q_p/K)} \right)^{\text{Gal}(K^{nc}/Q_p^{nc})},
\]

où \(K_0 \) est l’extension maximale non ramifiée de \(Q_p \) dans \(K \).

Le \((\varphi, \Gamma)\)-module \(N_{\text{rig}}(\pi) \) sur \(\mathcal{R} \) qui s’en déduit est indépendant du choix de \(K \), et il est libre de rang 2 sur \(\mathcal{R} \). Soit
\[
M_{\text{dR}}(\pi) = (Q_p \otimes_{Q_p} M(\pi))^B_{Q_p} \simeq (K \otimes_{K_0} M(\pi)^{\text{Gal}(Q_p/K)})^{\text{Gal}(K/Q_p)},
\]

un \(L \)-espace vectoriel de dimension 2. On a un isomorphisme canonique pour \(n \) assez grand
\[
(N_{\text{rig}}(\pi))_{\text{diff},n} \simeq L_0([t]) \otimes_L M_{\text{dR}}(\pi).
\]

Toute \(L \)-droite \(\mathcal{L} \) de \(M_{\text{dR}}(\pi) \) définit une filtration exhaustive décroissante \(\text{Fil}_{\mathcal{L}} \) sur \(M_{\text{dR}}(\pi) \), en posant
\[
\text{Fil}^{-1}(M_{\text{dR}}(\pi)) = M_{\text{dR}}(\pi), \quad \text{Fil}^{0}(M_{\text{dR}}(\pi)) = \mathcal{L}, \quad \text{Fil}^{1}(M_{\text{dR}}(\pi)) = 0.
\]

38. Nous allons noter \(\mathcal{R}_K \) ce que Berger note \(B^1_{\text{rig},K} \).
39. Elle montre aussi que le terme de droite de l’égalité (7) ne dépend pas de \(K \); cela est aussi une conséquence élémentaire de la théorie de Galois.
Rappelons que $\mathcal{V}(\pi)$ est l'ensemble des (classes d'isomorphisme des) $\Pi \in \text{Ban}_{\text{adm}}^\text{abs}(G)$ absolument irréductibles telles que $\Pi^\text{bas} \simeq \pi$. On voit dans la suite $\mathcal{V}(\pi)$ comme sous-ensemble de l'ensemble des (classes d'isomorphismes de) L-représentations absolument irréductibles de \mathcal{G}_{Q}, de dimension 2, grâce au foncteur de Colmez [38, chap. II, IV] et au résultat principal de [45].

Soit $V \in \mathcal{V}(\pi)$ et fixons une identification $D_{\text{pot}}(V) \simeq M(\pi)$ en tant que $(\varphi, \mathcal{G}_{Q})$-modules. Cet isomorphisme est unique à scalaire près et il induit un isomorphisme de L-espaces vectoriels de dimension 2

$$D_{\text{IR}}(V) \simeq (\overline{Q}_p \otimes Q_{\text{ct}}^M) \cdot D_{\text{pot}}(V) \simeq M_{\text{IR}}(\pi).$$

La filtration de Hodge $\text{Fil}(D_{\text{IR}}(V))$ définit ainsi une L-droite $\mathcal{L}(V) \subseteq M_{\text{IR}}(\pi)$, qui ne dépend pas du choix de l'isomorphisme $D_{\text{pot}}(V) \simeq M(\pi)$. Réciproquement, étant donnée une L-droite \mathcal{L} de $M_{\text{IR}}(\pi)$, la filtration $\text{Fil}_{\mathcal{L}}$ sur $M_{\text{IR}}(\pi)$ est faiblement admissible (cela découle facilement du fait que la représentation du groupe de Weil attachée à $M(\pi)$ est irréductible, cf. la preuve du théorème 5.2 de [24]). Le théorème de Colmez-Fontaine [43] permet donc de construire une unique (à isomorphisme près) L-représentation $V_\mathcal{L} \in \mathcal{V}(\pi)$ telle que $\mathcal{L}(V_\mathcal{L}) = \mathcal{L}$. On déduit alors de [45, th1.3] (cela utilise [57]) que $V \rightarrow \mathcal{L}(V)$ induit une bijection $\mathcal{V}(\pi) \rightarrow \text{Proj}(M_{\text{IR}}(\pi))$.

Pour résumer, si $V \in \mathcal{V}(\pi)$, alors le choix d'un isomorphisme $D_{\text{pot}}(V) \simeq M(\pi)$ induit :

- un isomorphisme de (φ, Γ)-modules sur \mathcal{R}

$$N_{\text{rig}}(V) \simeq N_{\text{rig}}(\pi),$$

qui induit une identification de $L_n[[t]]$-modules avec action semi-linéaire de Γ (pour n assez grand)

$$N_{\text{rig},n}^+(V) \simeq L_n[[t]] \otimes_L M_{\text{IR}}(\pi).$$

- un isomorphisme de L-espaces vectoriels filtrés $D_{\text{IR}}(V) \simeq (M_{\text{IR}}(\pi), \text{Fil}_{\mathcal{L}(V)})$.

- des identifications de $L_n[[t]]$-modules avec action semi-linéaire de Γ (pour n assez grand)

$$D_{\text{IR},n}^+(V) \simeq \text{Fil}(L_n((t)) \otimes M_{\text{IR}}(\pi)) \simeq tN_{\text{rig},n}^+(V) + L_n[[t]] \otimes_L \mathcal{L}(V),$$

- des inclusions de (φ, Γ)-modules

$$tN_{\text{rig}}(\pi) \subseteq D_{\text{rig}}(V) \subseteq N_{\text{rig}}(\pi).$$

Tout ceci est une conséquence de la discussion ci-dessus et du fait que l'on travaille en poids 0,1. Toutes ces identifications et inclusions dépendent du choix de l'isomorphisme $D_{\text{pot}}(V) \simeq M(\pi)$, mais uniquement à scalaire près. Par conséquent, la L-droite $\mathcal{L}(V)$ est parfaitement bien définie, ainsi que les images dans $N_{\text{rig}}(\pi)$, $L_n[[t]] \otimes_L M_{\text{IR}}(\pi)$, de toutes ces identifications.

1.7. Représentations localement analytiques de G et modèle de Kirillov-Colmez

Nous rappelons dans ce chapitre un certain nombre de constructions et résultats concernant la correspondance de Langlands locale p-adique, en particulier la théorie du modèle de Kirillov de Colmez [38, chap. VI], qui sera indispensable dans les chapitres suivants. Notre discussion est assez rapide et nous renvoyons le lecteur au paragraphe 5 du chapitre VI de [38] ou aux chapitres 4 et 5 de [50], où tout ceci est décrit en détail.

1.7.1. (φ, Γ)-modules et représentations de G. — Pour toute L-représentation V de dimension 2 de \mathcal{G}_{Q}, Colmez [38, ch.II,IV,V] construit un faisceau G-équivariant \(^{40}\) $U \rightarrow$

\(^{40}\) Le groupe G agit sur $\mathbb{P}^1(Q_p)$ par \((a \, b) \cdot \frac{x}{c} = \frac{ax + b}{cx + d}.\)
D_{\text{rig}}(V) \boxtimes U sur \mathbf{P}^1(Q_p), dont les sections sur \mathbf{Z}_p sont données par \(D_{\text{rig}}(V) \boxtimes \mathbf{Z}_p = D_{\text{rig}}(V)\).

L’action du monoïde \(D^+ = \left(\mathbf{Z}_p^{-\{0\}} \mathbf{Z}_p \right)\) (qui stabilise \(\mathbf{Z}_p\)) sur \(D_{\text{rig}}(V)\) est donnée par \(41\)

\[
\left(p^{a+b} 1 \right) z = (1 + T)^b \cdot \varphi^k(\sigma_a(z)), \quad \forall z \in D_{\text{rig}}(V), k \geq 0, a \in \mathbf{Z}_p^*, b \in \mathbf{Z}_p,
\]

alors que l’action de \(\left(\frac{p^a 1}{1} \right)\) est très compliquée.

L’espace \(D_{\text{rig}}(V) \boxtimes \mathbf{P}^1\) des sections globales du faisceau attaché à \(V\) est un espace LF avec action continue de \(G\). Par construction, le caractère central de \(D_{\text{rig}}(V) \boxtimes \mathbf{P}^1\) est \(42\)

\[
\delta_V = \chi_{\text{cyc}} \det V.
\]

Dans toutes les applications que nous avons en vue, on aura \(\det V = \chi_{\text{cyc}}\) et donc \(\delta_V = 1\).

Pour tout ouvert compact \(U\) de \(\mathbf{P}^1(Q_p)\) on dispose d’une application de prolongement par zéro \(D_{\text{rig}}(V) \boxtimes U \to D_{\text{rig}}(V) \boxtimes \mathbf{P}^1\), qui permet d’identifier \(D_{\text{rig}}(V) \boxtimes U\) à un sous-espace de \(D_{\text{rig}}(V) \boxtimes \mathbf{P}^1\). Soit \(w = \left(\frac{0 1}{1 1} \right) \in G\), et notons aussi \(w\) la restriction à \(D_{\text{rig}}(V) \boxtimes \mathbf{Z}_p\) de l’action de l’involution \(w\) de \(D_{\text{rig}}(V) \boxtimes \mathbf{P}^1\).

Alors \(D_{\text{rig}}(V) \boxtimes \mathbf{P}^1 = D_{\text{rig}}(V) + wD_{\text{rig}}(V)\) et l’application \(z \to (\text{Res}_{\mathbf{Z}_p}(z), \text{Res}_{\mathbf{Z}_p}(wz))\) induit une identification

\[
D_{\text{rig}}(V) \boxtimes \mathbf{P}^1 = \{(z_1, z_2) \in D_{\text{rig}}(V) \times D_{\text{rig}}(V) \mid \text{Res}_{\mathbf{Z}_p}(z_2) = w(\text{Res}_{\mathbf{Z}_p}(z_1))\}.
\]

Nous allons utiliser systématiquement le résultat suivant de Colmez [38, ch V].

Théorème 1.7.1. — Soit \(V\) une \(L\)-représentation de dimension 2 de \(\mathfrak{g}_{Q_p}\).

a) L’action de \(G\) sur \(D_{\text{rig}}(V) \boxtimes \mathbf{P}^1\) s’étend en une structure \(43\) de \(D(G)\)-module topologique.

b) Si \(\check{V} = V^* \otimes \chi_{\text{cyc}} \simeq V \otimes \delta_V^{-1}\) est le dual de Cartier de \(V\), il existe un accouplement parfait de \(D(G)\)-modules topologiques

\[
\{ }_{\mathbf{P}^1} : (D_{\text{rig}}(\check{V}) \boxtimes \mathbf{P}^1) 	imes (D_{\text{rig}}(V) \boxtimes \mathbf{P}^1) \to L,
\]

\[
c) \text{Il existe une suite exacte canonique de } D(G)\text{-modules topologiques}
\]

\[
0 \to (\text{II}(\check{V})^{\text{an}})^* \to D_{\text{rig}}(V) \boxtimes \mathbf{P}^1 \to \text{II}(V)^{\text{an}} \to 0,
\]

et \((\text{II}(\check{V}))^{\text{an}})^*\) s’identifie ainsi à l’orthogonal de \((\text{II}(V)^{\text{an}})^* \subset D_{\text{rig}}(\check{V}) \boxtimes \mathbf{P}^1\) (ou de \((V)^*\)) dans \(D_{\text{rig}}(V) \boxtimes \mathbf{P}^1\).

Remarque 1.7.2. — a) Dans toutes nos applications on aura \(\det V = \chi_{\text{cyc}}\) et donc \(\delta_V = 1\) et \(\check{V} \simeq V\) canoniquement. La suite exacte précédente devient dans ce cas

\[
0 \to (\text{II}(V)^{\text{an}})^* \to D_{\text{rig}}(V) \boxtimes \mathbf{P}^1 \to \text{II}(V)^{\text{an}} \to 0
\]

et \((\text{II}(V)^{\text{an}})^*\) s’identifie à son propre orthogonal dans \(D_{\text{rig}}(V) \boxtimes \mathbf{P}^1\) via l’accouplement \(\{ }_{\mathbf{P}^1} : (D_{\text{rig}}(V) \boxtimes \mathbf{P}^1) \times (D_{\text{rig}}(V) \boxtimes \mathbf{P}^1) \to L\).

b) Si \(U\) est un ouvert compact de \(\mathbf{P}^1(\mathbb{Q}_p)\) et si \(H\) est un sous-groupe ouvert compact de \(G\) qui stabilise \(U\), l’espace \(D_{\text{rig}} \boxtimes U \subset D_{\text{rig}} \boxtimes \mathbf{P}^1\) est stable par \(D(H) \subset D(G)\) et \(\text{Res}_U(\lambda \cdot z) = \lambda \cdot \text{Res}_U(z)\) pour tout \(z \in D_{\text{rig}} \boxtimes \mathbf{P}^1\) et tout \(\lambda \in D(H)\).

41. Rappelons que \(a \to \sigma_a\) désigne l’inverse de l’isomorphisme \(\Gamma \simeq \mathbf{Z}_p^*\) fourni par le caractère cyclotomique.
42. Vu comme caractère de \(\mathbb{Q}_p^*\) par la théorie du corps de classe local.
43. Rappelons que \(D(G)\) est l’algèbre des distributions sur \(G\).
1.7.2. L’action infinitésimale de G. — Soit $U(\mathfrak{g}_2) \subset D(G)$ l’algèbre enveloppante de l’algèbre de Lie de G (tensorisée avec L). La discussion précédente montre l’existence d’une action de \mathfrak{g}_2 sur $D_{\text{rig}} \otimes \mathbb{Z}_p = D_{\text{rig}}$, qui satisfait $\text{Res}_U(X \cdot z) = X \cdot \text{Res}_U(z)$ pour $z \in D_{\text{rig}} \otimes \mathbb{P}^1$, $X \in U(\mathfrak{g}_2)$ et $U \subset \mathbb{Z}_p$ ouvert compact. Bien que l’action du Borel soit relativement explicite, l’action de l’involution w est très compliquée. Le résultat suivant permet de contourner ce problème.

Considérons la base

\[
\begin{align*}
a^+ &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, & a^- &= \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, & u^+ &= \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, & u^- &= \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}
\end{align*}
\]

de \mathfrak{g}_2, ainsi que l’élément de Casimir

\[C = u^+ u^- + u^- u^+ + \frac{1}{2} h^2 \in U(\mathfrak{g}_2), \quad \text{où} \quad h = a^+ - a^- = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
\]

L’élément C engendre le centre de $U(\mathfrak{sl}_2)$. On identifie un élément f de \mathcal{R} avec l’opérateur « multiplication par f » sur $D_{\text{rig}}(V)$ dans l’énoncé suivant, qui est le résultat principal de [49].

Théorème 1.7.3. — Soient a et b les poids de Hodge-Tate généralisés de V, et soit $k = a + b$. En tant qu’opérateurs sur $D_{\text{rig}}(V)$ nous avons

\[
a^+ = \nabla, \quad a^- = k - 1 - \nabla, \quad u^+ = t, \quad u^- = -\frac{(\nabla - a)(\nabla - b)}{t}, \quad C = \frac{(a - b)^2 - 1}{2}.
\]

En particulier, si $a = 0$ et $b = 1$ on a

\[
a^+ = \nabla = -a^-, \quad C = 0, \quad u^+ = t, \quad u^- = -\frac{\nabla(\nabla - 1)}{t} = -t \partial^2,
\]

où $\partial = \frac{1}{t} \nabla$, une connexion sur $D_{\text{rig}}(V)[1/t]$.

1.7.3. Vecteurs P-finis et modèle de Kirillov. — Rappelons que $P = \begin{pmatrix} Q^*_p & Q_p \\ 0 & 1 \end{pmatrix}$. On fixe une L-représentation V de dimension 2 de G_{Q_p} et on suppose que V est absolument irréductible.

Définition 1.7.4. — a) On dit qu’un vecteur $v \in \Pi(V)$ est P-fini s’il existe $n,k \geq 1$ tels que

\[
\left(\begin{pmatrix} 1 & p^n \\ 0 & 1 \end{pmatrix} - 1\right)^k v = 0
\]

et si $L \left[\begin{pmatrix} Z^* & 0 \\ 0 & 1 \end{pmatrix}\right] v$ est de dimension finie sur L. On note $\Pi(V)^{P\text{-fini}}$ l’espace des vecteurs P-finis de $\Pi(V)$.

b) Un vecteur $v \in \Pi(V)^{P\text{-fini}}$ est dit de pente infinie s’il existe $n,k \geq 1$ et $m \in \mathbb{Z}$ tels que

\[
\left(\sum_{i=0}^{p^n - 1} \begin{pmatrix} 1 \\ 0 \end{pmatrix}\right) ^k \circ \begin{pmatrix} p^m \\ 0 \end{pmatrix} v = 0.
\]

On note $\Pi(V)^{P\text{-fini}}_c \subset \Pi(V)^{P\text{-fini}}$ l’espace des vecteurs P-finis de pente infinie.

Remarque 1.7.5. — Soit $v \in \Pi(V)^{P\text{-fini}}$ et soient n,k comme dans la définition ci-dessus. Alors pour tout $u \in \begin{pmatrix} 1 & Q_p \\ 0 & 1 \end{pmatrix}$ on a $(1 - u)^k v \in \Pi(V)^{P\text{-fini}}$. Plus précisément, n’importe quels $m \geq -v_p(x)$ (avec $u = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$) et $N \geq m + n$ satisfont

\[
\left(\sum_{i=0}^{p^n - 1} \begin{pmatrix} 1 \\ 0 \end{pmatrix}\right) ^k \circ \begin{pmatrix} p^m \\ 0 \end{pmatrix} (1 - u)^k v = 0.
\]

La preuve de ce résultat est un exercice amusant laissé au lecteur. Nous utiliserons à plusieurs reprises cette observation (avec $k = 1$).
Soit Ξ un $L_\infty[[t]]$-module muni d’une action semi-linéaire de Γ (par rapport à l’action naturelle de Γ sur $L_\infty[[t]] = \lim_{\overset{\longrightarrow}{n}} L_n[[t]]$). On note $\text{LP}(\mathcal{Q}_p^*, \Xi)^\Gamma$ l’espace des fonctions $\phi : \mathcal{Q}_p^* \to \Xi$ à support compact dans \mathcal{Q}_p et satisfaisant $\phi(ax) = \sigma_a(\phi(x))$ pour tous $x \in \mathcal{Q}_p^*$ et $a \in \mathbb{Z}_p^*$. On note $\text{LP}_c(\mathcal{Q}_p^*, \Xi)^\Gamma$ le sous-espace de $\text{LP}(\mathcal{Q}_p^*, \Xi)^\Gamma$ formé des fonctions nulles au voisinage de 0. L’application $\phi \mapsto (\phi(p^i))_{i \in \mathbb{Z}}$ induit un isomorphisme L-linéaire

$$\text{LP}_c(\mathcal{Q}_p^*, \Xi)^\Gamma \cong \bigoplus_{i \in \mathbb{Z}} \Xi.$$

Rappelons que l’on a fixé un système compatible $(\zeta_{p^n})_{n \geq 1}$ de racines de l’unité, ce qui permet de définir un caractère additif localement constant

$$\varepsilon : \mathcal{Q}_p \to \mu_{p^\infty}, \quad \varepsilon(b) = \zeta_{p^n}^{pb}, \quad \forall n \geq v_p(b).$$

On munit les espaces $\text{LP}(\mathcal{Q}_p^*, \Xi)^\Gamma$ et $\text{LP}_c(\mathcal{Q}_p^*, \Xi)^\Gamma$ d’une action de P, définie par

$$((n, b), \phi)(x) = \varepsilon(bx)e^{tb}\phi(ax).$$

Proposition 1.7.6. — Les sous-espaces $\Pi(V)c^\infty$ et $\Pi(V)^c$ sont stables sous l’action de P et il existe une injection P-équivariante canonique $v \mapsto \phi_v$.

$$\Pi(V)c^\infty \to \text{LP}(\mathcal{Q}_p^*, D_{\text{diff}}^-(V))^\Gamma,$$

où $D_{\text{diff}}^-(V) = \lim_{n \to \infty} D_{\text{diff}, n}(V)[1/t]/D_{\text{diff}, n}(V)$,

qui induit un isomorphisme

$$\Pi(V)c^\infty \cong \text{LP}_c(\mathcal{Q}_p^*, D_{\text{diff}}^-(V))^\Gamma.$$

En particulier $v \mapsto (\phi_v(p^i))_{i \in \mathbb{Z}}$ induit une bijection

$$\Pi(V)c^\infty \to \bigoplus_{i \in \mathbb{Z}} D_{\text{diff}}^-(V).$$

Démonstration. — Ces constructions ont été introduites par Colmez dans le paragraphe VI.5 de [38]. Leur extension sous la forme de la proposition 1.7.6 (qui ne demande aucune idée supplémentaire) se trouve dans le chapitre 4 de [50], plus précisément les propositions 4.6, 4.8, 4.11, le lemme 4.12 et le corollaire 4.13 de loc.cit.

1.7.4. Dualité et modèle de Kirillov. — Le résultat suivant (théorème 1.7.8) de Colmez est crucial, mais demande pas mal de préliminaires. L’accouplement naturel $V \times V \to L(1)$ induit par fonctorialité un accouplement

$$\langle \cdot, \cdot \rangle : D_{\text{diff}}^+(V)[1/t] \times D_{\text{diff}}^-(V)[1/t] \to L_\infty((t))dt,$$

où l’on note dt la base canonique de $\mathcal{Q}_p(1)$. On définit un accouplement

$$\langle \cdot, \cdot \rangle_{\text{diff}} : D_{\text{diff}}^+(V)[1/t] \times D_{\text{diff}}^-(V)[1/t] \to L$$

en posant

$$\langle \tilde{z}, z \rangle_{\text{diff}} = \lim_{n \to \infty} \frac{1}{p^n} \text{res}_0\left(\text{Tr}_{L_n((t))/L((t))}(\langle \sigma_{-1}(\tilde{z}), z \rangle)\right),$$

où $\text{res}_0((\sum_{n \geq 0} a_n t^n)dt) = a_{-1}$.

Proposition 1.7.7. — a) $\langle \cdot, \cdot \rangle_{\text{diff}}$ est un accouplement Γ-équivariant parfait entre $D_{\text{diff}}^+(V)[1/t]$ et $D_{\text{diff}}^-(V)[1/t]$. Pour tout n assez grand l’orthogonal de $D_{\text{diff}, n}(V)$ est $D_{\text{diff}, n}(V)$. Ainsi, $\langle \cdot, \cdot \rangle_{\text{diff}}$ induit un accouplement parfait entre $D_{\text{diff}}^+(V)$ et $D_{\text{diff}}^-(V)$.

b) Si V est de de Rham à poids de Hodge-Tate 0 et $k \geq 1$, alors pour tout n assez grand l’orthogonal de $N_{\text{diff}, n}(V)$ est $t^kN_{\text{diff}, n}(V)$.

Démonstration. — Ce sont des traductions élémentaires, voir par exemple la discussion qui précède le lemme VI.3.3 de [38], ainsi que le lemme VI.4.16 de loc.cit.
D’après le corollaire VI.13 de [42], il existe $m(V)$ assez grand tel que l’inclusion $(\Pi(V)^{an})^* \subset D_{rig}(\hat{V}) \otimes \mathbb{P}^1$ se factorise à travers

$$D^{[0,r_m(V)]}(\hat{V}) \otimes \mathbb{P}^1 := \{ z \in D_{rig}(\hat{V}) \otimes \mathbb{P}^1 \mid \text{Res}_{\mathbb{Z}_p}(z), \text{Res}_{\mathbb{Z}_p}(wz) \in D^{[0,r_m(V)]}(\hat{V}) \},$$

ce qui nous permet de définir pour $n \geq m(V)$ et $j \in \mathbb{Z}$

$$i_{j,n} : (\Pi(V)^{an})^* \to D_{\text{diff},n}(\hat{V}), \quad i_{j,n} = \varphi^{-n} \circ \text{Res}_{\mathbb{Z}_p} \circ \left(p^{n-j} \circ 1 \right).$$

Rappelons qu’on dispose d’un accouplement canonique G-équivalent parfait $\{ \}_{\mathbb{P}^1}$ entre $D_{rig}(\hat{V}) \otimes \mathbb{P}^1$ et $D_{rig}(\hat{V}) \otimes \mathbb{P}^1$, qui induit l’accouplement naturel entre $(\Pi(V)^{an})^* \subset D_{rig}(\hat{V}) \otimes \mathbb{P}^1$ et $(\Pi(V)^{an}) = (D_{rig}(\hat{V}) \otimes \mathbb{P}^1)/(\Pi(V)^{an})^*$. Enfin, la proposition 1.7.6 fournit un isomorphisme $v \to \phi_v$ entre $\Pi(V)^{P-\text{fini}}$ et $L_{P}(\mathbb{Q}_p^*, D_{\text{diff}}(\hat{V}))^\Gamma$, ce qui permet de donner un sens à l’égalité ci-dessous :

Théorème 1.7.8. — On a $\Pi(V)^{P-\text{fini}}_c \subset \Pi(V)^{an}$ et pour tous $n \geq m(V)$, $v \in \Pi(V)^{P-\text{fini}}_c$ et $l \in (\Pi(V)^{an})^*$ on a

$$\{ l, v \}_{\mathbb{P}^1} = \sum_{j \in \mathbb{Z}} \{ i_{j,n}(l), \phi_v(p^{-j}) \}_{\text{diff}}.$$

Démonstration. — Cette généralisation de la proposition VI.5.12 de [38] est démontrée (de manière différente) dans [50, th. 5.3].

1.7.5. Une description utile de Π^{lisse}. — Les deux résultats techniques suivants seront utilisés constamment dans le chapitre suivant.

Proposition 1.7.9. — Soit $V \in \mathcal{V}(\pi)$ et notons

$$\Pi(V)^{P-\text{fini}} = \{ v \in \Pi(V)^{P-\text{fini}} \mid a^+ v = a^{-} v = 0 \}.$$

Alors $\Pi(V)^{P-\text{fini}}_c \subset \Pi(V)^{\text{lisse}}$ et l’isomorphisme $\Pi(V)^{P-\text{fini}}_c \simeq L_{P}(\mathbb{Q}_p^*, D_{\text{diff}}(\hat{V}))^\Gamma$ induit un isomorphisme de P-modules

$$\Pi(V)^{P-\text{fini}} \simeq L_{P}(\mathbb{Q}_p^*, N_{\text{diff}}(V)/D_{\text{diff}}^+(V))^\Gamma.$$

Démonstration. — L’espace $\Pi(V)^{P-\text{fini}}_c$ est noté $\Pi^{P-\text{alg}}_c$ dans [49] (en prenant $k = 1$ dans loc.cit.). L’inclusion $\Pi(V)^{P-\text{fini}}_c \subset \Pi(V)^{\text{lisse}}$ découle alors du théorème 5.6 de loc.cit (c’est une conséquence facile des théorèmes 1.7.3 et 1.7.8, combinés avec la proposition 1.7.7). La deuxième partie découle de la proposition 5.4 de loc.cit (et se déduit aussi de la proposition 1.7.6 et de l’égalité

$$(t^{-1}D_{\text{diff}}^+(V)/D_{\text{diff}}^+(V))^{\nabla = 0} = N_{\text{diff}}^+(V)/D_{\text{diff}}^+(V),$$

qui se démontre sans aucun problème).
Théorème 1.7.11. — Si $V \in \mathcal{V}(\pi)$, alors

$$\Pi(V)^{\text{lisse}} = \{ v \in \Pi(V)^{\text{an}} \mid u^+ v = a^+ v = 0 \} = \Pi(V)^{\text{P-lisse}}_c$$

et on a un isomorphisme canonique de P-modules

$$\Pi(V)^{\text{lisse}} \simeq \text{LC}_c(\mathbb{Q}_p^*, N^\text{diff}_c(V)/D^\text{diff}_c(V))^\Gamma.$$

Démonstration. — Notons $\Pi = \Pi(V)$. Commençons par montrer la première égalité. Une inclusion étant évidente, supposons que $v \in \Pi^{\text{an}}$ est tué par u^+ et a^+, et montrons que v est tué par u^-.

Soit $x \in \mathbb{Q}_p$ et soit $v_x = (\frac{1}{0} \xi) v - v$, de telle sorte que $u^+ v_x = 0$ et

$$a^+ v_x = a^+ (\frac{1}{0} \xi) v = (\frac{1}{0} \xi) (a^+ v + xu^+ v) = 0.$$

On en déduit (44) que $v_x \in \Pi^{\text{P-lisse}}_c$ et donc, grâce à la proposition 1.7.9, $u^- v_x = 0$. L’identité

$$u^- (\frac{1}{0} \xi) = (\frac{1}{0} \xi) (-x^2 u^+ + u^- - x h)$$

et le fait que v est tué par u^+ et $h = 2a^+$ montrent que $u^- v_x = ((\frac{1}{0} \xi) - 1) u^- v$. Ainsi, $u^- v \in \Pi(\frac{1}{0} \mathbb{Q}_p 1) = 0$, la dernière égalité étant une conséquence de [50, lemme 7.1] (c’est un résultat élémentaire). Cela montre la première égalité.

Pour conclure la première partie, il reste à prouver l’égalité $\Pi(V)^{\text{P-lisse}}_c = \Pi(V)^{\text{lisse}}$. Une inclusion est fournie par la proposition 1.7.9. L’autre inclusion vient du fait que $\Pi(V)^{\text{lisse}}_c \simeq \pi$ est supercuspidale, donc tout vecteur de $\Pi(V)^{\text{lisse}}$ est combinaison linéaire de vecteurs du type $(1 - a)v$ avec $a \in (\frac{1}{0} \mathbb{Q}_p 1)$ et $v \in \Pi(V)^{\text{lisse}}$. On conclut en utilisant l’inclusion $(1 - u)\Pi(V)^{\text{P-lisse}}_c \subset \Pi(V)^{\text{P-lisse}}_c$ (remarque 1.7.5).

La deuxième partie s’obtient en combinant ce qu’on vient de démontrer avec la proposition 1.7.9.

\[\square \]

1.8. Le G-module $\Pi(\pi, 0)$

Le but de ce chapitre est d’expliquer la preuve du théorème suivant, dû à Colmez [38, 41].

Théorème 1.8.1. — Soient $V_1, V_2 \in \mathcal{V}(\pi)$. Le choix d’isomorphismes $D_{\text{ps}}(V_1) \simeq M(\pi)$ et $D_{\text{ps}}(V_2) \simeq M(\pi)$ induit un isomorphisme de G-modules topologiques :

$$\Pi(V_1)^{\text{an}}/\Pi(V_1)^{\text{lisse}} \simeq \Pi(V_2)^{\text{an}}/\Pi(V_2)^{\text{lisse}}.$$

Nous allons en fait démontrer un résultat nettement plus précis, et construire un isomorphisme explicite, ce qui est indispensable pour nos besoins. Comme la construction demande un certain nombre de préliminaires techniques, nous renvoyons le lecteur au théorème 1.8.6. Nous avons cherché à distinguer le plus soigneusement possible les identifications parfaitement canoniques de celles qui ne le sont qu’à scalaire près, ce qui alourdit un peu la rédaction, mais évite tout risque de confusion.

1.8.1. Points fixes de ψ et le G-module $tN_{\text{rig}}(V) \boxtimes \mathbb{P}^1$. — Soit $V \in \mathcal{V}(\pi)$. Notons

$$tN_{\text{rig}}(V) \boxtimes \mathbb{P}^1 = \{ z \in D_{\text{rig}}(V) \boxtimes \mathbb{P}^1 \mid \text{Res}_z(x), \text{Res}_z(wz) \in tN_{\text{rig}}(V) \}$$

et définissons d’une manière similaire $tN^{[0, r]}(V) \boxtimes \mathbb{P}^1$ pour n assez grand. Il n’est pas clair a priori que $tN_{\text{rig}}(V) \boxtimes \mathbb{P}^1$ soit stable sous l’action de G, mais nous allons voir que c’est en effet le cas. Ce résultat a déjà été démontré de manière très détournée dans le chapitre VI de [38], puis d’une manière complètement différente dans [41]. Nous en donnons une preuve différente.

44. Noter que $v_x \in \Pi(V)^{\text{P-lisse}}_c$ grâce à la remarque 1.7.5.
Proposition 1.8.2. — Pour tout $V \in \mathcal{V}(\pi)$ il existe n tel que l’inclusion $^{(45)} (\Pi(V)^{an})^* \subset D_{rig}(V) \boxtimes \mathbb{P}^1$ induise une inclusion

$$((\Pi(V)^{an}/\Pi(V)\text{\scriptsize{\textit{lis}}})^*)_n \subset \mathcal{N}[n,r_n](V) \boxtimes \mathbb{P}^1.$$

Démonstration. — Soit $m(V)$ comme dans la discussion qui suit la proposition 1.7.7 et soit $l \in (\Pi(V)^{an}/\Pi(V)\text{\scriptsize{\textit{lis}}})^*$, vu comme élément de $\Pi(V)^{an}$ nul sur $\Pi(V)\text{\scriptsize{\textit{lis}}}$. En combinant l’isomorphisme $\Pi(V)\text{\scriptsize{\textit{lis}}} \simeq \text{LC}_c(Q^p_\mathbb{R},(\text{\scriptsize{\textit{V}}}\text{\scriptsize{\textit{d}}})\text{\scriptsize{\textit{f}}}) \oplus \text{\scriptsize{\textit{D}}}\text{\scriptsize{\textit{d}}}$ (théorème 1.7.11) avec le théorème 1.7.8 et la proposition 1.7.7, on obtient $j_{i,n}(l) \in t\text{\scriptsize{\textit{N}}}_{d}^{+}(\Pi(V))$ pour $n \geq m(V)$ et $j \in \mathbb{Z}$. En particulier (en prenant $j = n$) $\varphi^{-n}((\text{\scriptsize{\textit{Res}}}_{a}(l))) \in t\text{\scriptsize{\textit{N}}}_{d}^{+}(V)$ pour $n \geq m(V)$ et donc $\text{\scriptsize{\textit{Res}}}_{a}(l) \in t\text{\scriptsize{\textit{N}}}[n,r_{m(V)}](V)$ (cf. l’exemple 1.6.5), ce qui permet de conclure (en remplaçant l par tl).

Rappelons que si Δ est un (φ, Γ)-module sur \mathcal{R}, il existe un unique opérateur ψ sur Δ qui commute avec Γ, s’annule sur $\sum_{i=1}^{p-1}(1+T)^i \varphi(\Delta)$ et satisfait $\psi \circ \varphi = \text{id}$. Soit maintenant $V \in \mathcal{V}(\pi)$ et identifions comme toujours \hat{V} avec V. Par construction, on a

$$\text{Res}_{\varphi}\circ [(\varphi^{\frac{1}{n}}, \Gamma)]_{=1} = \psi \circ \text{Res}_{\varphi} \text{ sur } D_{rig}(V) \boxtimes \mathbb{P}^1.$$

Ainsi, l’inclusion $(\Pi(V)^{an})^* \subset D_{rig}(V) \boxtimes \mathbb{P}^1$ composée avec Res_{φ} induit une inclusion

$$[(\Pi(V)^{an})^*]_{=1} \subset D_{rig}(V)^{\psi=1}.$$

Théorème 1.8.3. — L’inclusion précédente est un isomorphisme de $D(\Gamma)$-modules et induit un isomorphisme de $D(\Gamma)$-modules

$$[(\Pi(V)^{an}/\Pi(V)\text{\scriptsize{\textit{lis}}})^*]_{=1} \simeq (t\text{\scriptsize{\textit{R}}}_{\text{\scriptsize{rig}}}(V))^{\psi=1}.$$

En composant avec Res_{φ} on obtient un isomorphisme de $D(\Gamma)$-modules

$$[(\Pi(V)^{an}/\Pi(V)\text{\scriptsize{\textit{lis}}})^*]_{=1} \simeq (1-\varphi)(t\text{\scriptsize{\textit{R}}}_{\text{\scriptsize{rig}}}(V))^{\psi=1}.$$

Démonstration. — La seconde partie est une conséquence de la première, de l’égalité $\text{Res}_{\varphi} = 1 - \varphi$ sur $(t\text{\scriptsize{\textit{R}}}_{\text{\scriptsize{rig}}}(V))^{\psi=1}$ et du fait que $D_{rig}(V)^{\psi=1} = 0$, car V n’est pas trianguline.

Commençons par montrer que $[(\Pi(V)^{an})^*]_{=1} \subset D_{rig}(V)^{\psi=1}$ est un isomorphisme. Soit $D(V)$ le (φ, Γ)-module étale sur l’anneau de Fontaine \mathcal{E} attaché à V par l’équivalence de catégories de Fontaine [69]. D’après [38, prop. V.1.18] l’application naturelle $D(\Gamma) \otimes_{\Lambda(\Gamma)} D(V)^{\psi=1} \rightarrow D_{rig}(V)^{\psi=1}$ est un isomorphisme de $D(\Gamma)$-modules, où $\Lambda(\Gamma)$ est l’algèbre des opérateurs sur π à valeurs dans L. Or [42, remarque V.14] l’application Res_{φ} induit un isomorphisme de $\Lambda(\Gamma)$-modules

$$(\Pi(V)^{-})[(\varphi^{\frac{1}{n}}, \Gamma)]_{=1} \simeq D(V)^{\psi=1}.$$

Soit alors $z \in D_{rig}(V)^{\psi=1}$ et écrivons

$$z = \sum_{i=1}^{n} \int_{1} \gamma(x_i)\mu_i(\gamma)$$

avec $x_i \in D(V)^{\psi=1}$ et $\mu_i \in D(\Gamma)$. Si $l_i \in (\Pi(V)^{-})[(\varphi^{\frac{1}{n}}, \Gamma)]_{=1}$ satisfont $\text{Res}_{\varphi}(l_i) = x_i$, alors

$$z = \text{Res}_{\varphi}(l), \text{ où } l = \sum_{i=1}^{n} \int_{1} \chi_{\text{cyc}}(\gamma) \mu_i(\gamma) \in [(\Pi(V)^{an})^*]_{=1},$$

ce qui permet de conclure.

Ensuite, la proposition 1.8.2 montre que Res_{φ} induit une inclusion

$$[(\Pi(V)^{an}/\Pi(V)\text{\scriptsize{\textit{lis}}})^*]_{=1} \subset (t\text{\scriptsize{\textit{N}}}_{\text{\scriptsize{rig}}}(V))^{\psi=1}.$$

(45) On identifie implicitement ici \hat{V} et V.

Soit $z \in (\mathcal{M}_\text{rig}(V))^\psi=1$. D’après ce que l’on vient de faire, il existe $l \in [(\Pi(V)^{\text{an}})^*]_0^1(0 \ 1) = 1$ tel que $\text{Res}_{\mathcal{M}}(l) = z$. Nous allons montrer que l s’annule sur $\Pi(V)^{\text{lis}} = \Pi(V)^{\text{p-lis}}$ l’égalité découle du théorème 1.7.11), ce qui permettra de conclure. Soit $a \geq m(V)$ tel que $z \in D^{(a,1)}(V)$. Comme $(0 \ 1)_l = l$, on a $\varphi^*(l) = \varphi^{-n}(z) \in t\mathcal{N}_\text{filt}(V)$ pour $n \geq a$ et $j \in \mathbb{Z}$. Le résultat s’obtient alors en combinant les propositions 1.7.7 et 1.7.9 avec le théorème 1.7.8.

\[\square \]

Proposition 1.8.4. — Pour tout $V \in \mathcal{V}(\pi)$

a) Le sous-espace $t\mathcal{N}_\text{rig}(V) \otimes \mathbb{Z}_{\text{p}}^* := (t\mathcal{N}_\text{rig}(V))^\psi=0$ est stable sous l’involution $w = (\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix})$ de $D_{\text{rig}}(V) \otimes \mathbb{Z}_{\text{p}}^* = D_{\text{rig}}(V)^\psi=0$.

b) Le sous-espace $t\mathcal{N}_\text{rig}(V) \otimes \mathbb{P}^1$ de $D_{\text{rig}}(V) \otimes \mathbb{P}^1$ est stable sous l’action de G.

\[\square \]

1.8.2. La représentation $\Pi(\pi, 0)$. — Nous avons besoin du résultat suivant de Colmez, qui permet de se débarrasser de la dépendance dans la filtration de Hodge dans les constructions précédentes.

**Théorème 1.8.5. — Soit $V \in \mathcal{V}(\pi)$. Choisissons un isomorphisme $D_{\text{pat}}(V) \simeq M(\pi)$, induisant un isomorphisme $\mathcal{N}_\text{rig}(V) \simeq \mathcal{N}_\text{rig}(\pi)$ (cf. fin de la section 1.6). L’involution de $(t\mathcal{N}_\text{rig}(\pi))^\psi=0$ induite par l’involution w de $(t\mathcal{N}_\text{rig}(V))^\psi=0$ ne dépend ni du choix de $V \in \mathcal{V}(\pi)$ ni du choix de l’isomorphisme $D_{\text{pat}}(V) \simeq M(\pi)$.

\[\square \]

Notons encore w l’involution de $(t\mathcal{N}_\text{rig}(\pi))^\psi=0$ obtenue dans le théorème 1.8.5. L’existence de cette involution combinée avec le fait que $t\mathcal{N}_\text{rig}(\pi)$ est un (φ, Γ)-module sur \mathcal{R} permettent de copier les constructions usuelles de Colmez (voir le paragraphe 2 du chapitre II de [38]) et d’obtenir un faisceau G-équivariant $U \to t\mathcal{N}_\text{rig}(\pi) \otimes \mathbb{P}^1$ qui est un module d’action canonique de P^+ défini par

\[(p_t^a \sigma_b)(z) = (1 + Ty)\sigma_a(\varphi^k(z)). \]

Notons qu’en copiant ces constructions on obtient à priori seulement un faisceau équivariant sous l’action du groupe libre engendré par P^+ et w, mais toutes les relations qui ont lieu dans G sont satisfaites aussi par les sections de ce faisceau, car c’est le cas pour le faisceau attaché à $D_\text{rig}(V)$ (pour un $V \in \mathcal{V}(\pi)$ quelconque) et car $t\mathcal{N}_\text{rig}(V) \subset D_{\text{rig}}(V)$.

Soit $V \in \mathcal{V}(\pi)$. Fixons un isomorphisme $D_{\text{pat}}(V) \simeq M(\pi)$, qui induit un isomorphisme $t\mathcal{N}_\text{rig}(V) \simeq t\mathcal{N}_\text{rig}(\pi)$. Cet isomorphisme s’étend par construction en un isomorphisme G-équivariant

\[t\mathcal{N}_\text{rig}(V) \otimes \mathbb{P}^1 \simeq t\mathcal{N}_\text{rig}(\pi) \otimes \mathbb{P}^1, \]

\[\square \]
qui dépend du choix de l’isomorphisme $D_{\text{par}}(V) \simeq M(\pi)$, mais uniquement à scalaire près.

Ensuite, par construction de $t_{N_{\text{rig}}}(V) \boxtimes \mathbb{P}^1$, on dispose d’une inclusion G-équivariante canonique

$$t_{N_{\text{rig}}}(V) \boxtimes \mathbb{P}^1 \subset D_{\text{rig}}(V) \boxtimes \mathbb{P}^1.$$

On en déduit une inclusion G-équivariante

$$t_{N_{\text{rig}}}(\pi) \boxtimes \mathbb{P}^1 \subset D_{\text{rig}}(V) \boxtimes \mathbb{P}^1,$$

canonique à scalaire près ; son image est donc un sous-G-module canonique de $D_{\text{rig}}(V) \boxtimes \mathbb{P}^1$. Enfin, la proposition 1.8.2 fournit une inclusion canonique $(\Pi(V)^{\text{an}}/\Pi(V)^{\text{lisser}})^* \subset t_{N_{\text{rig}}}(V) \boxtimes \mathbb{P}^1$, donc une inclusion G-équivariante

$$(\Pi(V)^{\text{an}}/\Pi(V)^{\text{lisser}})^* \subset t_{N_{\text{rig}}}(\pi) \boxtimes \mathbb{P}^1,$$

canonique à scalaire près.

Après ces préliminaires un peu pédants mais malheureusement nécessaires, on peut démontrer le résultat suivant, dû à Colmez [38, 41]. Notre preuve est différente de celles trouvées dans loc.cit., mais elle s’inspire fortement d’une astuce que l’on peut trouver dans [41].

Théorème 1.8.6. — Soient $V_1, V_2 \in \mathcal{V}(\pi)$. On a

$$(\Pi(V_1)^{\text{an}}/\Pi(V_1)^{\text{lisser}})^* = (\Pi(V_2)^{\text{an}}/\Pi(V_2)^{\text{lisser}})^*$$

t’à l’intérieur de $t_{N_{\text{rig}}}(\pi) \boxtimes \mathbb{P}^1$. Ainsi, il existe un isomorphisme canonique à scalaire près

$$\Pi(V_1)^{\text{an}}/\Pi(V_1)^{\text{lisser}} \simeq \Pi(V_2)^{\text{an}}/\Pi(V_2)^{\text{lisser}}.$$

Démonstration. — La seconde assertion est une conséquence de la première et de la discussion qui précède le théorème 1.8.6. Notons pour simplifier $\Delta_j = D_{\text{rig}}(V_j)$ et $N_j = N_j(\pi)$, ainsi que $\Pi_j = \Pi(V_j)$. Fixons des identifications $N_{\text{rig}}(V_j) = N_j$ et regardons $(\Pi_j^{\text{an}}/\Pi_j^{\text{lisser}})^*$ comme un sous-$D(G)$-module de $\Delta_j \boxtimes \mathbb{P}^1$, via la composée d’inclosures $(\Pi_j^{\text{an}}/\Pi_j^{\text{lisser}})^* \subset t_{N_j} \boxtimes \mathbb{P}^1$ construites ci-dessus.

Montrons d’abord que $(\Pi_1^{\text{an}}/\Pi_1^{\text{lisser}})^*$ est contenu dans $(\Pi_2^{\text{an}})^* \subset \Delta_2 \boxtimes \mathbb{P}^1$. On déduit du théorème de Hahn-Banach et du caractère réflexif de $\Pi_1^{\text{an}}/\Pi_1^{\text{lisser}}$ que $g((\Pi_1^{\text{an}})^*)$ est dense dans $(\Pi_2^{\text{an}}/\Pi_2^{\text{lisser}})^*$, et puisque $(\Pi_2^{\text{an}})^*$ est fermé dans $\Delta_2 \boxtimes \mathbb{P}^1$, il suffit de montrer que $g((\Pi_1^{\text{an}})^*) \subset (\Pi_2^{\text{an}})^*$, et même $u^*((\Pi_1^{\text{an}})^*) \subset (\Pi_2^{\text{an}})^*$ (si cela est vrai, on déduit le résultat pour u^* en conjuguant par w, et pour a^+ et a^- en utilisant les relations $h = u^+ - u^- - u^+ = 2a^+ = -2a^-$).

Autrement dit, il s’agit de montrer que $u^*((\Pi_1^{\text{an}})^*)$ et $(\Pi_2^{\text{an}})^*$ sont orthogonaux dans $\Delta_2 \boxtimes \mathbb{P}^1$. Soient Π_1^0 et Π_2^0 les boules unités pour des normes G-invariantes sur Π_1, respectivement Π_2. Alors $(\Pi_1^0)^* \otimes_{\mathcal{O}_L} L = \Pi_1^0$ et $(\Pi_2^0)^* \otimes_{\mathcal{O}_L} L = \Pi_2^0$ sont denses dans $(\Pi_1^{\text{an}})^*$ et $(\Pi_2^{\text{an}})^*$, respectivement ; il suffit donc de montrer que $u^*((\Pi_1^0)^*)$ et $(\Pi_2^0)^*$ sont orthogonaux dans $\Delta_2 \boxtimes \mathbb{P}^1$. Mais pour tous $x \in (\Pi_1^0)^*$, $y \in (\Pi_2^0)^*$ et $n \in \mathbb{Z}$ on a

$$\{u^* x, y\}_{\mathbb{P}^1} = \{(p^n_{0,1})^* u^* x, (p^n_{0,1})^* y\}_{\mathbb{P}^1} = p^n\{u^* (p^n_{0,1})^* x, (p^n_{0,1})^* y\}_{\mathbb{P}^1} \in p^n\{u^*(\Pi_1^0)^*, (\Pi_2^0)^*\}_{\mathbb{P}^1}.$$

La compacité de $(\Pi_1^0)^*$ et $(\Pi_2^0)^*$ et la continuité de $\{ \}_{\mathbb{P}^1}$ permettent de conclure que $\{u^* x, y\}_{\mathbb{P}^1} = 0$ et donc $g((\Pi_1^{\text{an}})^*) \subset (\Pi_2^{\text{an}})^*$, comme voulu (cette dernière partie de l’argument est fortement inspirée de [41]).

Il nous reste à montrer que tout élément $l \in (\Pi_1^{\text{an}}/\Pi_1^{\text{lisser}})^*$, vu comme élément de $(\Pi_2^{\text{an}})^*$, s’annule sur Π_2^{lisser}. D’après la proposition 1.8.2 il existe $a \geq m(V_1)$ tel que $(\Pi_1^{\text{an}}/\Pi_1^{\text{lisser}})^* \subset t_{N_{\text{rig}}(\pi)} \boxtimes \mathbb{P}^1$, ce qui fait que $i,j(n)(l) \in t_{N_{\text{rig}}(\pi)} \boxtimes \mathbb{P}^1$ pour tous $j \in \mathbb{Z}$ et $n \geq a$. On conclut en utilisant les théorèmes 1.7.8 et 1.7.11, ainsi que les propositions 1.7.6 et 1.7.7. □
Définition 1.8.7. — On note $\Pi(\pi, 0)^*$ le sous-G-module de $tN_{rig}(\pi) \boxtimes \mathbb{P}^1$ image de $(\Pi(V)^{an}/\Pi(V)^{lisse})^*$ pour n’importe quel $V \in \mathcal{V}(\pi)$ et n’importe quel isomorphisme $D_{ps}(V) \simeq M(\pi)$. On note $\Pi(\pi, 0)$ le dual topologique de $\Pi(\pi, 0)^*$ muni de l’action duale de G.

Ainsi, $\Pi(\pi, 0)$ est une représentation localement analytique de G sur un espace de type compact et pour tout $V \in \mathcal{V}(\pi)$ on dispose d’un isomorphisme $\Pi(V)^{an}/\Pi(V)^{lisse} \simeq \Pi(\pi, 0)$, canonique à scalaire près. On peut reformuler comme suit le théorème 1.5.1.

Théorème 1.8.8. — Il existe un morphisme G-équivariant continu non nul

$\Phi : \Pi(\pi, 0)^* \to \mathcal{O}(\Sigma_n)^\sigma$.

1.9. Structure de $\mathcal{O}(\Omega)$-module sur $\Pi(\pi, 0)^*$

Ce chapitre assez technique est un des points centraux de ce texte. On y explique dans un premier temps la construction d’un opérateur ∂, déduit de la connexion de l’équation différentielle p-adique de Berger, sur $\Pi(\pi, 0)^*$. Cet opérateur joue un rôle tout à fait semblable à l’opérateur de « multiplication par z » sur $\mathcal{O}(\Sigma_n)$ (z est la coordonnée sur Ω) et cette heuristique guide sa construction. L’observation de base est que cet opérateur sur $\mathcal{O}(\Sigma_n)$ peut se décrire en comparant les actions infinitésimales a^+ et u^+ des groupes $\left(\mathbb{Z}_p^* \mathbb{Z}_p\right)$ et $\left(\begin{array}{cc}1 & \mathbb{Z}_p \mathbb{Z}_p \end{array}\right)$. En effet, on vérifie sans mal que

$a^+ - 1 = u^+ \circ \partial$.

Nous verrons que l’on peut définir un unique automorphisme ∂ du L-espace vectoriel topologique $\Pi(\pi, 0)^*$ qui satisfait la relation précédente. Ce résultat est dû à Colmez [41], mais nous avons décidé de le reprendre de manière assez détaillée, avec un argument différent et plus direct.

Puis nous montrons que l’analogue précédente n’est pas anodine et améliorons le résultat en munissant $\Pi(\pi, 0)^*$ d’une structure de $\mathcal{O}(\Omega)$-module telle que la variable z agisse via ∂. Cet énoncé, dont la preuve exploite la dualité de Morita [109, 122], jouera un rôle capital dans la suite.

Nous fixons $\Pi \in \mathcal{V}(\pi)$ et notons $V = V(\Pi)$, $D_{rig} = D_{rig}(V)$. On fixe un isomorphisme $D_{ps}(V) \simeq M(\pi)$, ce qui induit un isomorphisme $N_{rig} = N_{rig}(V) \simeq N_{rig}(\pi)$ et (théorème 1.8.6 et ce qui suit) une identification $\Pi(\pi, 0) = \Pi^{an}/\Pi^{lisse}$. La construction qui suit ne dépend pas des choix faits, mais il convient de les introduire pour certains arguments techniques.

1.9.1. Construction de l’opérateur ∂ sur $\Pi(\pi, 0)^*$. — Le résultat suivant, qui sera utilisé constamment dans la suite, repose sur la proposition 1.6.4.

Proposition 1.9.1. — L’opérateur a^+ est d’image fermée sur $(\Pi^{an})^*$ et induit un homéomorphisme entre $(\Pi^{an})^*$ et $u^+((\Pi^{an})^*)$.

Démonstration. — Considérons une suite $z_n = (x_n, y_n) \in (\Pi^{an})^* \subset D_{rig} \boxtimes \mathbb{P}^1$ telle que u^+z_n converge dans $(\Pi^{an})^*$ vers $z = (x, y) \in (\Pi^{an})^*$. Puisque $u^+z_n = (tx_n, -\partial^2(y_n))$ (utiliser le théorème 1.7.3) converge dans $D_{rig} \boxtimes \mathbb{P}^1$ vers (x, y), il existe $a > 0$ tel que $\lim_{n \to +\infty} tx_n = x$, $\lim_{n \to +\infty} (-t\partial^2(y_n)) = y$ dans $D_{\partial}^{[0, r_a]}$. Comme $tD_{\partial}^{[0, r_a]}$ est fermé dans $D_{\partial}^{[0, r_a]}$ et la multiplication par t est un homéomorphisme $D_{\partial}^{[0, r_a]}$ dans $tD_{\partial}^{[0, r_a]}$ (par le théorème de l’image ouverte), on conclut que $x = tx'$ avec $x' \in D_{\partial}^{[0, r_a]}$ et x_n tend vers x' dans $D_{\partial}^{[0, r_a]}$.

Pour les y_n l’argument est plus délicat. D’abord, le même raisonnement avec $D_{\partial}^{[0, r_a]}$ remplacé par $N_{\partial}^{[0, r_a]}$ (noter que $\partial^2(y_n) \in N_{\partial}^{[0, r_a]}$ pour tout n assez grand, en grandissant éventuellement a) montre que $y = -tu$ avec $u \in N_{\partial}^{[0, r_a]}$, et $\partial^2(y_n)$ tend vers u dans $N_{\partial}^{[0, r_a]}$. En
particulier $\partial^2(y_n)$ converge vers u dans N_{rig}. Mais $\partial : N_{\text{rig}} \to N_{\text{rig}}$ étant une bijection linéaire continue entre des espaces LF (proposition 1.6.4), c’est un homéomorphisme (théorème de l’image ouverte), donc y_n converge dans N_{rig} vers $y' := \partial^{-2}(u)$.

On a donc montré l’existence de $x' \in D_{\text{rig}}$ et $y' \in N_{\text{rig}}$ tels que $x = tx'$, $y = -t\partial^2(y')$ et x_n tend vers x', alors que y_n tend vers y' dans N_{rig}. Il existe donc $b > a$ tel que y_n tend vers y' dans $N^{[0,rs]}$. Alors $y_n \in D^{[0,rs]}$ converge dans $N^{[0,rs]}$ vers y' et comme $D^{[0,rs]}$ est fermé dans $N^{[0,rs]}$, on obtient $y' \in D^{[0,rs]}$ et donc $z' := (x', y') \in D_{\text{rig}} \times D_{\text{rig}}$.

Pour montrer que l’image de u^+ est fermée, il reste à vérifier que $z' := (x', y') \in (\Pi_{\text{an}})^*$, car si ce résultat est établi, l’égalité $z = u^+ z'$ est claire par construction. Le fait que $\text{Res}_{Z^r}^x(y') = w(\text{Res}_{Z^r}^x(x'))$ suit en passant à la limite dans $\text{Res}_{Z^r}(y_n) = w(\text{Res}_{Z^r}(x_n))$. Donc $z' \in D_{\text{rig}} \otimes \mathbf{P}^1$. Il reste à vérifier que z' est orthogonal à $(\Pi_{\text{an}})^*$, ce qui suit du fait que les (x_n, y_n) le sont. Enfin, la dernière assertion est une conséquence de ce que l’on a déjà démontré et du théorème de l’image ouverte pour les Fréchets, ce qui permet de conclure.

Remarque 1.9.2. — On peut se demander si aM est fermé dans M pour tout $a \in A$, toute algèbre de Fréchet-Stein A et tout A-module coadmissible M (au sens de Schneider et Teitelbaum [125]). Cela découle directement des résultats de [125] quand A est commutatif, mais tombe malheureusement en défaut si A ne l’est plus (même si M est un A-module simple). Le lecteur pourra s’amuser à construire des contre-exemples en utilisant (par exemple) des induites comme dans le chapitre 5 de [123] (prendre, avec les notations de loc. cit., un caractère χ tel que $c(\chi)$ soit un nombre de Liouville p-adique et montrer en utilisant les formules explicites du lemme 5.2 de loc. cit., que u^- n’est pas d’image fermée sur M_\times).

Corollaire 1.9.3. — L’opérateur u^+ est d’image fermée sur $\Pi(\pi,0)^*$ et

$$\Pi(\pi,0)^*/u^+(\Pi(\pi,0)^*) \simeq (\Pi(\pi,0)^{u^+=0})^*.$$

Démonstration. — Le premier point découle directement de la proposition précédente. Ensuite, $\Pi(\pi,0)^*/u^+\Pi(\pi,0)^*$ est un Fréchet nucléaire d’après ce que l’on vient de montrer. Il est donc réflexif et comme son dual est trivialement $\Pi(\pi,0)^{u^+=0}$, cela permet de conclure.

Théorème 1.9.4. — Il existe une unique application linéaire continue $\partial : \Pi(\pi,0)^* \to \Pi(\pi,0)^*$ telle que l’on ait une égalité d’opérateurs sur $\Pi(\pi,0)^*$

$$a^+ - 1 = u^+ \circ \partial.$$

Démonstration. — L’unicité découle simplement du fait que u^+ est injectif sur $\Pi(\pi,0)^*$, le point délicat est l’existence. Soit $l \in \Pi(\pi,0)^*$, on veut montrer que $l_1 := a^+ l - l$ est dans $u^+\Pi(\pi,0)^*$. D’après le corollaire précédent, il suffit de voir que l_1 s’annule sur $\Pi(\pi,0)^{u^+=0} = (\Pi_{\text{an}}/\Pi_{\text{lisse}})^{u^+=0}$. En considérant l_1 comme une forme linéaire sur Π_{an} s’annulant sur Π_{lisse}, il s’agit de montrer que $l_1(a^+ v + v) = 0$ pour tout $v \in \Pi_{\text{an}}$ tel que $u^+ v \in \Pi_{\text{lisse}}$. Il suffit donc de montrer le

Lemme 1.9.5. — Soit $v \in \Pi_{\text{an}}$ tel que $u^+ v \in \Pi_{\text{lisse}}$. Alors $v_1 := a^+ v + v \in \Pi_{\text{lisse}}$.

Démonstration. — La relation $u^+(a^+ + 1) = a^+ u^+$ et le fait que $a^+ u^+ v = 0$ montrent que $u^+ v_1 = 0$. Comme le Casimir agit par 0 sur Π_{an} (théorème 1.7.3), on obtient aussi

$$u^+ u^+ v + a^+ v + (a^+)^2 v = 0,$$

et donc $a^+ v_1 = 0$ (car $u^- u^+ v = 0$ par hypothèse). Le théorème 1.7.11 permet de conclure.
Le résultat suivant montre que la connaissance de \(u^+ \) et \(\partial \) sur \(\Pi(\pi,0)^* \) équivaut à la connaissance de toute l’action de \(U(\mathfrak{sl}_2) \):

Proposition 1.9.6. — a) En tant qu’opérateurs sur \(\Pi(\pi,0)^* \)
\[
a^+ = \partial \circ u^+, \quad \partial u^+ - u^+ \partial = 1, \quad u^- = -\partial a^+ = -\partial^2 u^+.
\]

b) Pour tout \(\Pi \in \mathcal{V}(\pi) \), le choix d’un isomorphisme \(\Pi(\pi,0) \simeq \Pi^{\text{an}}/\Pi^{\text{basse}} \) induit une inclusion \(\mathfrak{g}(\Pi^{\text{an}})^* \subset \Pi(\pi,0)^* \) et on a une égalité d’opérateurs sur \(\Pi(\pi,0)^* \)
\[
a^+ = \partial \circ u^+, \quad u^- = -\partial a^+ = -\partial^2 u^+.
\]

Démonstration. — a) On a
\[
u^+ a^+ = a^+ u^+ - u^+ = (a^+ - 1)u^+ = u^+ \partial u^+,
\]
ce qui permet de conclure pour la première égalité, car \(u^+ \) est injective sur \(\Pi(\pi,0)^* \). La seconde relation s’en déduit. Ensuite, comme le Casimir agit trivialement sur \(\Pi(\pi,0)^* \) et que \(u^+ u^- - u^- u^+ = h = 2\alpha^+ \), on a
\[
u^+ u^- = a^+ - (a^+)^2 = -u^+ \partial u^+,
\]
donc \(u^- = -\partial a^+ = -\partial^2 u^+ \), comme voulu.

b) L’inclusion est claire. Soit \(l \in (\Pi^{\text{an}})^* \), alors \(l_1 = u^+ l \in \Pi(\pi,0)^* \) et donc \(a^+ l_1 - l_1 = u^+ \partial l_1 \), autrement dit \(a^+ u^+ - u^+ = u^+ \partial u^+ l \). En utilisant la relation \(u^+ a^+ = a^+ u^+ - u^+ \) sur \((\Pi^{\text{an}})^* \) on obtient bien \(u^+ (a^+ l - \partial a^+) l = 0 \), ce qui permet de conclure pour la première relation, car \(u^+ \) est injectif sur \(\Pi^{\text{an}})^* \). Puisque \(\Pi^{\text{an}} \) a un caractère infinitésimal nul (théorème 1.7.3) la relation \(u^- = -\partial a^+ = -\partial^2 u^+ \) s’en déduit comme dans la preuve de la partie a). \(\Box \)

Enfin, il sera utile de comprendre le lien entre l’action de \(G \) et les opérateurs \(\partial \) et \(u^+ \), lien fourni par le :

Théorème 1.9.7. — Pour tout \(g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G \) l’opérateur \(a - c \partial \) est inversible sur \(\Pi(\pi,0)^* \) et
\[
g \circ \partial \circ g^{-1} = (d\partial - b)(a - c \partial)^{-1}, \quad gu^+ g^{-1} = \frac{1}{\det g} (a - c \partial)^2 u^+.
\]

Démonstration. — En conjuguant la relation \(a^+ - 1 = u^+ \circ \partial \) avec \(g \), on obtient
\[
ga^+ g^{-1} - 1 = gu^+ g^{-1} \circ g \partial g^{-1}.
\]

Un calcul immédiat montre les identités suivantes dans \(D(G) \), donc aussi dans \(\Pi(\pi,0)^* \)
\[
ga^+ g^{-1} = \frac{1}{\det g} (a \partial a^+ - abu^+ + cdu^+ - bea^+), \quad gu^+ g^{-1} = \frac{1}{\det g} (-ach + a^2 u^+ - c^2 a^-).
\]

En utilisant la proposition 1.9.6 (ainsi qu’un calcul direct laissé au lecteur), ces identités se réécrivent
\[
gu^+ g^{-1} = \frac{1}{\det g} (a - c \partial)^2 u^+ \quad \text{et} \quad ga^+ g^{-1} = \frac{1}{\det g} (a - c \partial)(d\partial - b)u^+
\]

Nous avons besoin du

Lemme 1.9.8. — On a une égalité d’opérateurs sur \(\Pi(\pi,0)^* \)
\[
g \partial g^{-1}(a - c \partial) = d\partial - b.
\]

Démonstration. — Pour simplifier les formules, posons \(x = a - c \partial \) et \(y = d\partial - b \). La relation \(\partial u^+ - u^+ \partial = 1 \) fournit alors
\[
yu^+ x - xu^+ y = \det g,
\]
qui, combinée avec la relation (9), donne
\[
(ga^+ g^{-1} - 1)x = \left(\frac{1}{\det g} xyu^+ - 1 \right)x = \frac{1}{\det g} xyu^+ x - x =
\]
En combinant ceci avec la relation \((ga^\star g^{-1} - 1)x = gu^\star g^{-1} \circ g\partial g^{-1}x\) et avec l’injectivité de \(gu^\star g^{-1}\) sur \(\Pi(\pi,0)^*\), on obtient enfin \(g\partial g^{-1}x = y\), ce qui permet de conclure.

Le théorème 1.9.7 est ainsi réduit à la preuve de l’inversibilité de \(a - c\partial\). Or, on déduit du lemme 1.9.8 la relation
\[
(c \cdot g\partial g^{-1} + d)(a - c\partial) = \det g,
\]
ce qui permet de conclure.

1.9.2. Construction de la structure de \(\mathcal{O}(\Omega)\)-module

Afin de prouver dans la section suivante que le morphisme \(\Phi\) du théorème 1.8.8 est surjectif, il sera vital de savoir que l’on peut munir \(\Pi(\pi,0)^*\) d’une structure de \(\mathcal{O}(\Omega)\)-module, et c’est à cette tâche qu’est consacrée ce paragraphe. Vu la construction de l’opérateur \(\partial\) dans le paragraphe 1.9.1, le lecteur ne sera pas surpris par l’énoncé du

Théorème 1.9.9. — Il existe une unique structure de \(\mathcal{O}(\Omega)\)-module sur \(\Pi(\pi,0)^*\) qui soit compatible avec sa structure de \(L\)-espace vectoriel et telle que \(z.l = \partial(l)\) pour tout \(l \in \Pi(\pi,0)^*\).

La preuve du théorème 1.9.9 occupe le reste de ce chapitre. L’argument suit un chemin un peu détourné, car l’opérateur \(\partial\) sur \(\Pi(\pi,0)\) (ou son dual) ne préserve pas de sous-espaces de Banach « évidents » de \(\Pi(\pi,0)\) (en particulier, il ne préserve pas les vecteurs localement analytiques de rayon fixé). La raison en est que même si \(\partial\) est construit à partir de la connexion \(\partial\) sur \(\mathcal{N}_{16}\), sa définition fait également apparaître \(\partial^{-1}\), qui est difficilement contrôlable. Pour contourner ces difficultés, nous utilisons la dualité de Morita, des arguments d’analyse fonctionnelle et le résultat technique suivant. On note \(\langle , \rangle\) l’accouplement canonique entre \(\Pi(\pi,0)^*\) et \(\Pi(\pi,0)\).

Proposition 1.9.10. — Soient \(v \in \Pi(\pi,0)\) et \(l \in \Pi(\pi,0)^*\). L’application
\[
\phi_{l,v} : \mathbb{Q}_p \to L, \quad \phi_{l,v}(x) = \langle (\partial - x)^{-1}l, v \rangle
\]
s’étend en une fonction localement analytique sur \(\mathbb{P}^1(\mathbb{Q}_p)\), nulle à l’infini.

Démonstration. — Posons \(\phi_{l,v}(\infty) = 0\). Pour montrer que \(\phi_{l,v}\) est localement analytique, nous aurons besoin du résultat suivant :

Lemme 1.9.11. — Pour tous \(g \in G\), \(l \in \Pi(\pi,0)^*\), \(v \in \Pi(\pi,0)\) et \(x \in \mathbb{P}^1(\mathbb{Q}_p)\) on a
\[
\phi_{l,v}(gx) = \frac{cx + d}{\det g} \phi_{(c\partial+d)g^{-1}l,g^{-1}v}(x).
\]

Démonstration. — C’est un calcul un peu fastidieux dont l’ingrédient clé est le théorème 1.9.7. Explicitement, en utilisant deux fois ce théorème on obtient, en posant \(g = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right)\):
\[
\phi_{l,v}(gx) = \langle (\partial - gx)^{-1}l, v \rangle = (cx + d)\langle (d\partial - b + x(c\partial - a))^{-1}l, v \rangle
\]
\[
= -(cx + d)(a - c\partial)^{-1}(x - (d\partial - b)(a - c\partial)^{-1})^{-1}l, v \rangle = -(cx + d)(a - c\partial)^{-1}(x - g\partial g^{-1})^{-1}l, v \rangle
\]
\[
= (cx + d)(a - c\partial)^{-1}g(\partial - x)^{-1}g^{-1}l, v \rangle = (cx + d)(a - cg^{-1}\partial g)^{-1}(\partial - x)^{-1}g^{-1}l, g^{-1}v \rangle
\]
\[
= \frac{cx + d}{\det g} \langle (c\partial + d)(\partial - x)^{-1}g^{-1}l, g^{-1}v \rangle = \frac{cx + d}{\det g} \phi_{(c\partial+d)g^{-1}l,g^{-1}v}.
\]
Il suffit donc de voir que $\phi_{l,v}$ est analytique au voisinage de 0. Notons que grâce au théorème 1.9.7 on a $\phi_{l,v}(x) = \langle \left(\frac{1}{0} x \frac{1}{1} \right) \partial_{-}^{-1} \left(\frac{1}{0} \frac{-x}{1} \right) l, v \rangle = \langle l, \left(\frac{1}{0} x \frac{1}{1} \right) \partial_{-}^{-1} \left(\frac{1}{0} \frac{-x}{1} \right) v \rangle$.

En écrivant $\Pi(\pi,0) = \Pi^{an}/\Pi^{lisse}$, pour un choix de $\Pi \in \mathcal{V}(\pi)$, et en filtrant Π « par rayon d’analyticité » (voir [42], chap. IV) pour les détails, on peut écrire $\Pi(\pi,0)$ comme une réunion croissante d’espaces de Banach $\Pi(\pi,0)^{(b)} (h \in \mathbb{N}^{*})$, stables par $\left(\frac{1}{0} \frac{-x}{1} \right)$, mais pas par ∂ ou ∂^{-1}. Soit h tel que $v \in \Pi(\pi,0)^{(b)}$. La fonction $x \mapsto \left(\frac{1}{0} \frac{-x}{1} \right) v$ étant analytique au voisinage de 0, à valeurs dans le Banach $\Pi(\pi,0)^{(b)}$, on peut écrire pour $x \in p^n\mathbb{Z}_p$ (N assez grand, ne dépendant que de v)

$$\left(\frac{1}{0} \frac{-x}{1} \right) v = \sum_{n \geq 0} x^n v_n$$

avec $v_n \in \Pi(\pi,0)^{(b)}$. On a $p^n v_n \rightarrow 0$ dans $\Pi(\pi,0)^{(b)}$, donc aussi dans $\Pi(\pi,0)$. Puisque ∂ est un homéomorphisme de $\Pi(\pi,0)$ (car elle est linéaire bijective et que $\Pi(\pi,0)$ est un espace de type compact), on a $p^n \partial^{-1}(v_n) \rightarrow 0$ dans $\Pi(\pi,0)$. Il existe donc $h' \geq h$ tel que $p^n \partial^{-1}(v_n) \rightarrow 0$ dans $\Pi(\pi,0)^{(b)}$. Posons

$$v'_n = p^n \partial^{-1}(v_n).$$

Ainsi, pour tout $x \in p^n\mathbb{Z}_p$ on a (par continuité de ∂^{-1} et de la restriction de l à $\Pi(\pi,0)^{(b')}$)

$$\phi_{l,v}(x) = \langle l, \left(\frac{1}{0} x \frac{1}{1} \right) \partial_{-}^{-1} \left(\frac{1}{0} \frac{-x}{1} \right) v \rangle = \sum_{n \geq 0} \left(\frac{x}{p^n} \right)^n l \left(\frac{1}{0} \frac{-x}{1} \right) v'_n.$$

Puisque v'_n tendent vers 0 dans $\Pi(\pi,0)^{(b')}$, il existe M, dépendant de h', tel que les fonctions

$$f_n : \mathbb{Z}_p \rightarrow L, \quad f_n(x) = l \left(\frac{1}{0} \frac{-x}{1} \right) v'_n$$

tendent vers 0 dans l’espace des fonctions analytiques sur $a + p^M\mathbb{Z}_p$ pour tout $a \in \mathbb{Z}_p$ (cela découle du théorème IV.6 et de la remarque IV.15 de [42]). On en déduit que la fonction

$$x \mapsto \phi_{l,v}(x) = \sum_{n \geq 0} \left(\frac{x}{p^n} \right)^n f_n(x)$$

est analytique au voisinage de 0, ce qui permet de conclure.

Passons maintenant à la preuve du théorème 1.9.9. Soit Stan la Steinberg analytique, quotient de l’espace $\mathcal{L}(\mathbb{P}^1(\mathbb{Q}_p))$ des fonctions localement analytiques sur $\mathbb{P}^1(\mathbb{Q}_p)$, à valeurs dans L, par les fonctions constantes. Nous ferons un usage constant du résultat classique et fondamental suivant, connu sous le nom de dualité de Morita [109].

Proposition 1.9.12. — a) Soit $\lambda \in \mathcal{O}(\Omega)^{\ast}$. La fonction f_λ définie (pour $x \in \mathbb{Q}_p$) par

$$f_\lambda(x) = \lambda \left(\frac{1}{z-x} \right)$$

s’étend en une fonction localement analytique sur $\mathbb{P}^1(\mathbb{Q}_p)$, nulle à l’infini. De plus, l’application $\lambda \mapsto f_\lambda$ induit un isomorphisme de L-espaces vectoriels topologiques (47)

$$\mathcal{O}(\Omega)^{\ast} \simeq \text{St}^{an}.$$

b) La transposée de l’isomorphisme précédent est (via l’identification $\mathcal{O}(\Omega)^{\ast\ast} = \mathcal{O}(\Omega)$) l’application $\mu \mapsto f_\mu \in \mathcal{O}(\Omega)$, où

$$f_\mu(x) = \int_{\mathbb{P}^1(\mathbb{Q}_p)} \frac{1}{z-x} \mu(x).$$

46. On définit les opérateurs ∂, ∂^{-1} sur $\Pi(\pi,0)$ par dualité.

47. C’est même un isomorphisme de G-représentations, si l’on remplace $\mathcal{O}(\Omega)$ par $\Omega^1(\Omega)$.
Soit \(S = \operatorname{Vect}_{x \in \mathbb{Q}_p} \frac{1}{z-x} \subset \mathcal{O}(\Omega) \) le sous-ensemble vectoriel de \(\mathcal{O}(\Omega) \) engendré par les fonctions \(\frac{1}{z-x} \) pour \(x \in \mathbb{Q}_p \). Si \(f \in S \), on note \(\mu_f \) l'élément de \((\text{St}^\text{am})^*\) qui correspond à \(f \) via l'isomorphisme \(\mathcal{O}(\Omega) \simeq (\text{St}^\text{am})^* \). Explicitement,

\[
\mu_f = \sum_{x \in \mathbb{Q}_p} a_x \delta_x = \left(\sum_{x \in \mathbb{Q}_p} a_x \right) \delta_\infty \text{ si } f = \sum_{x \in \mathbb{Q}_p} \frac{a_x}{z-x} \in S.
\]

Notons que \(S \) est dense dans \(\mathcal{O}(\Omega) \) (cela découle directement de la proposition 1.9.12 et du théorème de Hahn-Banach).

Le théorème 1.9.7 donne un sens à la définition suivante :

Définition 1.9.13. — Si \(f = \sum_{x \in \mathbb{Q}_p} \frac{a_x}{z-x} \in S \), on définit un opérateur linéaire continu

\[
T_f : \Pi(\pi, 0)^* \to \Pi(\pi, 0)^*, \quad T_f(l) = \sum_{x \in \mathbb{Q}_p} a_x(\partial - x)^{-1}(l) \in \Pi(\pi, 0)^*.
\]

Notons que par construction on a pour tous \(l \in \Pi(\pi, 0)^*, v \in \Pi(\pi, 0), f \in S \)

\[
\langle T_f(l), v \rangle = \sum_{x \in \mathbb{Q}_p} a_x \phi_{l,v}(x) = \int_{\mathcal{P}^1(\mathbb{Q}_p)} \phi_{l,v} \mu_f,
\]

puisque \(\phi_{l,v} \) s'annule à l'infini.

Proposition 1.9.14. — Soit \(f \in \mathcal{O}(\Omega) \) et soit \((f_n)_n\) une suite d'éléments de \(S \) qui converge vers \(f \) dans \(\mathcal{O}(\Omega) \). Alors la suite d'opérateurs \(T_{f_n} \) converge faiblement vers un opérateur continu \(T_f : \Pi(\pi, 0)^* \to \Pi(\pi, 0)^* \).

Démonstration. — Posons \(g_n = f_n - f_{n-1} \), de telle sorte que \(g_n \in S \) tend vers 0 dans \(\mathcal{O}(\Omega) \). Si \(v \in \Pi(\pi, 0) \) et \(l \in \Pi(\pi, 0)^* \) on a

\[
\langle T_{g_n}(l), v \rangle = \int_{\mathcal{P}^1(\mathbb{Q}_p)} \phi_{l,v} \mu_{g_n}.
\]

Comme \(g_n \) tend vers 0 dans \(\mathcal{O}(\Omega) \), \(\mu_{g_n} \) tend vers 0 dans \((\text{St}^\text{am})^*\) (par dualité de Morita) et donc \(\mu_{g_n} \) tend faiblement vers 0 dans \((\text{St}^\text{am})^*\), ce qui permet de conclure que \(\lim_{n \to \infty} \langle T_{g_n}(l), v \rangle = 0 \). Combiné avec le lemme 1.5.10 et la réflexivité de \(\Pi(\pi, 0) \), cela montre que \(\lim_{n \to \infty} T_{g_n}(l) = 0 \) dans \(\Pi(\pi, 0)^* \). Ainsi, \(\lim_{n \to \infty} (T_{f_n}(l) - T_{f_{n-1}}(l)) = 0 \) et comme \(\Pi(\pi, 0)^* \) est complet, la suite d'opérateurs \((T_{f_n})_n\) converge faiblement. La continuité de la limite découle du théorème de Banach-Steinhaus.

Proposition 1.9.15. — a) Pour tous \(f \in \mathcal{O}(\Omega), l \in \Pi(\pi, 0)^* \), \(v \in \Pi(\pi, 0) \) on a

\[
\langle T_f(l), v \rangle = \int_{\mathcal{P}^1(\mathbb{Q}_p)} \phi_{l,v} \mu_f.
\]

b) Si \(f_n \in \mathcal{O}(\Omega) \) tend vers \(f \in \mathcal{O}(\Omega) \), alors pour tout \(l \in \Pi(\pi, 0)^* \) on a

\[
\lim_{n \to \infty} T_{f_n}(l) = T_f(l) \text{ dans } \Pi(\pi, 0)^*.
\]

Démonstration. — a) Soit \((f_n)_n\) comme dans la proposition précédente, alors

\[
\langle T_f(l), v \rangle = \lim_{n \to \infty} \langle T_{f_n}(l), v \rangle = \lim_{n \to \infty} \int_{\mathcal{P}^1(\mathbb{Q}_p)} \phi_{l,v} \mu_{f_n} = \int_{\mathcal{P}^1(\mathbb{Q}_p)} \phi_{l,v} \mu_f,
\]

la dernière égalité étant une conséquence du fait que \((\mu_{f_n}) \) converge faiblement vers \(\mu_f \) (encore une fois, par dualité de Morita).

b) Le lemme 1.5.10 montre qu'il suffit de vérifier que \(\lim_{n \to \infty} \langle T_{f_n}(l), v \rangle = \langle T_f(l), v \rangle \) pour tout \(v \in \Pi(\pi, 0)^* \). Cela découle directement de a) et de la dualité de Morita.
Le théorème 1.9.9 se déduit maintenant facilement de ce qui précède. En effet, la structure de \(\mathcal{O}(\Omega)\)-module sur \(\Pi(\pi,0)^* \) s'obtient en posant \(f.l = T_f(l) \) pour \(f \in \mathcal{O}(\Omega) \) et \(l \in \Pi(\pi,0)^* \). Le seul point qu'il nous reste à vérifier est que \((fg).l = f.(g.l) \) pour tous \(f,g \in \mathcal{O}(\Omega) \) et \(l \in \Pi(\pi,0)^* \). Par densité de \(S \) dans \(\mathcal{O}(\Omega) \) et la continuité des applications \(l \mapsto f.l \) et \(f \mapsto f.l \) (qui découle des résultats précédents), on se ramène au cas où \(f,g \in S \), et ensuite au cas \(f = \frac{1}{x-z} \) et \(g = \frac{1}{y-z} \), avec \(x,y \in \mathbb{Q}_p \). De plus (encore par continuité), on peut supposer que \(x \neq y \). Mais alors

\[
fg = \frac{1}{x-y} \left(\frac{1}{z-x} - \frac{1}{z-y} \right) \in S,
\]

et le résultat voulu découle de l'identité

\[
(\partial - x)^{-1} \circ (\partial - y)^{-1} = \frac{1}{x-y} \left((\partial - x)^{-1} - (\partial - y)^{-1} \right)
\]

valable sur \(\Pi(\pi,0)^* \).

Le résultat suivant est une conséquence immédiate du théorème 1.9.9, mais il nous sera très utile par la suite.

Proposition 1.9.16. — Tout morphisme \(G \)-équivariant continu \(\Phi : \Pi(\pi,0)^* \rightarrow \mathcal{O}(\Sigma_n)^\rho \) est \(\mathcal{O}(\Omega)\)-linéaire.

Démonstration. — Les opérateurs \(\partial \) et \(u^+ \) satisfont \(a^+ - 1 = u^+ \partial \) sur les deux espaces \(\Pi(\pi,0)^* \) et \(\mathcal{O}(\Sigma_n)^\rho \). Puisque \(\Phi \) est \(G \)-équivariant, il commute à \(a^+ \) et \(u^+ \). On en déduit que \(u^+ \Phi(\partial l) = u^+ \partial \Phi(l) \) pour tout \(l \in \Pi(\pi,0)^* \). Puisque \(u^+ \) est injectif sur \(\mathcal{O}(\Sigma_n)^\rho \), on en déduit que \(\Phi \) commute avec \(\partial \). Il commute donc aussi avec \((\partial - x)^{-1} \) pour tout \(x \in \mathbb{Q}_p \). On en déduit que \(\Phi(f.l) = f \Phi(l) \) pour tout \(f \in S \) et tout \(l \in \Pi(\pi,0)^* \), et le résultat s'ensuit grâce à la densité de \(S \) dans \(\mathcal{O}(\Omega) \) et au point b) de la proposition 1.9.15.

1.10. Surjectivité de \(\Phi \)

Cette section est consacrée à la preuve du résultat suivant.

Théorème 1.10.1. — Tout morphisme \(G \)-équivariant continu et non nul \(\Phi : \Pi(\pi,0)^* \rightarrow \mathcal{O}(\Sigma_n)^\rho \) est surjectif.

En appliquant [125, lemma 3.6] et le théorème 1.8.8, on en déduit que le \(D(G)\)-module \(\mathcal{O}(\Sigma_n)^\rho \) est coadmissible. En décomposant \(\mathcal{O}(\Sigma_n) \) selon l'action de \(D^* \), on obtient la coadmissibilité du \(D(G)\)-module \(\mathcal{O}(\Sigma_n) \).

La preuve du théorème 1.10.1 se fait en deux étapes : on établit d’abord que l’image de \(\Phi \) est dense en utilisant des résultats de Kohlhaase [97] sur le lien entre certains fibrés \(G \)-équivariants sur la tour de Drinfeld et certains fibrés \(D^* \)-équivariants sur la tour de Lubin-Tate. Un argument d’analyse fonctionnelle permet alors de conclure que \(\Phi \) est surjectif. Les deux étapes utilisent de manière cruciale la structure de \(\mathcal{O}(\Omega) \)-module sur \(\Pi(\pi,0)^* \) et le fait que \(\Phi \) est \(\mathcal{O}(\Omega)\)-linéaire. Nous utiliserons aussi systématiquement les résultats du chapitre 3 de [125] concernant les modules coadmissibles sur une algèbre de Fréchet-Stein (qui sera dans notre cas l’algèbre des fonctions rigides analytiques sur une variété Stein sur \(\mathbb{Q}_p \)).

1.10.1. Les tours jumelles.

Si \(X \) vit sur \(\mathbb{Q}_p \), \(\hat{X} \) désigne l’extension des scalaires \(X \otimes \mathbb{Q}_p, \hat{\mathbb{Q}}_p \).

Lemme 1.10.2. — Soit \(F : X \rightarrow Y \) un morphisme d’espaces de Fréchet, tel que \(\hat{F} : \hat{X} \rightarrow \hat{Y} \) soit d’image dense. Alors \(F \) est d’image dense.

Démonstration. — Soit \(l \) une forme linéaire continue s’annulant sur l’image de \(F \). Alors pour tout \(a \in \hat{\mathbb{Q}}_p \)

\[
\bar{l}(\hat{F}(x \cdot \hat{a})) = \bar{l}(F(x) \cdot \hat{a}) = a \cdot l(F(x)) = 0.
\]
Donc $\tilde{l} \circ \tilde{F}$ s’annule sur l’image de $X \otimes_{p} \bar{Q}_{p}$ dans \bar{X}. Cette image étant dense, on a $\tilde{l} \circ \tilde{F} = 0$ et comme \tilde{F} est d’image dense on a $\tilde{l} = 0$. Mais alors pour tout $y \in Y$ on a $l(y) = \tilde{l}(y \otimes 1) = 0$, d’où le résultat.

Avant de prouver que Φ est surjective, on va montrer que Φ est d’image dense. D’après le lemme précédent, il suffit de le faire pour Φ.

**Proposition 1.10.3. — L’image de Φ est dense dans $\mathcal{O}(\tilde{M}_{n})^{p}$.

Démonstration. — Notons $W = \text{Im}(\Phi)$ l’adhérence de l’image de Φ : c’est un sous-$\mathcal{O}(\tilde{N})$-module coadmissible (sur $\mathcal{O}(\tilde{N})$) de $\mathcal{O}(\tilde{M}_{n})^{p}$, puisqu’un sous-module fermé d’un module coadmissible est lui-même coadmissible et que $\mathcal{O}(\tilde{N})$-module projectif de type fini $[125]$. On a donc une suite exacte G-équivariante de $\mathcal{O}(\tilde{N})$-modules coadmissibles

$$0 \rightarrow W \rightarrow \mathcal{O}(\tilde{M}_{n})^{p} \rightarrow \mathcal{O}(\tilde{M}_{n})^{p}/W \rightarrow 0.$$

Comme \tilde{N} est une variété Stein, cette suite exacte revient exactement à la donnée d’une suite exacte de faisceaux cohérents G-équivariants sur \tilde{N}, que nous noterons

$$0 \rightarrow F \rightarrow G \rightarrow F' \rightarrow 0.$$

Le faisceau G est un fibré vectoriel, puisque \tilde{M}_{n} est un revêtement étale de \tilde{N}. Les faisceaux cohérents F et F' aussi : comme \tilde{N} est une courbe lisse, il suffit en effet de voir qu’ils sont sans torsion. Or le support de la partie de torsion d’un faisceau cohérent G-équivariant sur $\mathcal{O}(\tilde{N})$ est un sous-ensemble discret de \tilde{N} stable par G : c’est donc l’ensemble vide. La suite exacte ci-dessus est donc une suite exacte de fibrés G-équivariants sur \tilde{N}.

Pour montrer que F et G sont isomorphes, nous allons faire appel aux résultats de [99]. Commençons par fixer quelques notations. On note $\tilde{M}_{0}^{(0)}$ la composante de \tilde{M}_{0} correspondant au lieu où la quasi-isogénie est de hauteur 0, et $\tilde{M}_{0}^{(0)}$ ses revêtements. On note aussi $\tilde{L}_{0}^{(0)}$, l’espace de Lubin-Tate ([102], c’est une boule ouverte de rayon 1) et $\tilde{L}_{n}^{(0)}$ ses revêtements (galoisiens de groupe G_{0}/G_{n}).

L’observation de base de Kohlhaase est que l’anneau $\mathcal{O}(\tilde{M}_{0}^{(0)})$, resp. $\mathcal{O}(\tilde{L}_{0}^{(0)})$, est (\tilde{F}_{n}, G_{n})-régulier [48], resp. (\tilde{F}_{n}, D_{n})-régulier, au sens de Fontaine. Ceci va permettre de définir de catégories de fibrés équivariants intéressants, « à la Fontaine ».

Si N est un fibré vectoriel G_{0}-équivariant de rang r sur $\tilde{M}_{0}^{(0)}$ et si $N = H^{0}(\tilde{M}_{0}^{(0)}, \mathcal{N})$, on pose

$$\Lambda_{n}(\mathcal{N}) = (\mathcal{O}(\tilde{M}_{0}^{(0)}) \otimes_{\mathcal{O}(\tilde{M}_{0}^{(0)}), G_{0}} N)^{G_{n}}.$$

De la régularité de $\mathcal{O}(\tilde{M}_{0}^{(0)})$, on déduit par un argument standard que l’application naturelle

(11)

$$\mathcal{O}(\tilde{M}_{0}^{(0)}) \otimes_{\tilde{F}_{n}} \Lambda_{n}(\mathcal{N}) \rightarrow \mathcal{O}(\tilde{M}_{0}^{(0)}) \otimes_{\mathcal{O}(\tilde{M}_{0}^{(0)}), G_{0}} N$$

est injective, pour tout n. En particulier, $\Lambda_{n}(\mathcal{N})$ est un (\tilde{F}_{n}, G_{n})-espace vectoriel avec action semi-linéaire de G_{0}/G_{n}, de dimension inférieure ou égale à r.

De même, si \mathcal{N} est un fibré vectoriel D_{0}-équivariant sur $\tilde{L}_{0}^{(0)}$, et si $N = H^{0}(\tilde{L}_{0}^{(0)}, \mathcal{N})$, on pose

$$\Delta_{n}(\mathcal{N}) = (\mathcal{O}(\tilde{L}_{0}^{(0)}) \otimes_{\mathcal{O}(\tilde{L}_{0}^{(0)}), D_{0}} N)^{D_{n}}.$$

L’application naturelle

(12)

$$\mathcal{O}(\tilde{L}_{0}^{(0)}) \otimes_{\tilde{F}_{n}} \Delta_{n}(\mathcal{N}) \rightarrow \mathcal{O}(\tilde{L}_{0}^{(0)}) \otimes_{\mathcal{O}(\tilde{L}_{0}^{(0)}), D_{0}} N$$

est injective pour tout n.

48. Rappelons que $F_{n} = Q_{p}(\mu_{p^{n}})$.
Définition 1.10.4. — Un fibré vectoriel G_0-équivariant \mathcal{N} sur $\mathcal{M}_0^{(0)}$ est dit de Lubin-Tate s'il existe $n \geq 0$ tel que l'application (11) soit un isomorphisme. On définit alors $D_{LT}(\mathcal{N})$ comme le fibré D_0-équivariant sur $\mathcal{E}_0^{(0)}$ dont l'espace des sections globales est le $\mathcal{O}(\mathcal{E}_n^{(0)})_{\mathcal{O}_n} = \mathcal{O}(\mathcal{E}_n^{(0)})$-module
\[H^0(\mathcal{E}_n^{(0)}, D_{LT}(\mathcal{N})) = (\mathcal{O}(\mathcal{E}_n^{(0)}) \otimes F_n A_n(\mathcal{N}))_{\mathcal{O}_n}. \]
Un fibré vectoriel D_0-équivariant $\mathcal{N} = \tilde{\mathcal{N}}$ sur $\mathcal{E}_0^{(0)}$ est dit de Drinfeld s'il existe $n \geq 0$ tel que l'application (12) soit un isomorphisme. On définit alors $D_{Dr}(\mathcal{N})$ comme le fibré G_0-équivariant sur $\mathcal{M}_0^{(0)}$ dont l'espace des sections globales est le $\mathcal{O}(\mathcal{M}_n^{(0)})_{\mathcal{O}_n} = \mathcal{O}(\mathcal{M}_n^{(0)})$-module
\[H^0(\mathcal{M}_n^{(0)}, D_{Dr}(\mathcal{N})) = (\mathcal{O}(\mathcal{M}_n^{(0)}) \otimes F_n \Delta_n(\mathcal{N}))_{\mathcal{O}_n}. \]

Un fibré G-équivariant \mathcal{N} sur $\tilde{\mathcal{N}}$ est dit de Lubin-Tate si $(\pi^{(0)}_{LT})^* (\text{Res}_{G_0}^G(\mathcal{N}))$ est de Lubin-Tate au sens précédent, où $\pi^{(0)}_{LT} : \mathcal{M}_0^{(0)} \rightarrow \tilde{\mathcal{N}}$ est l'application des périodes de \mathcal{M}_0 restreinte à la composante connexe $\mathcal{N}_0^{(0)}$.

De même, un fibré D^*-équivariant \mathcal{N} sur $\tilde{\mathcal{N}}$ est dit de Drinfeld si $(\pi^{(0)}_{LT})^* (\text{Res}_{G_0}^G(\mathcal{N}))$ est de Drinfeld au sens précédent, où $\pi^{(0)}_{LT} : \mathcal{E}_0^{(0)} \rightarrow \mathcal{P}^1$ est l'application des périodes de \mathcal{M}_0 restreinte à la composante connexe $\mathcal{N}_0^{(0)}$.

Théorème 1.10.5 (Kohlhaase). — a) Les foncteurs D_{LT} et D_{Dr} réalisent des équivalences de catégories quasi-inverses l'une de l'autre entre la catégorie des fibrés G-équivalents sur $\tilde{\mathcal{N}}$ dits de Lubin-Tate et celle des fibrés D^*-équivalents sur \mathcal{P}^1 dits de Drinfeld.

b) Si ρ est une représentation lisse de dimension finie de D^*, le fibré $\rho^* \otimes \mathcal{O}_\mathcal{P}^1$ est un fibré de Drinfeld et on a un isomorphisme canonique
\[D_{Dr}(\rho^* \otimes \mathcal{O}_\mathcal{P}^1) = \mathcal{O}(\mathcal{M}_n)_\rho. \]

c) Les catégories des fibrés de Drinfeld et des fibrés de Lubin-Tate sont stables par sous-objet et quotient, et les foncteurs D_{LT} et D_{Dr} préserrent les suites exactes.

Remarque 1.10.6. — Les méthodes de Kohlhaase [97] sont élémentaires et n'utilisent pas l'isomorphisme entre les tours de Lubin-Tate et de Drinfeld, dû à Faltings et Fargues [60, 67].

Revenons à la preuve de la proposition 1.10.3. Le fibré \mathcal{G} est un fibré de Lubin-Tate, d'après le deuxième point du théorème, puisque $\mathcal{G} = D_{Dr}(\rho^* \otimes \mathcal{O}_\mathcal{P}^1)$. Le troisième point du théorème prouve que F et F^* sont aussi de Lubin-Tate, et que l'on a une suite exacte de fibrés D^*-équivalents sur \mathcal{P}^1
\[0 \rightarrow D_{LT}(F) \rightarrow \rho^* \otimes \mathcal{O}_\mathcal{P}^1 \rightarrow D_{LT}(F^*) \rightarrow 0. \]

Choisissons λ un entier positif suffisamment grand pour que les fibrés $D_{LT}(F) \otimes \mathcal{O}(\lambda)$ et $D_{LT}(F^*) \otimes \mathcal{O}(\lambda)$ soient à pentes positives. En tordant par $\mathcal{O}(\lambda)$, on a donc une injection D^*-équivariante
\[0 \rightarrow H^0(D_{LT}(F) \otimes \mathcal{O}(\lambda)) \rightarrow \rho^* \otimes \text{Sym}^\lambda(L^2) \]

Or, comme ρ^* est lisse, le membre de droite est une représentation irréductible et cette flèche est donc un isomorphisme. En outre, la suite exacte longue de cohomologie donne l'annulation de $H^0(D_{LT}(F) \otimes \mathcal{O}(\lambda)) = 0$. Comme $D_{LT}(F) \otimes \mathcal{O}(\lambda)$ est un fibré de pentes positives, il est nul et donc $D_{LT}(F^*)$ est en fait isomorphe à $\rho^* \otimes \mathcal{O}_\mathcal{P}^1$. Par conséquent, F est isomorphe à \mathcal{G}. Ainsi, on a bien $W = \mathcal{O}(\mathcal{M}_n)^\rho$.

Proposition 1.10.11. — La preuve ci-dessus est simple mais ne fonctionne plus en dimension supérieure (la théorie de Kohlhaase n’est pas limitée à la dimension 1) ; toutefois, elle s’applique encore si l’on remplace Q_p par une extension finie. Elle utilise de façon cruciale le fait que ρ est lisse. Si $V(X)$ est le module de Dieudonné rationnel du groupe formel de hauteur 2 sur \mathbb{F}_p, $V(X)$ est une représentation irréductible de degré 2 de D^* et pourtant l’on a une suite exacte de fibrés D^*-équivariants sur \mathbb{P}^1 ([78]) :
$$0 \to \mathcal{O}_{\mathbb{P}^1}(-1) \to V(X) \otimes \mathcal{O}_{\mathbb{P}^1} \to \mathcal{O}_{\mathbb{P}^1}(1) \to 0,$$
qui tirée en arrière à $\mathbb{L}^{(0)}_0$ redonne la suite exacte de fibrés équivariants fournie par la théorie de Grothendieck-Messing.

Notons qu’au passage on a démontré la

Proposition 1.10.8. — Le $\mathcal{O}(\Omega)$-module $\mathcal{O}(\Sigma_n)^p$ avec action semi-linéaire de G est topologiquement irréductible.

Démonstration. — Soit $V \subset \mathcal{O}(\Sigma_n)^p$ un sous $\mathcal{O}(\Omega)$-module fermé non nul et stable sous l’action de G. Comme on l’a vu dans la preuve du lemme 1.10.2, \hat{V} est lui-même non nul et le paragraphe précédent montre que le $\mathcal{O}(\Omega)$-module $\mathcal{O}(\Sigma_n)^p$ avec action semi-linéaire de G est irréductible. En particulier, \hat{V} en est un sous-espace dense et par le lemme 1.10.2 on en déduit que V est dense dans $\mathcal{O}(\Sigma_n)^p$; comme il est fermé, il est égal à tout l’espace.

Remarque 1.10.9. — Nous ne prétendons pas avoir démontré que le G-module topologique $\mathcal{O}(\Sigma_n)^p$ est irréductible ! Toutefois il l’est effectivement : combiner [41] et le théorème 1.1.2.

Proposition 1.10.10. — Tout endomorphisme $\mathcal{O}(\Omega)$-linéaire et G-équivariant de $\mathcal{O}(\Sigma_n)^p$ est scalaire.

Démonstration. — On raisonne comme avant : il suffit de le vérifier après avoir étendu les scalaires à \mathbb{Q}_p, dans quel cas cela suit de l’équivalence de catégories de Kohlhaase et du fait que les endomorphismes du fibré D^*-équivariant $\rho^* \otimes \mathcal{O}_{\mathbb{P}^1}$ sont scalaires (par un argument semblable à celui utilisé pour démontrer son irréductibilité).

1.10.2. Un résultat d’analyse fonctionnelle. — Si l’on savait que $\Pi(\pi, 0)^*$ était co-admissible comme $\mathcal{O}(\Omega)$-module, on pourrait conclure directement que Φ est surjective, car un morphisme continu entre modules coadmissibles sur une algèbre de Fréchet-Stein est automatiquement d’image fermée [125]. Mais il semble difficile de montrer un tel énoncé de coadmissibilité - nous l’obtiendrons uniquement comme conséquence de notre résultat principal ! Pour conclure que l’image de Φ est effectivement $\mathcal{O}(\Sigma_n)^p$ tout entier, il reste donc à démontrer la

Proposition 1.10.11. — Soit X une variété Stein sur \mathbb{Q}_p. Soit N un $\mathcal{O}(X)$-module projectif de type fini et soit Y un $\mathcal{O}(X)$-module qui soit un espace de Fréchet. Tout morphisme continu $F : Y \to N$ qui est $\mathcal{O}(X)$-linéaire et d’image dense est surjectif.

Démonstration. — Notons $N' := \text{Im}(F) \subset N$. Par hypothèse il existe un $\mathcal{O}(X)$-module N'' tel que $N \oplus N'' = \mathcal{O}(X)^d$, $d > 0$. En remplaçant N par $N \oplus N'' = \mathcal{O}(X)^d$, Y par $Y \oplus N''$ et F par $F \oplus \text{id}$, on peut donc supposer N libre de rang fini. En raisonnant dans une base, on est même ramené au cas où $N = \mathcal{O}(X)$, $N' = I$ est un idéal de $\mathcal{O}(X)$.

Supposons que l’on peut trouver un nombre fini d’éléments $f_1, \ldots, f_m \in I$ tels que $V(f_1, \ldots, f_m)$ soit vide. L’idéal $J = (f_1, \ldots, f_m)$ de $\mathcal{O}(X)$ est de type fini, donc coadmissible et donc fermé [125] dans $\mathcal{O}(X)$. De plus, si $(U_j)_j$ est un recouvrement Stein de X,

49. Noter que N'' (et donc $Y \oplus N''$) est naturellement muni d’une structure d’espace de Fréchet, car c’est un sous-$\mathcal{O}(X)$-module fermé du Fréchet $\mathcal{O}(X)^d$.

alors $V(J \cap \mathcal{O}(U_j)) = \emptyset$, donc $J \cap \mathcal{O}(U_j) = \mathcal{O}(U_j)$ par le Nullstellensatz affinoïde, pour tout j. On en déduit que J est dense, et comme il est fermé, on a $J = \mathcal{O}(X)$ et donc aussi $I = \mathcal{O}(X)$, ce qui finit la preuve de la proposition.

Il reste donc à montrer l’existence de $f_1, ..., f_m$. On choisit les f_i par récurrence. On prend $f_1 \in I$ non nul. Supposons $f_1, ..., f_{i-1}$ choisis et $V(f_1, ..., f_{i-1})$ non vide. Donnons-nous un recouvrement de Stein (U_j) de X. Pour chaque j, $V(f_1, ..., f_{i-1}) \cap U_j$ est affinoïde et n’a donc qu’un nombre fini de composantes irréductibles. On choisit pour chaque composante un point fermé quelconque de cette composante. Répétant cette opération pour chaque j, on obtient une suite dénombrable $\xi_k \in \mathcal{O}(X)$ s’annulant en z_j, pour tout $j = 0, ..., k - 1$ et ne s’annulant pas en z_k (l’existence de ξ_k est facile si l’on souvient que, X étant Stein, il existe une immersion fermée ι de X dans l’espace affine ; il suffit de prendre ξ_k de la forme $P \circ \iota$, où P est un polynôme bien choisi).

On va construire $f_i \in I$ ne s’annulant en aucun des z_n. Par hypothèse, I est dense dans $\mathcal{O}(X)$, il existe donc un élément $h_n \in I$ ne s’annulant pas sur l’orbite de z_n, pour chaque $n \geq 0$. Par définition $h_n = F(y_n)$, avec $y_n \in Y$. Comme Y est un espace de Fréchet, sa topologie est définie par une famille dénombrable de semi-normes $(q_h)_{h \geq 0}$. Posons $c_0 = 1$, puis choisissons $c_n \in Q_p$ par récurrence sur n, de sorte que $\sum_{k=0}^{n} c_k \xi_k h_k$ ne s’annule pas en z_n, ce qui est possible puisque $h_n(z_n) \neq 0$, et de sorte que

$$|c_n| \max_{k=0, ..., n} q_k(\xi_n y_n) \leq 2^{-n}$$

(cette expression a un sens, puisque Y est un $\mathcal{O}(X)$-module). Notons $f_i = F(\sum_{k=0}^{\infty} c_k \xi_k y_k) \in I$.

la somme $\sum_{k=0}^{\infty} c_k \xi_k y_k$ étant convergente dans Y. Soit $n \geq 0$. Alors pour tout $k > n$,

$$F(c_k \xi_k y_k)(z_n) = c_k \xi_k(z_n) h_k(z_n) = 0,$$

et donc

$$f_i(z_n) = \sum_{k=0}^{n} c_k \xi_k(z_n) h_k(z_n) \neq 0,$$

par choix de la suite c. Donc f_i ne s’annule en aucun des z_n.

Soit $j \geq 0$. Si Z est une composante irréductible de l’affinoïde $V(f_1, ..., f_{i-1}) \cap U_j$, il existe n tel que $z_n \in Z$ par choix de la suite z, mais par hypothèse f_i ne s’annule pas en z_n. Ainsi, $V(f) \cap Z$ est un fermé strict de Z et donc $\dim V(f) \cap Z < \dim Z$. Ceci valant pour chaque composante irréductible de $V(f_1, ..., f_{i-1}) \cup U_j$, on en déduit que

$$\dim V(f_1, ..., f_i) \cap U_j \leq \dim V(f_1, ..., f_{i-1}) \cap U_j - 1.$$

Comme (U_j) est un recouvrement ouvert affinoïde admissible de X, on en déduit en passant à la limite sur j que

$$\dim V(f_1, ..., f_i) \leq \dim V(f_1, ..., f_{i-1}),$$

comme voulu.

Le théorème 1.10.1 résulte alors de la proposition précédente (51) (avec $X = \Omega$, $Y = \Pi(\pi, 0)^*$ et $N = \mathcal{O}(\Sigma_n)^p$) et des propositions 1.9.16 et 1.10.3.

50. Soit A une algèbre affinoïde. Les composantes irréductibles de l’espace affinoïde SpA sont les ensembles analytiques SpA/p, où p est un idéal premier minimal de A ; comme A est noethérienne, il n’y en a qu’un nombre fini.

51. Noter que $\mathcal{O}(\Sigma_n)^p$ est un facteur direct de $\mathcal{O}(\Sigma_n)$ en tant que $\mathcal{O}(\Omega)$-module, et que $\mathcal{O}(\Sigma_n)$ est projectif de type fini comme $\mathcal{O}(\Omega)$-module [97, prop. A5].
11. Injectivité de Φ et fin de la preuve

Nous allons expliquer dans cette partie la preuve de l’injectivité de Φ (ce qui terminera la démonstration du théorème 1.1.2) et celle du théorème 1.1.4. Cela passe par l’introduction d’une nouvelle représentation de G, notée $\Pi(\pi, 2)$, dont le dual est construit à partir de la représentation $\Pi(\pi, 0)^*$ et de l’opérateur ∂, ainsi que par l’étude de l’action de u^+ sur $\Pi(\pi, 2)$, et plus précisément du G-module $\Pi(\pi, 2)^{u^+ = 0}$, reposant sur la théorie du modèle de Kirillov de Colmez rappelée dans la section 1.7. Nous commençons donc par là. Notons que l’injectivité de Φ est une conséquence immédiate de l’irréductibilité de $\Pi(\pi, 0)$, qui est démontrée dans [41], mais nous aurons besoin de la plupart des constructions et résultats techniques de ce chapitre dans la preuve du théorème 1.1.4. Ces mêmes résultats permettent de démontrer l’injectivité de Φ sans utiliser son irréductibilité.

11.1. La représentation $\Pi(\pi, 2)$. — Nous avons déjà observé que la G-représentation $\Omega^1(\Sigma_n)$ s’obtient directement à partir de $\mathcal{O}(\Sigma_n)$, en tordant par le cocycle $c \in Z^1(G, \mathcal{O}(\Omega)^*)$,

$$
c(g) = \det g \cdot (a - cz)^{-2}, \quad \text{si} \quad g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G.
$$

Nous allons construire un analogue $\Pi(\pi, 2)^*$ de $\Omega^1(\Sigma_n)$ à partir de $\Pi(\pi, 0)^*$, par le même procédé : le travail déjà effectué rend la marche à suivre évidente.

La première partie du théorème 1.9.7 permet de définir une action de G sur $\Pi(\pi, 0)^*$ en posant

$$
g \ast l = \det g \cdot (a - c\partial)^{-2}(g.l) \quad \text{si} \quad g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G.
$$

Cette représentation se réalise sur l’espace vectoriel topologique $\Pi(\pi, 0)^*$, mais pour éviter les confusions il convient d’introduire une variable formelle dz et poser

$$(13) \quad \Pi(\pi, 2)^* = \Pi(\pi, 0)^* dz, \quad \text{avec} \quad g(l dz) = (\det g \cdot (a - c\partial)^{-2}(g.l)) dz
$$

pour $l \in \Pi(\pi, 0)^*$ et $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$. Le théorème 1.9.7 et le corollaire 1.9.3 se reformulent alors comme suit :

Proposition 1.11.1. — $\Pi(\pi, 2)^*$ est une représentation de G et l’application

$$
d : \Pi(\pi, 0)^* \to \Pi(\pi, 2)^*, \quad d(l) = -u^+(l) dz
$$

est G-équivariante, d’image fermée.

11.2. Le noyau de u^+ sur $\Pi(\pi, 2)$. — Nous reprenons les notations des sections 1.6 et 1.7. Le but de ce paragraphe est d’établir le théorème 1.11.1 ci-dessous.

Proposition 1.11.2. — Soit $V \in \mathcal{V}(\pi)$. Le plongement $v \mapsto \phi_v$ de $\Pi(V)^{P-\text{fini}}$ dans $\text{LP}(Q_p^*, D_{\text{dif}}(V))^\Gamma$ induit un plongement P-équivariant

$$
\Psi_V : (\Pi(V)^{\text{an}}/\Pi(V)^{\text{lisse}})^{u^+ = 0} \to \text{LP}(Q_p^*, t^{-1}N_{\text{dif}}^+(V)/N_{\text{dif}}^+(V))^\Gamma.
$$

Démonstration. — En utilisant le théorème 1.7.11, on obtient

$$
(\Pi(V)^{\text{an}}/\Pi(V)^{\text{lisse}})^{u^+ = 0} = (\Pi(V)^{\text{an}}u^+/u^+ = (a^+)^2 = 0)/\Pi(V)^{\text{lisse}}.
$$

Le plongement $\Pi(V)^{P-\text{fini}} \subset \text{LP}(Q_p^*, D_{\text{dif}}(V))^\Gamma$ induit un plongement (52)

$$
(\Pi(V)^{\text{an}}u^+/u^+ = (a^+)^2 = 0) \subset \text{LP}(Q_p^*, (t^{-2}D_{\text{dif}}^+(V)/D_{\text{dif}}^+(V))^{\nabla t = 0})^\Gamma.
$$

En utilisant la description explicite

$$
N_{\text{dif}}^+(V) = L_{\infty}[t]\otimes L D_{\text{dif}}(V) \quad \text{et} \quad D_{\text{dif}}^+(V) = tN_{\text{dif}}^+(V) + L_{\infty}[t]\otimes L \text{Fil}^0(D_{\text{dif}}(V)),
$$

52. On écrit t pour l’opérateur de multiplication par t sur $D_{\text{dif}}^-(V)$.
un calcul immédiat montre que l’inclusion $N^+_\text{dif}(V) \subset t^{-1}D^+_{\text{dif}}(V)$ induit un isomorphisme canonique Γ-équivariant
\[t^{-1}N^+_\text{dif}(V)/D^+_{\text{dif}}(V) \simeq (t^{-2}D^+_{\text{dif}}(V)/D^+_{\text{dif}}(V))^{\nabla t=0}. \]
On obtient donc un plongement $v \mapsto \phi_v$.
\[(\Pi(V)^{an})^+ \ni u^+(u^+)^2 = 0 \subset \LP(Q_p^*, t^{-1}N^+_\text{dif}(V)/D^+_{\text{dif}}(V))^{\Gamma}. \]
En combinant ceci avec le théorème 1.7.11 on obtient le résultat voulu.

Soit $V \in V(\pi)$ et fixons un isomorphisme $\alpha : D_{\text{pet}}(V) \simeq M(\pi)$. Il induit un isomorphisme de Γ-modules $\alpha_{\text{dif}} : N^+_\text{dif}(V) \simeq L_\infty[[t]] \otimes_L M_{\text{dR}}(\pi)$ et donc un isomorphisme de Γ-modules $\alpha_{\text{dif}} : t^{-1}N^+_\text{dif}(V)/N^+_\text{dif}(V) \simeq L_\infty(-1) \otimes_L M_{\text{dR}}(\pi)$.

L’isomorphisme α induit aussi un plongement $\alpha_{\text{P1}} : (\Pi(V)^{an}/\Pi(V)^{\text{lis}})^* \to tN_{\text{rig}}(\pi) \boxtimes \mathbb{P}^1$ (via l’isomorphisme $tN_{\text{rig}}(\pi) \boxtimes \mathbb{P}^1 \simeq tN_{\text{rig}}(\pi) \boxtimes \mathbb{P}^1$ induit par α) et par définition $\alpha_{\text{P1}} : (\Pi(V)^{an}/\Pi(V)^{\text{lis}})^* \to \Pi(\pi,0)^*$ est un isomorphisme. On note $\xi_{V,\alpha} : \Pi(\pi,0) \simeq \Pi(V)^{an}/\Pi(V)^{\text{lis}}$ l’isomorphisme induit par la transposée de α_{P1} composé avec l’isomorphisme Ψ_V.

En utilisant le plongement Ψ_V introduit dans la proposition précédente on obtient un plongement
\[\iota_{V,\alpha} : \Pi(\pi,0)^{u^+ = 0} \to \text{LC}(Q_p^*, L_\infty(-1) \otimes_L M_{\text{dR}}(\pi)), \quad \iota_{V,\alpha} = \alpha_{\text{dif}} \circ \Psi_V \circ (\xi_{V,\alpha}|_{\Pi(\pi,0)^{u^+ = 0}}) \]

Théorème 1.11.3. — Le plongement $\iota_{V,\alpha}$ introduit ci-dessus est indépendant, à homothétie près, du choix de $V \in V(\pi)$ et de l’isomorphisme $\alpha : D_{\text{pet}}(V) \simeq M(\pi)$. De plus, pour tout choix de V et α le diagramme suivant de P-représentations est commutatif à scalaire près
\[\begin{array}{ccc}
\Pi(\pi,0)^{u^+ = 0} & \to & \text{LC}(Q_p^*, L_\infty(-1) \otimes_L M_{\text{dR}}(\pi))^{\Gamma} \\
\downarrow & & \downarrow \\
(\Pi(V)^{an}/\Pi(V)^{\text{lis}})^{u^+ = 0} & \to & \text{LC}(Q_p^*, t^{-1}N^+_\text{dif}(V)/N^+_\text{dif}(V))^{\Gamma}.
\end{array} \]

En particulier, on dispose d’un plongement P-équivariant canonique à scalaire près
\[\iota : \Pi(\pi,2)^{u^+ = 0} \to \text{LC}(Q_p^*, L_\infty \otimes_L M_{\text{dR}}(\pi))^{\Gamma}. \]

Démonstration. — La dernière assertion découle immédiatement de la première, en utilisant le fait que comme P-représentations, $\Pi(\pi,0)$ et $\Pi(\pi,2)$ ne diffèrent que par torsion par le caractère $(\frac{\pi}{\frac{1}{1}}) \mapsto a$.

L’indépendance (à homothétie près) par rapport à α (à V fixé) est immédiate (changer α en $\pi a x a$ avec $x \in L$ a pour effet le changement de $\iota_{V,\alpha}$ en $x^2 \iota_{V,\alpha}$, car $\xi_{V,\pi a x a} = x \xi_{V,\alpha}$), mais l’indépendance par rapport à V l’est nettement moins. Nous aurons besoin du résultat suivant, qui demande quelques préliminaires. Par construction on a $\Pi(\pi,0)^* \subset tN_{\text{rig}}(\pi) \boxtimes \mathbb{P}^1$ et même $\Pi(\pi,0)^* \subset tN_{\text{rig}}(\pi) \boxtimes \mathbb{P}^1$ pour n assez grand (dépendant de V uniquement). Cela permet de définir des applications
\[i_{j,n} : \Pi(\pi,0)^* \to t(N_{\text{rig}}(\pi))^+_\text{dif} = tL_\infty[[t]] \otimes_L M_{\text{dR}}(\pi), \quad i_{j,n} = \varphi^{-n} \circ \text{Res}_{Z_n} \circ \begin{pmatrix} p^n & 0 \\ 0 & 1 \end{pmatrix} \]
pour n assez grand et $j \in \mathbb{Z}$. Notons que $i_{j,n}(L) = \alpha_{\text{dif}}(i_{j,n}(l))$ si $l \in (\Pi(V)^{an}/\Pi(V)^{\text{lis}})^*$ satisfait $L = \alpha_{\text{P1}}(l)$ (il suffit de suivre les définitions). Enfin, on écrit $\text{ }^1\text{ }\text{ }\text{dir}_{P}V$ pour l’accouplement entre $tN^+_\text{dif}(V)$ et $t^{-1}N^+_\text{dif}(V)/N^+_{\text{dif}}(V)$ induit par l’accouplement entre $D_{\text{dif}}(V)^*[1/t] = D_{\text{dif}}(V)^*[1/t]$ et $D_{\text{dif}}(V)^*[1/t]$.
Lemme 1.11.4. — Soit $\Pi(\pi, 0)^{n^+ = 0}$ le sous-espace de $\Pi(\pi, 0)^{n^+ = 0}$ engendré par les $(1-n)v$ avec $n \in \left(\frac{1}{n} \mathbb{Q}^+\right)$ et $v \in \Pi(\pi, 0)^{n^+ = 0}$. Si $L \in \Pi(\pi, 0)^*$ et $v \in \Pi(\pi, 0)^{n^+ = 0}$, alors pour tout n assez grand

$$L(v) = \sum_{j \in \mathbb{Z}} \left\{ \alpha^{-1}_{\text{dif}}(i_{j,n}(L)), \alpha^{-1}_{\text{dif}}(i_{V,\alpha}(v))(p^{-j}) \right\}_{\text{dif},V}. $$

Démonstration. — Écrivons $L = \alpha_{\Psi}(l)$ avec $l \in (\Pi(V)^{an}/\Pi(V)^{lis})^*$. L’égalité $L(v) = l(\xi_{V,\alpha}(v))$ découle de la définition de $\xi_{V,\alpha}$. Ensuite, le vecteur $v_1 = \xi_{V,\alpha}(v)$ est dans le sous-espace de $(\Pi(V)^{an}/\Pi(V)^{lis})^{n^+ = 0} \subset \Pi(V)^{P-\text{fini}}/\Pi(V)^{\text{lis}}$ engendré par les $(1-n)y$ avec $y \in \Pi(V)^{n^+ = 0}/\Pi(V)^{\text{lis}}$. On en déduit que $v_1 \in (\Pi(V)^{P-\text{fini}}/\Pi(V)^{\text{lis}}$, ce qui permet d’utiliser le théorème 1.7.8 et obtenir ainsi

$$L(v) = l(v_1) = \sum_{j \in \mathbb{Z}} \left\{ i_{j,n}(l), \Psi_V(v_1)(p^{-j}) \right\}_{\text{dif},V}. $$

On conclut en utilisant les égalités $i_{j,n}(L) = \alpha_{\text{dif}}(i_{j,n}(l))$ et $\Psi_V(v_1) = \alpha^{-1}_{\text{dif}}(i_{V,\alpha}(v))$.

Considérons maintenant deux représentations $V_1, V_2 \in \mathcal{V}(\pi)$ et deux isomorphismes $\alpha_1 : D_{\text{pat}}(V_1) \simeq M(\pi), \alpha_2 : D_{\text{pat}}(V_2) \simeq M(\pi)$. Soit $u = \alpha_2^{-1} \circ \alpha_1 : D_{\text{pat}}(V_1) \simeq D_{\text{pat}}(V_2)$. En appliquant le lemme précédent avec $V = V_1$, puis avec $V = V_2$ et en comparant les résultats on obtient pour tous $L \in \Pi(\pi, 0)^*$, $v \in \Pi(\pi, 0)^{n^+ = 0}$ et n assez grand

$$\sum_{j \in \mathbb{Z}} \left\{ \alpha^{-1}_{\text{dif}}(i_{j,n}(L)), \alpha^{-1}_{\text{dif}}(i_{V_1,\alpha_1}(v))(p^{-j}) \right\}_{\text{dif},V_1} = \sum_{j \in \mathbb{Z}} \left\{ u_{\text{dif}}(\alpha^{-1}_{\text{dif}}(i_{j,n}(L))), u_{\text{dif}}(\alpha^{-1}_{\text{dif}}(i_{V_2,\alpha_2}(v))(p^{-j})) \right\}_{\text{dif},V_2}. $$

Puisque les accouplements $\{ , \}_{\text{dif},V_j}$ sont induits par des isomorphismes $\wedge^2(D_{\text{pat}}(V_j)) \simeq L$, u_{dif} est compatible avec ces accouplements à un scalaire C près. Ainsi, l’égalité précédente s’écrit

$$\sum_{j \in \mathbb{Z}} \left\{ \alpha^{-1}_{\text{dif}}(i_{j,n}(L)), \alpha^{-1}_{\text{dif}}(i_{V_1,\alpha_1}(v) - Ct_{V_2,\alpha_2}(v))(p^{-j}) \right\}_{\text{dif},V_1} = 0. $$

Nous avons maintenant besoin du

Lemme 1.11.5. — Soit $(x_j)_{j \in \mathbb{Z}}$ une suite d’éléments de $t^{-1}N_{\text{dif}}^+ (V_1)/N_{\text{dif}}^+ (V_1)$, à support fini et telle que pour tout $L \in \Pi(\pi, 0)^*$ et tout n assez grand

$$\sum_{j \in \mathbb{Z}} \left\{ \alpha^{-1}_{\text{dif}}(i_{j,n}(L)), x_j \right\}_{\text{dif},V_1} = 0. $$

Alors $x_j = 0$ pour tout j.

Démonstration. — On a donc pour tout $L \in (\Pi(V_1)^{an}/\Pi(V_1)^{\text{lis}})^*$

$$\sum_{j \in \mathbb{Z}} i_{j,n}(L), x_j \right\}_{\text{dif},V_1} = 0. $$

La proposition 1.7.6 permet de construire un vecteur $v \in \Pi(V_1)^{P-\text{fini}}$ tel que $\phi_v(p^{-j}) = x_j$ pour tout j. Le théorème 1.7.8 combiné avec l’hypothèse montre que $l(v) = 0$ pour tout $L \in (\Pi(V_1)^{an}/\Pi(V_1)^{\text{lis}})^*$, autrement dit $v \in \Pi(V_1)^{\text{lis}}$. On conclut en utilisant la proposition 1.7.9.

On déduit de ce qui précède que $i_{V_1,\alpha_1} - Ct_{V_2,\alpha_2}$ s’annule sur $\Pi(\pi, 0)^{n^+ = 0}$, autrement dit que l’image de $i_{V_1,\alpha_1} - Ct_{V_2,\alpha_2}$ est contenue dans le sous-espace des $(\frac{1}{n} \mathbb{Q}^+)$-invariants de $LC(Q_{p^*}^*, L_{-\infty}(-1) \otimes L_{\text{dif}}(\pi)^P)$. Comme ce sous-espace est nul, cela permet de conclure.

Pour pouvoir décrire plus complètement $\Pi(\pi, 2)^{n^+ = 0}$, il faut maintenant comprendre le lien entre $\Pi(\pi, 2)$ et les Π^{fini}, pour $\Pi \in \mathcal{V}(\pi)$.
Proposition 1.11.6. — Soit $\Pi \in \mathcal{V}(\pi)$. Le choix d’un isomorphisme $\Pi(\pi, 0) \simeq \Pi^{\text{an}}/\Pi^{\text{lisse}}$ détermine un plongement G-équivariant de $(\Pi^{\text{an}})^*$ dans $\Pi(\pi, 2)^*$, qui fait de $(\Pi^{\text{an}})^*$ un sous-espace G-stable de $\Pi(\pi, 2)^*$ contenant $d(\Pi(\pi, 0)^*)$.

Démonstration. — L’application
d : $(\Pi^{\text{an}})^* \to (\Pi^{\text{an}}/\Pi^{\text{lisse}})^*$ \simeq \Pi(\pi, 0)^* \to \Pi(\pi, 2)^*$,
là première flèche étant $l \mapsto -u^+(l)$ et la dernière étant simplement $l \mapsto ldz$ est bien définie et un plongement car u^+ est injectif d’image fermée sur $\Pi(\pi, 0)^*$. Il reste à montrer que d est G-équivariante, ce qui revient à montrer que

$$u^+(g l) = det g \cdot (a-cd)^{-2} g(u^+ l)$$

pour tout $l \in (\Pi^{\text{an}})^*$ et tout $g \in G$. Si $c = 0$, découle de l’identité

$$u^+ \cdot \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = \frac{d}{a} \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \cdot u^+$$

dans $D(G)$ et du fait que $(\Pi^{\text{an}})^*$ est un $D(G)$-module. Ainsi, d est équivariante pour l’action du Borel B de G et il suffit de tester que $d(wl) = wd(l)$ pour $l \in (\Pi^{\text{an}})^*$. Cela revient à

$$u^+ wl = -\partial^2 w(u^+ l),$$

ou encore (en appliquant w et en utilisant la relation $w\partial^2 w = \partial^2 w$ sur $\Pi(\pi, 0)^*$) $u^+ l = -\partial^2 u^+ l$. Cela découle de la proposition 1.9.6.\hfill \square

Théorème 1.11.7. — Le sous-espace $\Pi(\pi, 2)^{u^+ = 0}$ de $\Pi(\pi, 2)^*$ est stable par G et on a un isomorphisme, canonique à scalaire près, de représentations de G :

$$\Pi(\pi, 2)^{u^+ = 0} \simeq \pi \otimes M_{\text{DR}}(\pi).$$

Démonstration. — La stabilité de $\Pi(\pi, 2)^{u^+ = 0}$ par G vient du fait que $\Pi(\pi, 2)^{u^+ = 0}$ est dual du conoyau de la flèche G-équivariante $d : \Pi(\pi, 0)^* \to \Pi(\pi, 2)^*$ (voir les propositions 1.9.1 et 1.11.1). Montrons tout d’abord que $\Pi(\pi, 2)^{u^+ = 0}$ est une représentation lisse de G. Commençons par

Lemme 1.11.8. — Pour tout $v \in \Pi(\pi, 2)$ l’application

$$f_v : (a, b, c, d) \mapsto \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot v$$
est localement analytique en chacun des arguments a, b, c, d au voisinage de $(1, 0, 0, 1)$.

Démonstration. — La représentation $\Pi(\pi, 0)$ est localement analytique et comme représentations du Borel B, $\Pi(\pi, 2)$ et $\Pi(\pi, 0)$ ne diffèrent que par torsion par le caractère de B, $(a \ b \ c \ d) \mapsto d/a$. Donc f_v est localement analytique en a, b et d. De plus,

$$f_v(1, 0, x, 1) = \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix} \cdot v = w \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} w.v = w f_{w.v}(1, x, 0, 1),$$
ce qui permet de conclure.\hfill \square

En utilisant le lemme précédent et un calcul immédiat, on obtient les formules suivantes pour l’action de g sur $\Pi(\pi, 2)$

$$a^+ = \partial u^+, \quad a^- = -\partial u^+, \quad u^- = -\partial^2 u^+.$$Ainsi, un vecteur tué par u^+ est automatiquement tué par g. Une nouvelle application du lemme précédent permet de conclure que $\Pi(\pi, 2)^{u^+ = 0}$ est une représentation lisse de G.

Choisissons maintenant $V_1, V_2 \in V(\pi)$ non isomorphes (cela correspond au choix de deux filtrations différentes sur $M_{\text{DR}}(\pi)$). Fixons des isomorphismes

$$\Pi(\pi, 0) \simeq \Pi(V_1)^{\text{an}}/\Pi(V_2)^{\text{lisse}} \quad \text{et} \quad \Pi(\pi, 0) \simeq \Pi(V_2)^{\text{an}}/\Pi(V_2)^{\text{lisse}}.$$
D’après la proposition 1.11.6, on peut donc voir $(\Pi(V_1)^an)^* = (\Pi(V_2)^an)^*$ comme deux sous-espaces de $\Pi(\pi, 2)$ contenant $d(\Pi(\pi, 0))^*$. Notons X_1 et X_2 les images de ces sous-espaces dans le quotient $\Pi(\pi, 2)^*/d(\Pi(\pi, 0))^*$. Comme représentation de G
\[X_j \simeq (\Pi(V_j)^an)^*/\Pi(\pi, 0)^* \simeq \pi^* \]

En particulier, X_1 et X_2 sont des représentations irréductibles de G et donc X_1 et X_2 sont égaux s’ils sont d’intersection non nulle. S’ils étaient égaux, on aurait $(\Pi(V_1)^an)^* = (\Pi(V_2)^an)^*$ (puisque ces deux sous-espaces contiennent $d(\Pi(\pi, 0))^*)$, et un des résultats principaux de [42] entraîne que $\Pi(V_1) \simeq \Pi(V_2)$, ce qui contredit le fait que V_1 et V_2 ne sont pas isomorphes. On en déduit que X_1 et X_2 sont en somme directe, ce qui donne dualement une surjection G-équivariante
\[\Pi(\pi, 2)^{u^+ = 0} = (\Pi(\pi, 2)^*/d(\Pi(\pi, 0)^*))^* \rightarrow \pi^{\oplus 2} \]

Comme on vient de voir que $\Pi(\pi, 2)^{u^+ = 0}$ est une G-représentation lisse et comme π est supercuspidale (donc un objet projectif), ce morphisme se scinde et on peut donc écrire :
\[\Pi(\pi, 2)^{u^+ = 0} = \pi^{\oplus 2} \oplus \xi, \]

où ξ est une représentation lisse de G.

Le théorème 1.11.3 permet de plonger $\Pi(\pi, 2)^{u^+ = 0}$ dans $\text{LC}(\mathbb{Q}_p^*, L_\infty \otimes M_{\text{dR}}(\pi))^p$, de façon P-équivariante. Si X est une représentation de P, on note X_c le sous-espace engendré par les éléments de la forme $(1 - n).v$, avec $n \in \{1, 0\}$ et $v \in X$. On a donc
\[\pi^{\oplus 2} \oplus \xi_c \hookrightarrow ((\text{LC}(\mathbb{Q}_p^*, L_\infty)^p)_c)^{\oplus 2} = (\text{LC}_{c}(\mathbb{Q}_p^*, L_\infty)^p)^{\oplus 2}. \]

Or π_c et $\text{LC}_{c}(\mathbb{Q}_p^*, L_\infty)^p$ sont isomorphes comme P-représentations et irréductibles (c’est un résultat standard de la théorie du modèle de Kirillov des représentations supercuspidales de G). On a donc nécessairement $\xi_c = 0$. En d’autres termes, tout vecteur de ξ est fixé par l’action de l’unipotent supérieur : mais il n’y a pas de tel vecteur non nul dans $\text{LC}(\mathbb{Q}_p^*, L_\infty)^p$!

On en déduit que $\xi = 0$, et $\Pi(\pi, 2)^{u^+ = 0}$ et $\pi \otimes M_{\text{dR}}(\pi)$ sont donc deux représentations isomorphes de G. Il reste donc pour conclure à exhiber un isomorphisme G-équivariant canonique, à scalaire près, entre ces représentations.

Ce qui précède donne en particulier que l’image de $\Pi(\pi, 2)^{u^+ = 0}$ dans $\text{LC}(\mathbb{Q}_p^*, L_\infty \otimes L M_{\text{dR}}(\pi))^p$ est le sous-espace $\text{LC}_{c}(\mathbb{Q}_p^*, L_\infty \otimes L M_{\text{dR}}(\pi))^p$. La théorie du modèle de Kirillov usuelle pour les représentations lisses donne en outre un isomorphisme P-équivariant $\pi \otimes M_{\text{dR}}(\pi) \simeq \text{LC}_{c}(\mathbb{Q}_p^*, L_\infty \otimes L M_{\text{dR}}(\pi))^p$. On obtient donc en composant l’inverse de cet isomorphisme avec la flèche fournie par le théorème 1.11.3 un isomorphisme P-équivariant, canonique à scalaire près
\[\Pi(\pi, 2)^{u^+ = 0} \simeq \pi \otimes M_{\text{dR}}(\pi). \]

Cet isomorphisme est automatiquement G-équivariant (car les deux membres sont isomorphes comme G-représentations à $\pi \otimes \pi$, et π est irréductible comme P-représentation).

En retour, le théorème précédent permet de décrire les positions relatives des sous-représentations $(\Pi^{an})^*$ à l’intérieur de $\Pi(\pi, 2)^*$. Soit L une filtration sur $M_{\text{dR}}(\pi)$. Il lui correspond une représentation $V_c \in V(\pi)$, qui vient avec un isomorphisme $D_{\text{pot}}(V_c) \simeq M(\pi)$.

Corollaire 1.11.9. — La préimage de $L^\perp \otimes \pi^* \subset (\Pi(\pi, 2)^{u^+ = 0})^*$ dans $\Pi(\pi, 2)^*$ est $(\Pi^{an}_L)^*$ (vu dans $\Pi(\pi, 2)^*$ par la proposition 1.11.6).

Démonstration. — Il s’agit de vérifier que le quotient de $d((\Pi^{an}_L)^*)$ par $d(\Pi(\pi, 0)^*)$ est isomorphe à $L^\perp \otimes \pi^*$, vu comme sous-espace du conoyau de $d : \Pi(\pi, 0)^* \rightarrow \Pi(\pi, 2)^*$ par le théorème 1.11.7. L’isomorphisme $\alpha : D_{\text{pot}}(V_c) \simeq M(\pi)$ identifie ce quotient à $(\Pi^{an}_L)^*$. Dans
la construction de l’isomorphisme du théorème 1.11.7, on peut choisir $V = V'_L$. Admettons qu’on a alors un diagramme commutatif

$$
\begin{array}{ccc}
\Pi^\text{an}(\pi, 2)^{u^+ = 0} & \rightarrow & \Pi^\text{an}_L^{\text{lisse}} \\
\downarrow & & \downarrow \\
L C_c(Q^*_p, L_\infty \otimes M\text{DR}(\pi))^\Gamma & \rightarrow & L C_c(Q^*_p, L_\infty [[t]] \otimes M\text{DR}(\pi)/\text{Fil}^0((L_\infty ((t)) \otimes M\text{DR}(\pi)))^\Gamma
\end{array}
$$

où les flèches verticales sont des isomorphismes (celle de droite s’obtient en composant le modèle de Kirillov usuel de Π_L avec α_{dR}). Comme de plus, toutes les identifications effectuées sont canoniques à scalaire près, le résultat s’ensuit.

Reste à justifier la commutativité du diagramme précédent. Comme on a choisi $V = V'_L$ dans 1.11.7, il s’agit, par définition de $\iota_{V'_L, \alpha}$, de justifier que le diagramme dont les flèches sont $(1_0 Q'_\varphi)$-équivariantes

$$(\Pi^\text{an}_L / \Pi^\text{an}_L^{\text{lisse}})_{u^+ = 0} = (\Pi^\text{an}_L)^{u^+ = (u^+)^2 = 0} / \Pi^\text{an}_L^{\text{lisse}} \rightarrow \Pi^\text{lisse}_L \rightarrow L C_c(Q^*_p, L_\infty \otimes t^{-1} N^+_\text{diff}(V'_L)/N^+_{\text{diff}(V'_L)})^\Gamma \rightarrow L C_c(Q^*_p, L_\infty \otimes N^+_{\text{diff}(V'_L)/D^+_{\text{diff}(V'_L)})^\Gamma$$

est commutatif, puisque, par définition (voir la proposition 1.11.1), la flèche $(\Pi^\text{an}_L)^* \rightarrow \Pi(\pi, 2)^*$ était déduite de $d = -u^+: (\Pi^\text{an}_L)^* \rightarrow (\Pi^\text{an}_L^{\text{lisse}})^*$. Comme les deux flèches verticales sont induites par le plongement $\Pi(V'_L)^{P-\text{fini}} \rightarrow \text{LP}(Q^*_p, D^+_{\text{diff}(V'_L}))$, la commutativité de ce diagramme se réduit simplement au fait que ce plongement est $(1_0 Q'_\varphi)$-équivariant.

\section*{1.11.3. Démonstrations des théorèmes 1.1.2 et 1.1.4.}

La proposition 1.9.16 montre que l’on peut aussi voir Φ comme un morphisme

$$\Phi : \Pi(\pi, 2)^* \rightarrow \Omega^1(\Sigma_n)^\rho,$$

ce que l’on fait dans la suite de cette section.

\begin{proposition}
Le morphisme Φ est injectif.
\end{proposition}

\begin{proof}
Soit $v \in \Pi(\pi, 2)^*$ tel que $\Phi(v) = 0$. En particulier, l’image de $\Phi(v)$ dans le quotient $H^1_{\text{DR}}(\Sigma_n)^\rho$ est nulle. La composée de Φ et de la surjection sur la cohomologie de de Rham est G-équivariante donc se factorise par le quotient de $\Pi(\pi, 2)^*$ par l’image de u^+ : comme celle-ci est fermée par la proposition 1.9.1, ce quotient s’identifie, comme on l’a déjà vu, à $\Pi(\pi, 2)^{u^+ = 0} = (\Pi(\pi, 2)^{u^+ = 0})^*$ et on a donc une flèche G-équivariante surjective $(\Pi(\pi, 2)^{u^+ = 0})^* \rightarrow H^1_{\text{DR}}(\Sigma_n)^\rho$. Or on a déjà vu que, comme G-représentations, $((\Pi(\pi, 2)^{u^+ = 0})^*)^* \simeq (\pi^\rho)^{\otimes 2}$ et que $H^1_{\text{DR}}(\Sigma_n)^\rho$ a pour quotient $(\pi^\rho)^{\otimes 2}$ (53). La flèche considérée ne peut donc être qu’un isomorphisme. Par conséquent, $v \in \text{Im}(u^+)$: il existe $v' \in \Pi(\pi, 2)^*$ tel que $v = u^+ v'$. Or

$$0 = \Phi(v) = \Phi(u^+ v') = u^+ \Phi(v').$$

Comme $\text{Ker}(u^+) = 0$ sur $\Omega^1(\Sigma_n)^\rho$, on en déduit que $\Phi(v') = 0$. Répétant l’argument, on voit qu’un vecteur v d’image nulle par Φ est en fait dans $\text{Im}(u^+)^j$ pour tout j.

Voyons l’élément v' ci-dessus comme un élément de $\Pi(\pi, 0)^*$, ce qui est loisible puisque les espaces vectoriels topologiques sous-jacents à $\Pi(\pi, 0)^*$ et $\Pi(\pi, 2)^*$ sont les mêmes. L’opérateur u^+ agit de la même manière sur $\Pi(\pi, 0)^*$ et $\Pi(\pi, 2)^*$ et est injectif, donc v' est dans $\text{Im}(u^+)^j$ pour tout j. De plus, comme $u^+ : \Pi(\pi, 0)^* \rightarrow \Pi(\pi, 2)^*$ est G-équivariant et comme w, v est aussi dans le noyau de Φ, on a aussi que w, v' est dans $\text{Im}(u^+)^j$ pour tout j. Voyons v' dans $t N^\pi(\pi)[3]^{P_1}$: $v' = (z_1, z_2)$. Comme $v' \in \text{Im}(u^+)^j$ pour tout $j > 0$, z_1 est infinitésimement divisible par t. On voit immédiatement que cela force $z_1 = 0$ en prenant une base de $N^\pi(\pi)$

\footnote{53. Dualement, cela revient à dire que $H^1_{\text{DR}*}(\Sigma_n)^\rho$ contient $\pi^\otimes 2$ comme sous-objet. Le théorème 1.4.1 dit exactement cela, avec sous-objet remplacé par quotient ; mais cela suffit, puisque π est supercuspidale, donc est un objet projectif de la catégorie des représentations lisses de G à caractère central trivial.}
sur \mathcal{R}. Mais $w.v'$ a la même propriété et $w.v' = (z_2, z_1)$. On a donc aussi $z_2 = 0$ et donc $v' = 0$. Donc v est lui-même nul.

Remarque 1.11.11. — On verra plus loin (démonstration du théorème 1.1.10) que l’intersection des $\text{Im}((u^+)^j)$, $j \geq 0$, sur $\Pi(\pi, 0)^*$ (ou $\Pi(\pi, 2)^*$) est en fait nulle, mais cela fait appel à un résultat délicat de [52], que l’argument précédent permet d’éviter.

Ceci termine la preuve du théorème 1.1.2.

Démonstration du théorème 1.1.4. — L’isomorphisme Φ induit un isomorphisme

$$\Pi(\pi, 2)^{u^+=0} \cong H^1_{\text{dr}}(\Sigma_n)^\rho.$$

De plus, un tel isomorphisme Φ est unique à scalaire près, d’après les propositions 1.9.16 et 1.10.10. En combinant ceci avec le théorème 1.11.7, on en déduit que l’on a un isomorphisme canonique à scalaire près

$$H^1_{\text{dr}}(\Sigma_n)^\rho \cong \pi^* \otimes M_{\text{dr}}(\pi)^*.$$

Une fois ceci acquis, la deuxième partie du théorème se déduit trivialement du corollaire 1.11.9.

Remarque 1.11.12. — Tous les résultats de ce chapitre s’étendent aux fibrés $\mathcal{O}(k)$, $k \in \mathbb{Z}$. Dans l’énoncé du théorème 1.1.2, il suffit de remplacer $\Pi(\pi, 0)$ par la représentation de G dont le dual est l’espace topologique $\Pi(\pi, 0)^*$ avec action de G tordue par $(a - \overline{c}d)^{-k}$.

Pour le théorème 1.1.4, il faut cette fois-ci considérer, pour $k \geq 0$, la suite exacte

$$0 \to \mathcal{O}(-k)(\Sigma_n)^\rho \to \mathcal{O}(k+2)(\Sigma_n)^\rho \otimes \det^{k+1} \to H^1_{\text{dr}}(\Sigma_n)^\rho \otimes \text{Sym}^k \to 0,$$

afin de décrire les vecteurs localement analytiques des représentations de Banach attachées aux représentations à poids 0, $k + 1$. L’existence de cette suite exacte se justifie comme dans [121, p. 95-97].

Les auteurs de [25] travaillent avec le revêtement de Drinfeld de niveau $1 + \varpi p\mathcal{O}_D$, et nous notons $\Sigma_{1+\varpi p\mathcal{O}_D}$ le modèle sur \mathbb{Q}_p de son quotient par l’action de $p^\mathcal{O}_D$. Soit $K_0 = \mathbb{Q}_p[\sqrt{-p}]$ et $K = \mathbb{Q}_p[\sqrt{-p}]$. Dans [144], Teitelbaum a construit un modèle formel semi-stable minimal $\Sigma_{1+\varpi p\mathcal{O}_D,K}$ de $\Sigma_{1+\varpi p\mathcal{O}_D,K}$, qui donne par uniformisation p-adique un modèle semi-stable $\text{Sh}_{1,1+\varpi p\mathcal{O}_D,K}$ de la courbe de Shimura $\text{Sh}_{1,1+\varpi p\mathcal{O}_D,K}$. Les résultats de [81], qui étendent la théorie de Hyodo-Kato à des variétés rigides non nécessairement propres, permettent de définir la cohomologie log-rigide de la fibre spéciale de $\Sigma_{1+\varpi p\mathcal{O}_D,K}$, qui est un $(\varphi, N, G_{\mathbb{Q}_p})$-module $H^1_{\text{HK}}(\Sigma_{1+\varpi p\mathcal{O}_D,K})$, avec un isomorphisme $H^1_{\text{HK}}(\Sigma_{1+\varpi p\mathcal{O}_D,K}) \otimes K_0 \cong H^1_{\text{dr}}(\Sigma_{1+\varpi p\mathcal{O}_D,K})$. On montre avec des arguments semblables à ceux de la section 1.4 que, pour toute représentation irréductible ρ de $D^*/1 + \varpi p\mathcal{O}_D$ de correspondante de de Jacquet-Langlands π, l’on a un isomorphisme compatible aux $(\varphi, N, G_{\mathbb{Q}_p})$-structures des deux membres

$$\text{Hom}_G((H^1_{\text{HK}}(\Sigma_{1+\varpi p\mathcal{O}_D,K})^\rho, \pi) = \lim_{K^\rho \to K} \frac{H^1_{\text{HK}}(\Sigma_{1+\varpi p\mathcal{O}_D,K}^\rho, \pi(g)^{\rho})}{\text{Sym}^\rho \mathcal{O}_D},$$

où g est une forme quaternionique telle que $\pi(g) = \rho$, comme dans la partie 1.5.3. Saito [118] a montré que la structure de $(\varphi, N, G_{\mathbb{Q}_p})$-module donnée par la théorie de Hyodo-Kato classique sur l’espace vectoriel $\lim_{K^\rho \to K} \frac{H^1_{\text{dr}}(\Sigma_{1+\varpi p\mathcal{O}_D,K}^\rho, \pi(f)^{\rho})}{\text{Sym}^\rho \mathcal{O}_D}$ était celle de $M(\pi)$. On déduit donc de l’isomorphisme précédent une identification naturelle

$$H^1_{\text{dr}}(\Sigma_{1+\varpi p\mathcal{O}_D}^\rho) = \pi^* \otimes M_{\text{dr}}(\pi)^*.$$

54. La seule chose à savoir est l’existence d’une suite spectrale pour la cohomologie log-rigide pour un quotient $\Sigma_{1+\varpi p\mathcal{O}_D} \to \Gamma\hat{\Sigma}_{1+\varpi p\mathcal{O}_D}$, avec Γ sous-groupe de G comme dans le théorème de Cerednik-Drinfeld : pour cela voir [81], chapitre 7.
Soit \(L \) une droite de \(M_{dR}(\pi) \). Via cette identification, on peut voir \(L^\perp \otimes \pi^* \) comme un sous-espace de \(H^1_{dR}(\Sigma_1 + \varpi_D \mathcal{O}_D)^\rho \). Breuil et Strauch définissent la représentation \(BS(L) \) de \(G \) comme le dual de la préimage dans \(\Omega^1(\Sigma_1 + \varpi_D \mathcal{O}_D)^\rho \) de \(L^\perp \otimes \pi^* \)\(^{(55)} \).

Soit \(g \) une forme quaternionique telle que \(\pi(g)_p = \rho \), comme dans la partie 1.5.3. La forme \(g \) a une représentation galoisienne associée \(r \) et \(r_p = r|_{\mathcal{O}_p} \). On sait que à une filtration différente (il en existe : il suffit de faire varier la représentation résiduelle), il en existe une filtration admissible quelconque, et donc \(M_{dR}(\pi) \) — membre de gauche dans le théorème 1.8.3. Autrement dit, l'image de la flèche naturelle

\[
\text{Hom}_G((\Omega^1(\Sigma_1 + \varpi_D \mathcal{O}_D)^\rho)^*, \Pi(\Omega^1(\Sigma_1 + \varpi_D \mathcal{O}_D)^\rho)^*) \to \text{Hom}_G((H^1_{dR}(\Sigma_1 + \varpi_D \mathcal{O}_D)^\rho)^*, \pi) = M_{dR}(\pi)^*
\]

est la droite \((L')^\perp\). Or, comme on l'a déjà noté (remarque 1.5.11), cette flèche correspond à la flèche naturelle

\[
\lim_{K_p} \Omega^1(\text{Sh}(1 + \varpi_D \mathcal{O}_D)_{K_p})[\pi(g)]^\rho_p \rightarrow \lim_{K_p} H^1_{dR}(\text{Sh}(1 + \varpi_D \mathcal{O}_D)_{K_p})[\pi(g)]^\rho_p.
\]

Le théorème de comparaison étales de Rham appliqué à la cohomologie de la courbe de Shimura propre \(\text{Sh}(1 + \varpi_D \mathcal{O}_D)_{K_p} \) implique que la filtration de Hodge sur la cohomologie de Rham

\[
\lim_{K_p} H^1_{dR}(\text{Sh}(1 + \varpi_D \mathcal{O}_D)_{K_p})[\pi(g)]^\rho_p \simeq M_{dR}(\pi)^*
\]

est donnée par la droite \(L^\perp \). Autrement dit, \(L' = L \) et pour ce \(L \), on a donc bien \(\Pi_{L}^{an} = BS(L) \).

On recommence ensuite le même jeu avec une autre forme quaternionique correspondant à une filtration différente (il en existe : il suffit de faire varier la représentation résiduelle). On a donc un autre \(L' \) pour lequel on sait que \(\Pi_{L'}^{an} = BS(L) \).

Identifions \(P(M_{dR}) \) à \(P^1(Q_p) \) via le choix de la base \((L, L') \) de \(M_{dR} \). Soit maintenant \(L'' \) une filtration admissible quelconque, et \((a, b) \in P^1(Q_p) \) l'élément correspondant. Alors on a

\[
[BS(L'')] = a[BS(L)] + b[BS(L')]
\]

et

\[
[\Pi_{L''}^{an}] = a[\Pi_{L}^{an}] + b[\Pi_{L'}^{an}]
\]

dans le groupe \(\text{Ext}^1_{G}(\mathcal{O}(\Sigma_n)^\rho)^*, \pi) \). Donc \(BS(L'') = \Pi_{L''}^{an} \).

La conjecture de Breuil-Strauch dans sa formulation originale est donc un corollaire des résultats obtenus.

1.12. Compléments : quelques corollaires et une question

1.12.1. Preuves des théorèmes 1.1.9 et 1.1.10. — Nous rassemblons dans cette section les preuves des corollaires annoncés dans l'introduction.

Démonstration du théorème 1.1.9. — D’après [38, p. 20 et 174], le membre de droite est l’image par \(1 - \varphi \) de \((tN_{3g}(\pi))^{\psi=1} \). Or, on a déjà vu que cette image est isomorphe au membre de gauche dans le théorème 1.8.3. □

Démonstration du théorème 1.1.10. — Soit \(f \in \mathcal{O}(\Sigma_n) \) une fonction infiniment primitive. Ecrivons

\[
f = \sum_{i=1}^{r} v_i \otimes f_i
\]

55. Comme d’habitude, \(\rho \) est fixée et sous-entendue dans la notation \(BS(L) \).
Pour \(1.12.2\). Le complexe de de Rham dans la catégorie dérivée des \(\text{abélienne}\) \(\mathcal{D}\), de sorte que d’après le théorème 1.10.1, c’est un objet de la catégorie dérivée filtrées (canonique à scalaire près). On pourrait aussi munir ce complexe d’une filtration, comme le font Schneider et Stuhler du théorème 8.4.3 de [52] dit que le sous-espace de \(\Pi^{an}\) des vecteurs tués par une puissance de \(u^+\) est dense dans \(\Pi^{an}\) (cette propriété équivaut au fait que la représentation galoisienne correspondante soit non trianguline). Cela implique en particulier que l’intersection des \(\text{Im}(u^+)\) sur le dual est nulle. On en déduit \(f_i = 0\). La seule possibilité est donc que \(\rho_i\) soit triviale, i.e. que \(f \in \mathcal{O}(\Omega)\).

\[\square\]

Remarque 1.12.1. — Un élément \(z\) de l’intersection des \(\text{Im}(u^+)\), vu comme élément de \(D_{rig} \otimes \mathbb{P}^1\), satisfait trivialement \(\text{Res}_{\mathbb{Z}_p}(z) = 0\). Ainsi, au lieu d’utiliser [52] on aurait pu utiliser l’injectivité [41] de l’application \(\text{Res}_{\mathbb{Z}_p} : (\Pi^{an})^* \rightarrow D_{rig}\).

1.12.2. Le complexe de de Rham dans la catégorie dérivée des \(D(G)\)-modules. — Pour \(n \geq 0\), notons \(R\Gamma^{\text{dR}}(\Sigma_n)\) le complexe de de Rham de \(\Sigma_n\):

\[\mathcal{O}(\Sigma_n) \xrightarrow{d} \Omega^1(\Sigma_n).\]

D’après le théorème 1.10.1, c’est un objet de la catégorie dérivée \(D^b(D(G))\) de la catégorie abélienne [125] des \(D(G)\)-modules coadmissibles. On munirait de l’application filtré de la filtration \(\text{bête}\), de sorte que \(F^0 R\Gamma^{\text{dR}}(\Sigma_n) = R\Gamma^{\text{dR}}(\Sigma_n)\) si \(i < 0\), \(F^i R\Gamma^{\text{dR}}(\Sigma_n) = 0\) si \(i > 0\) et

\[F^0 R\Gamma^{\text{dR}}(\Sigma_n) = [0 \rightarrow \Omega^1(\Sigma_n)].\]

Proposition 1.12.2. — Pour tout \(V \in \mathcal{V}(\pi)\) on a un isomorphisme d’espaces vectoriels filtrés (canonique à scalaire près)

\[\text{Hom}_{D^b(D(G))}((\Pi(V)^{an})^*, R\Gamma^{\text{dR}}(\Sigma_n)^[n][1]) = D^{\text{dR}}(V),\]

pour tout \(n\) suffisamment grand.

Remarque 1.12.3. — a) Un résultat plus satisfaisant serait de remplacer le complexe de de Rham par un complexe convenable de cohomologie log-rigide et d’affirmer l’existence d’un isomorphisme canonique de \((\varphi, N, \mathcal{G}_{Q^p})\)-modules filtrés entre le membre de gauche et \(D_{\text{pro}}(V)\). Cela permettrait de récupérer la représentation \(V\) à partir de \(\Pi(V)^{an}\).

b) L’énoncé de la proposition donne une information nettement moins précise sur \(\Pi(V)^{an}\) que la conjecture de Breuil-Schneider. Au moins si pour tout \(V \in \mathcal{V}(\pi)\) d’origine globale, Peter Scholze nous a d’ailleurs indiqué un argument qui devrait permettre de déduire la proposition du théorème de compatibilité local-global d’Emerton et du lemme de Poincaré \(p\)-adique ([129, cor. 6.13]).

c) Pour \(k \in \mathbb{Z}\) et \(n \geq 0\), notons \(R\Gamma^{\text{dR}}(\Sigma_n, k) = R\Gamma^{\text{dR}}(\Sigma_n) \otimes (\text{Sym}^k)^*\) le complexe de de Rham de \(\Sigma_n\) tordu par la représentation algébrique \((\text{Sym}^k)^*\):

\[\mathcal{O}(\Sigma_n) \otimes (\text{Sym}^k)^* \xrightarrow{d_{\text{dR}} \otimes \text{id}} \Omega^1(\Sigma_n) \otimes (\text{Sym}^k)^*\]

On pourrait aussi munir ce complexe d’une filtration, comme le font Schneider et Stuhler dans [121, p. 95-97], en prenant le produit tensoriel de la filtration \(\text{bête}\) par une certaine filtration sur \((\text{Sym}^k)^*\). On obtiendrait ainsi une filtration telle que \(F^i R\Gamma^{\text{dR}}(\Sigma_n, k) = R\Gamma^{\text{dR}}(\Sigma_n, k)\) si \(i < -k\), \(F^i R\Gamma^{\text{dR}}(\Sigma_n, k) = 0\) si \(i > 0\) et

\[F^i R\Gamma^{\text{dR}}(\Sigma_n, k) = [0 \rightarrow \mathcal{O}(k+2)(\Sigma_n) \otimes \det^{k+1}], -k \leq i \leq 0,\]

et on pourrait prouver l’exact analogue de la proposition précédente avec des poids de Hodge-Tate égaux à \(0, k + 1\). Toutefois cela alourdit considérablement les notations.
1.12. COMPLÉMENTS : QUELQUES COROLLAIRES ET UNE QUESTION

Démonstration. — Le cas \(\rho = 1 \) est un résultat de Schraen [127]. En effet, Schraen raffine l’énoncé en un isomorphisme de \((\varphi, N)\)-modules filtrés, après avoir montré le membre de gauche d’un Frobenius et d’une monodromie en s’inspirant de la théorie de Hyodo-Kato. Cela lui permet de définir un scindage canonique du complexe introduit dans la remarque précédente :

\[\text{R} \Gamma_{\text{dR}}(\Sigma, k)^D \cong (H^0_{\text{dR}}(\Omega) \oplus H^1_{\text{dR}}(\Omega)[{-1}]) \otimes \text{Sym}^k \].

La monodromie \(N \) est un élément du \(\text{Ext}^1 \) entre ces deux composantes et le membre de gauche de la proposition se décompose en tant que \(\varphi \)-module comme une somme directe

\[
\text{Ext}^1_{D(G)}((\Pi(V)^{an})^*, H^0_{\text{dR}}(\Omega) \otimes (\text{Sym}^k)^*) \oplus \text{Hom}_{D(G)}((\Pi(V)^{an})^*, H^1_{\text{dR}}(\Omega) \otimes (\text{Sym}^k)^*)
\]

\[
= \text{Ext}^1_{G}(\text{Sym}^k, \Pi(V)^{an}) \oplus \text{Hom}_{G}(\text{St} \otimes \text{Sym}^k, \Pi(V)^{an}),
\]

ce qui explique pourquoi en niveau 0, des vecteurs localement algébriques apparaissent à la fois en sous-objet en en quotient de \(\Pi(V)^{an} \).

Le cas \(\rho \neq 1 \) est déduit du théorème 1.1.4. En effet, le complexe \(\text{R} \Gamma_{\text{dR}}(\Sigma, n)^\rho \) (où \(n \) est choisi suffisamment grand) est scindé quasi-isomère à \((\Pi(\tau, 2)^{an=0})^*[-1] \) : en effet, tous les groupes de cohomologie du complexe sont nuls sauf celui de degré 1 qui vaut \((\Pi(\tau, 2)^{an=0})^* \),

d’après le théorème 1.1.4. On a donc trivialement un isomorphisme d’espaces vectoriels (sans filtration)

\[
\text{Hom}_{D^P(G)}((\Pi(V)^{an})^*, \text{R} \Gamma_{\text{dR}}(\Sigma, n)^\rho[1]) = D_{\text{dR}}(V),
\]
	puisque \((\Pi(\tau, 2)^{an=0})^* = \pi^* \otimes D_{\text{dR}}(V)^* \). Le fait que les filtrations coïncident est un corollaire direct de la conjecture.

\(\square \)

1.12.3. Fonctions au bord de \(\Sigma_n \) et faisceau \(U \rightarrow tN_{\text{rig}} \boxtimes U \). — La dualité de Serre pour les variétés rigides Stein [30] donne un isomorphisme de représentations de \(G \times D^* \)

\[
\Omega^1(\Sigma_n)^* \cong H^1_\text{c}(\Sigma_n, \mathcal{O}).
\]

Comme \(\Sigma_n \) est Stein, on a en outre une suite exacte

\[
0 \rightarrow \mathcal{O}(\Sigma_n) \rightarrow \lim_{\leftarrow Z} \mathcal{O}(\Sigma_n - Z) \rightarrow H^1_\text{c}(\Sigma_n, \mathcal{O}) \rightarrow 0
\]

où \(Z \) décrit l’ensemble des réunions finies d’affinoïdes admissibles de \(\Sigma_n \). Notons \(\tau_n \) la composée de la surjection canonique de \(\Sigma_n \) sur \(\Sigma_0 \) avec la rétraction du demi-plan sur l’arbre de Bruhat-Tits, dont on fixe l’origine standard. Soit \(B_i \) la boule centrée en l’origine dans l’arbre de rayon \(i \). Si \(U \) est un ouvert de \(\mathbf{P}^1(\mathbb{Q}_p) \), il lui correspond un ouvert \(V \) de l’arbre, constitué de la réunion de toutes les demi-droites partant de l’origine aboutissant en un point de \(U \), et l’on pose

\[
F_\pi(U) = \lim_{\rightarrow i} \mathcal{O}(\tau_n^{-1}(V - B_i))^\rho,
\]

ce qui a un sens puisque \(D^* \) agit sur \(\tau_n^{-1}(V - B_i) \). Cela définit un faisceau \(F_\pi \) sur \(\mathbf{P}^1(\mathbb{Q}_p) \). Ce faisceau est en quelque sorte le faisceau des sections du fibré structural « au bord » de \(\Sigma_n \). Il est alors tentant de formuler la conjecture suivante, qui est un prolongement naturel de la conjecture de Breuil-Strauch.

Conjecture 1.12.4. — Le faisceau \(F_\pi \) sur \(\mathbf{P}^1(\mathbb{Q}_p) \) est le faisceau \(U \mapsto tN_{\text{rig}}(\pi) \boxtimes U \) de Colmez. La suite exacte de représentations de \(G \) (voir [41])

\[
0 \rightarrow \Pi(\tau, 0)^* \rightarrow tN_{\text{rig}}(\pi) \boxtimes \mathbf{P}^1(\mathbb{Q}_p) \rightarrow \Pi(\tau, 2) \rightarrow 0
\]

s’identifie à la suite exacte déduite de (14) :

\[
0 \rightarrow \mathcal{O}(\Sigma_n)^\rho \rightarrow F_\pi(\mathbf{P}^1(\mathbb{Q}_p)) \rightarrow (\Omega^1(\Sigma_n)^\rho)^* \rightarrow 0.
\]
1.13. Appendice : compatibilité local-global (d’après Emerton)

Nous expliquons dans cet appendice la preuve du théorème 1.5.4, en suivant de manière pleinement fidèle Emerton [57]. Nous reprenons les notations des sections 4.1 et 5.1 (en fixant K^p et en posant $X = X(K^p)$).

Lemme 1.13.1. — Le groupe $GL_2(\mathbb{Z}_p)$ agit librement sur X, avec un nombre fini d’orbites. En particulier, il existe $s > 0$ tel que pour tout \mathbb{Z}_p-module topologique M l’on ait un isomorphisme de $GL_2(\mathbb{Z}_p)$-représentations

$$C^0(X, M) \simeq C^0(GL_2(\mathbb{Z}_p), M)^{\oplus s}.$$

Le résultat suivant est un des ingrédients de base de la théorie.

Lemme 1.13.2. — Si \mathcal{B} est un facteur direct topologique (en tant que G-module) de $C^0(X)$, alors $\mathcal{B}_{GL_2(\mathbb{Z}_p)}$-alg est dense dans \mathcal{B}.

Démonstration. — Il suffit de le faire pour $\mathcal{B} = C^0(X)$, dans quel cas cela découle du lemme 1.13.1 et du théorème de Mahler (voir [113, prop. A.3] et [45, prop. 2.12] pour des résultats généraux à ce sujet).

La version « en famille » de la correspondance de Langlands locale p-adique pour G permet de construire un A-module orthonormalisable Π^{univ}, avec action continue de G, tel que pour tout $p \in \text{MaxSpec}(A[1/p])$ on ait un isomorphisme

$$\Pi^{univ} \otimes_A k(p) \simeq \Pi(p).$$

L’existence de Π^{univ} est un résultat profond mais standard de la théorie, cf. par exemple [23, 38, 96] (rappelons que nous supposons que la représentation modulo p de $G_{\mathbb{Q}_p}$ est absolument irréductible). De plus, la compatibilité avec la correspondance modulo p montre que

$$\pi := \Pi^{univ}/m\Pi^{univ}$$

est une représentation lisse irréductible de G sur k_L.

Définition 1.13.3. — On note

$$M = \text{Hom}^{cont}_{A[G]}(\Pi^{univ}, C^0(X, \mathcal{O}_L)_m),$$

Π^{univ} étant muni de la topologie m-adique et $C^0(X, \mathcal{O}_L)_m$ de la topologie induite par $C^0(X, \mathcal{O}_L)$. Alors M est un \mathcal{O}_L-module plat, séparé complet pour la topologie p-adique, et on note

$$M^* = \text{Hom}_{\mathcal{O}_L}(M, \mathcal{O}_L)$$

le dual de Schikhof de M, que l’on munit de la topologie de la convergence simple. On a réciproquement $M = \text{Hom}^{cont}_{\mathcal{O}_L}(M^*, \mathcal{O}_L)$.

Remarque 1.13.4. — On voit immédiatement qu’on a des isomorphismes canoniques

$$M[p][1/p] = k(p) \otimes_{A/p} M[p] \simeq \text{Hom}^{cont}_{A[G]}(\Pi(p), C^0(X)[p]) \simeq \text{Hom}^{cont}_{A[G]}(\Pi(p), C^0(X)_m)$$

pour tout $p \in \text{MaxSpec}(A[1/p])$.

Dans un premier temps, nous allons commencer par prouver l’énoncé plus faible suivant.

Proposition 1.13.5. — Pour tout idéal maximal p de $A[1/p]$,

$$\text{Hom}^{cont}_{G}(\Pi(p), C^0(X)[p]) \neq 0.$$

Démonstration. — D’après la remarque 1.13.4 il s’agit de justifier que $M[p][1/p] \neq 0$, pour tout idéal maximal p de $A[1/p]$. L’idée (due à Emerton) est de démontrer cet énoncé par interpolation p-adique, en le prouvant pour une famille dense d’idéaux maximaux (formée de points correspondant à des représentations galoisiennes cristallines). Cela demande quelques préliminaires.
Lemme 1.13.6. — Le A-module M^* est de type fini.

Démonstration. — Comme M^* est compact, il suffit de montrer que M^*/mM^* est de dimension finie sur k_L. Or, l'isomorphisme $M = \text{Hom}_{O_L}(M^*, O_L)$ induit un isomorphisme

$$(M/\pi L M)[m] \simeq \text{Hom}_{O_L}(M^*, k_L)[m] \simeq \text{Hom}_{k_L}(M^*/mM^*, k_L).$$

Il suffit donc de démontrer que $(M/\pi L M)[m]$ est de dimension finie sur k_L. Mais, par définition de M, on dispose d'une injection de k_L-espaces vectoriels

$$(M/\pi L M)[m] \subset \text{Hom}_{k_L}(\Pi^{\text{univ}}/m\Pi^{\text{univ}}, LC(X, k_L)m).$$

Comme $\pi = \Pi^{\text{univ}}/m\Pi^{\text{univ}}$ est irréductible et lisse, le choix d'un vecteur non nul quelconque v de π et d'un sous-groupe ouvert K_p qui le fixe fournit un plongement

$$\text{Hom}_{k_L}(g\pi, LC(X, k_L)m) \subset (LC(X, k_L)m)^{K_p} \subset LC(X(K_p), k_L)$$

et le dernier espace est de dimension finie sur k_L, car $X(K_p)$ est fini. □

Lemme 1.13.7. — Si p est un idéal maximal de $A[1/p]$, alors $M[p][1/p]$ est un L-espace vectoriel de dimension finie, dual de $M^* \otimes_A k(p)$, et il est non nul si et seulement si $p \in \text{Supp } M^*[1/p]$.

Démonstration. — Nous avons

Le lemme 1.13.6 montre que M^*/pM^* est un A/p-module de type fini, donc un O_L-module de type fini, ce qui fournit des isomorphismes

$$M[p][1/p] = \text{Hom}_{L}(M^*[1/p]/p, L) = \text{Hom}_{L}(M^* \otimes_A k(p), L).$$

Le reste se déduit du lemme de Nakayama. □

Soit σ une représentation automorphe de $\bar{B}^*(A)$ telle que :

a) σ est non ramifiée en dehors de Σ.

b) $\sigma_p^{GL_2(Z_p)} \neq 0$ et $\sigma_p^{GL_2(Z_p)} \neq 0$.

c) La représentation galoisienne associée r_σ vérifie $r_\sigma = \overline{\tau}$.

L'action de T_Σ sur σ définit un morphisme $T_\Sigma \rightarrow L$, qui s'étend par continuité en un morphisme $A[1/p] \rightarrow L$ (puisque $r_\sigma = \overline{\tau}$), dont le noyau est un idéal maximal p_σ de $A[1/p]$. On note

$$C = \{p_\sigma, \sigma \text{ comme avant}\}.$$

Lemme 1.13.8. — L'ensemble C est Zariski dense dans $\text{Spec } A[1/p]$.

Démonstration. — Notons que par définition, $A[1/p]$ agit fidèlement sur $C^0(X)_m$. Il suffit donc de montrer que tout $t \in \cap_{p \in C} p$ agit par 0 sur $C^0(X)_m$. Comme l'action est continue, il suffit pour cela de prouver que $\sum_{p \in C} C^0(X)_m[p]$ est dense dans $C^0(X)_m$. Comme $C^0(X)_m$ est un facteur direct topologique de $C^0(X)$, l'ensemble des vecteurs $GL_2(Z_p)$-algébriques de $C^0(X)_m$ est dense dans $C^0(X)_m$, d'après le lemme 1.13.2. Il suffit donc de justifier que

$$(C^0(X)_m)_{GL_2(Z_p) - \text{alg}} \subset \sum_{p \in C} C^0(X)_m[p].$$

Mais ceci est un corollaire immédiat du lemme 1.4.7. □

On note $LP(X)$ l'espace des vecteurs localement algébriques de $C^0(X)_m$.
Lemme 1.13.9. — Pour tout $p \in \mathcal{C}$, $M[p] \otimes_{A_p} k(p) \neq 0$, autrement dit

\[\text{Hom}^\text{cont}_G(\Pi(p), C^0(\mathcal{X})[p]) \neq 0. \]

De plus, $L^p(\mathcal{X})[p]$ est inclus dans l'image de la flèche naturelle

\[\Pi(p) \otimes \text{Hom}^\text{cont}_G(\Pi(p), C^0(\mathcal{X})[p]) \rightarrow C^0(\mathcal{X})[p]. \]

Démonstration. — Soit $p \in \mathcal{C}$, σ la représentation automorphe correspondante. Comme $\sigma^{GL_{2}(\mathbb{Q}_p)} \neq 0$, la restriction de $r_\sigma = r(p)$ au groupe de décomposition en p est cristallin.

En outre, $r(p)|_{\mathbb{Q}_p} = r(\sigma)|_{\mathbb{Q}_p}$ est absolument irréductible, et donc en particulier $r(p)|_{\mathbb{Q}_p}$ l’est. Notons $a < b$ ses poids de Hodge-Tate, et posons $W = \text{Sym}^{b-a-1}(L^2) \otimes \det^a$.

D’après Berger-Breuil [9] et la construction de la correspondance de Langlands locale p-adique pour G, le complété unitaire universel de $\sigma_p \otimes W$ est précisément $L^p(\mathcal{X})$. Comme $\sigma_p \otimes W$ est localement algébrique, on obtient

\[\text{Hom}^\text{cont}_G(\Pi(p), C^0(\mathcal{X})[p]) = \text{Hom}^\text{cont}_G(\sigma_p \otimes W, C^0(\mathcal{X})[p]) = \text{Hom}_G(\sigma_p \otimes W, L^p(\mathcal{X})[p]). \]

De plus, le lemme 1.4.7 montre que le morphisme d’évaluation

\[(\sigma_p \otimes W) \otimes \text{Hom}_G(\sigma_p \otimes W, L^p(\mathcal{X})[p]) \rightarrow L^p(\mathcal{X})[p] \]

est un isomorphisme, ce qui permet de conclure (en utilisant l’injection $\sigma_p \otimes W \subset \Pi(p)$).

Ceci achève la preuve de la proposition 1.13.5.

Nous avons maintenant en main tous les ingrédients pour prouver le théorème 1.5.4.

Démonstration du théorème 1.5.4. — Montrons tout d’abord que la flèche naturelle d’évaluation (le produit tensoriel complété est pour la topologie π-adique)

\[(\Pi^{\text{univ}} \otimes_A M)[1/p] \rightarrow C^0(\mathcal{X})_m \]

est un isomorphisme. Cette flèche s’obtient après inversion de p à partir de la flèche :

\[\Pi^{\text{univ}} \otimes_A M \rightarrow C^0(\mathcal{X}, \mathcal{O}_L)_m. \]

Comme $\Pi^{\text{univ}} \otimes_A M$ est séparé pour la topologie π_p-adique (utiliser le lemme 3.1.16 de [57]), on peut tester l’injectivité de (15) après réduction modulo π_p de ce morphisme :

\[\Pi^{\text{univ}} \otimes_A M / \pi_p \rightarrow \text{LC}(\mathcal{X}, k_L)_m. \]

Nous allons montrer d’abord que ce morphisme est injectif en restriction à la m-partie. Pour cela remarquons que le lemme B.6 de [57] fournit un isomorphisme

\[(\Pi^{\text{univ}} / \pi_p \otimes_A M / \pi_p)_m \cong \text{Hom}_A(A/m, \Pi^{\text{univ}} \otimes_A M / \pi_p) \]

\[\cong \text{Hom}_A(A/m, M / \pi_p) \otimes_{\pi_p} \Pi^{\text{univ}} / \pi_p \]

\[= (M / \pi_p)_m \otimes_{k_L} \Pi^{\text{univ}} / m = (M / \pi_p)_m \otimes_{k_L} \mathbb{F}. \]

D’autre part la preuve du lemme 1.13.6 fournit un plongement

\[(M / \pi_p)_m \subset \text{Hom}_G(\mathbb{F}, \text{LC}(\mathcal{X}, k_L)_m). \]

Il suffit donc de montrer que la flèche

\[\mathbb{F} \otimes_{k_L} \text{Hom}_{k_L}(\mathbb{F}, \text{LC}(\mathcal{X}, k_L)_m) \rightarrow \text{LC}(\mathcal{X}, k_L)_m \]

est injective, ce qui découle du fait que \mathbb{F} est lisse irréductible et $\text{LC}(\mathcal{X}, k_L)_m$ est lisse.

Ensuite, on vérifie sans mal que pour tout $x \in \Pi^{\text{univ}} \otimes_A M$ on a $m^{N} x \subset \pi_p \cdot (\Pi^{\text{univ}} \otimes_A M)$ pour tout N assez grand (il suffit de montrer que si $u \in M$, alors $m^{N} u \subset \pi_p \cdot M$ pour N assez grand, ce qui se fait en regardant u comme une forme linéaire continue sur M^*. Ainsi tout élément de $\Pi^{\text{univ}} / \pi_p \otimes_A M / \pi_p$ est tué par une puissance de m, ce qui permet de déduire l’injectivité du morphisme

\[\Pi^{\text{univ}} / \pi_p \otimes_A M / \pi_p \rightarrow \text{LC}(\mathcal{X}, k_L)_m \]
de son injectivité sur la m-partie.

Prouvons la surjectivité. Comme, d’après le lemme 1.13.6, M^* est de type fini sur A, et comme Π^{univ} est un $A[G]$-module orthonormalisable admissible, l’image du morphisme (15) est automatiquement fermée (combiner Proposition 3.1.3 et Lemma 3.1.16 de [57]). Il suffit du coup de montrer que l’image de (15) est dense. On a vu dans la preuve du lemme 1.13.9 que l’image de $\Pi(p) \otimes \Hom^G_{cont}(\Pi(p), C^0(X)[p])$ contient $LP(X)[p]$. Par conséquent, l’image de notre morphisme contient $(C^0(X)_m)^{GL_2(\mathbb{Z}_p)_{alg}}$, qui forme un sous-espace dense. Cela finit la preuve du fait que

$$(\Pi^{univ} \otimes_A M)[1/p] \rightarrow C^0(X)_m$$

est un isomorphisme.

Soit maintenant p un idéal maximal de $A[1/p]$. Pour achever la preuve du théorème 1.5.4, on prend la p-partie de l’isomorphisme (15). Pour calculer la p-partie du terme de gauche on utilise le lemme 3.1.17 de [57], qui fournit des isomorphismes

$$\Hom_A(A/p, \Pi^{univ} \otimes_A M)[1/p] = \Hom_A(A/p, \Pi^{univ} \otimes_A M)[1/p] =$$

$$\Hom_A(A/p, M) \otimes_A \Pi^{univ}[1/p] = M[p] \otimes_A \Pi[p] = M[p][1/p] \otimes_{k(p)} \Pi(p),$$

la dernière égalité utilisant le fait que $M[p][1/p]$ est de dimension finie sur $k(p)$ (lemme 1.13.7). Pour finir, il suffit d’utiliser la remarque 1.13.4 et la proposition 1.13.5. □
CHIPTR 2

ESPACES DE BANACH-COLMEZ ET FAISCEAUX COHÉRENTS SUR LA COURBE DE FARGUES-FONTAINE

2.1. Introduction

Les espaces de Banach-Colmez ont été introduits par Colmez, suite à certaines constructions de Fontaine, sous le nom d’*Espaces Vectoriels de dimension finie* (noter les lettres capitales) il y a quinze ans ([35]), avec pour objectif d’obtenir une nouvelle preuve de la conjecture « faiblement admissible implique admissible » en théorie de Hodge p-adique. Rappelons brièvement de quoi il s’agissait.

Soit \mathcal{C} le complété d’une clôture algébrique de \mathbb{Q}_p. Colmez définit les espaces de Banach-Colmez comme foncteurs sur la catégorie des \mathcal{C}-algèbres sympathiques à valeurs dans les \mathbb{Q}_p-espaces de Banach. Deux exemples simples de tels foncteurs sont les suivants : d’une part, si V est un \mathbb{Q}_p-espace vectoriel de dimension finie, le foncteur qui à une algèbre sympathique Λ associe V, noté encore V et que l’on appellera un \mathbb{Q}_p-*Espace Vectoriel de dimension finie* ; d’autre part, si W est un \mathcal{C}-espace vectoriel de dimension finie, le foncteur qui à une algèbre sympathique Λ associe $\Lambda \otimes_\mathcal{C} W$, noté encore W et que l’on appellera un \mathcal{C}-*Espace Vectoriel de dimension finie*. Un espace de Banach-Colmez est alors un foncteur ne différant d’un \mathcal{C}-Espace Vectoriel de dimension finie que par des \mathbb{Q}_p-Espaces Vectoriels de dimension finie : par définition, tout espace de Banach-Colmez admet une présentation comme quotient par un \mathbb{Q}_p-Espace Vectoriel de dimension finie V' d’une extension d’un \mathcal{C}-Espace Vectoriel de dimension finie W par un \mathbb{Q}_p-Espace Vectoriel de dimension finie V. Cela permet d’attacher à une telle présentation d’un espace de Banach-Colmez deux entiers : sa *dimension* $\dim_{\mathcal{C}} W$ et sa *hauteur* $\dim_{\mathbb{Q}_p} V - \dim_{\mathbb{Q}_p} V'$. Cette définition peut sembler un peu étrange, mais Colmez montre que la catégorie des espaces de Banach-Colmez est une catégorie abélienne, que le foncteur d’évaluation sur \mathcal{C} est exact et conservatif et que les fonctions dimension et hauteur ne dépendent pas de la présentation et définissent deux fonctions additives sur cette catégorie. De façon remarquable et suprenante, car leur définition n’en fait pas mention, l’étude des espaces de Banach-Colmez fait naturellement apparaître certains anneaux de Fontaine utilisés en théorie de Hodge p-adique.

Les propriétés de la catégorie des espaces de Banach-Colmez ont ensuite été explorées par Fontaine et Plût. Elles font fortement penser aux propriétés bien connues de la catégorie des faisceaux cohérents sur une courbe. Ceci a amené Fargues et Fontaine, en conjonction avec d’autres indices, à deviner l’existence d’une courbe, qui porte aujourd’hui leur nom, dont l’étude devrait refléter les résultats fondamentaux de la théorie de Hodge p-adique. Le développement de la théorie a pris quelques années et l’on dispose maintenant de plusieurs points de vue sur la courbe de Fargues-Fontaine : le point de vue « algébrique », qui était la perspective initiale de Fargues et Fontaine ; le point de vue « analytique », qui est souvent le plus pratique ; et enfin le point de vue de la théorie des diamants de Scholze, qui est le

1. Les algèbres sympathiques sont un certain type d’algèbres perfectoides. Pour la définition précise, voir la définition 2.6.1.
plus abstrait mais a l’intérêt de faire comprendre pourquoi la courbe de Fargues-Fontaine est un objet naturel et fondamental pour la théorie p-adique. La définition la plus rapide de la courbe de Fargues-Fontaine X (pour le corps \mathbb{Q}_p) est sa définition adique. Notons C^p le bascule du corps perfectoïde C et soit $p^\flat \in C^p$ tel que $(p^\flat)^2 = p$. Soit
\[Y = \text{Spa}(W(\mathcal{O}_{C^p}), W(\mathcal{O}_{C^p})) \setminus V(p^\flat p^\flat)). \]
L’espace adique Y est muni d’un opérateur φ agissant proprement discontinûment ; on définit
\[X = Y/\varphi\mathbb{Z}. \]
A ce stade, il était naturel de se demander quelle relation précise entretiennent la catégorie des faisceaux cohérents sur la courbe de Fargues-Fontaine et celle des espaces de Banach-Colmez. La solution n’est pas immédiate, car on se convainc facilement que ces deux catégories abéliennes ne sont pas équivalentes. L’objectif de ce chapitre est de répondre à cette question et d’explorer quelques problèmes liés.

2.1.1. Résultats principaux et plan du chapitre. — Nous commençons par redéfinir la catégorie des espaces de Banach-Colmez dans la section 2.2. Notons Perf_C la catégorie des espaces perfectoïdes sur C. Nous munissons Perf_C de la topologie pro-étale. Deux exemples simples de faisceaux sur ce site à valeurs dans la catégorie des \mathbb{Q}_p-espaces vectoriels sont le faisceau \mathbb{G}_a, qui à $S \in \text{Perf}_C$ associe $\mathcal{O}_S(S)$, et le faisceau constant \mathbb{Q}_p associé à \mathbb{Q}_p.

Définition 2.1.1. — La catégorie \mathcal{BC} des espaces de Banach-Colmez est la plus petite sous-catégorie abélienne stable par extensions contenant les faisceaux \mathbb{Q}_p et \mathbb{G}_a, de la catégorie des faisceaux de \mathbb{Q}_p-espaces vectoriels sur Perf_C.

Cette définition donne en fait naissance à une catégorie équivalente à la catégorie originale de Colmez. Des exemples naturels d’espaces de Banach-Colmez, hors des exemples évidents, sont fournis par la théorie des groupes p-divisibles. Cela explique l’apparition d’anneaux de Fontaine dans l’étude de \mathcal{BC}. Nous décrivons brièvement comment à la fin de cette section et d’explorer quelques problèmes liés.

Afin de relier la catégorie \mathcal{BC} à la courbe de Fargues-Fontaine, il nous faut considérer une t-structure différente de la t-structure standard sur la catégorie dérivée bornée $D(X) = D^b(\text{Coh}_X)$ de la catégorie abélienne Coh_X des faisceaux cohérents sur X. La catégorie Coh_X est très bien comprise, grâce à on peut définir des fonctions rang et degré, et la filtration de Harder-Narasimhan d’un fibré vectoriel sur X ; on dispose d’un théorème de classification des fibrés sur X, qui rappelle le théorème de Grothendieck pour les fibrés sur \mathbb{P}^1. Ces résultats sont rappelés dans la section 2.5.

C’est précisément l’existence d’un formalisme de Harder-Narasimhan sur X qui va nous permettre de fabriquer une nouvelle catégorie abélienne reliée à \mathcal{BC}. Considérons la sous-catégorie pleine suivante de $D(X)$:

\[\text{Coh}_X = \{ F \in D(X), H^i(F) = 0 \text{ pour } i \neq -1, 0, H^{-1}(F) < 0, H^0(F) \geq 0 \}, \]

la notation $\mathcal{G} < 0$ (resp. ≥ 0), pour $\mathcal{G} \in \text{Coh}_X$, signifiant que tous les quotients successifs de la filtration de Harder-Narasimhan de \mathcal{G} sont à pentes strictement négatives (resp. positives). La théorie générale des paires de torsion et du tilting montre que Coh_X^τ est un coeur abélien de $D(X)$.

Notre résultat principal, démontré dans la section 2.7, est alors le suivant. Bien que la courbe X ne vive pas au-dessus de $\text{Spa}(\mathbb{C})$, on peut définir un morphisme τ du site

2. On pourrait aussi bien utiliser la v-topologie de Scholze.
3. Que les espaces de Banach-Colmez puissent être définis comme faisceaux pro-étals avait d’ailleurs été pressenti par Colmez ([35, p. 5]).
4. Selon le point de vue...
des espaces perfectoïdes sur \(X \), muni de la topologie pro-étale, vers \(\text{Perf}_{C, \text{proet}} \), qui induit un morphisme \(\tau_* \) au niveau des topos correspondants. Dans l’énoncé qui suit, on utilise implicitement l’équivalence donnée par le théorème de pureté de Scholze entre \(\text{Perf}_{C, \text{proet}} \) et \(\text{Perf}^{c, \text{proet}} \).

Théorème 2.1.2. — Le foncteur cohomologie \(R^0\tau_* \) induit une équivalence de catégories abéliennes entre \(\text{Coh}_X \) et \(BC \).

L’exactitude du foncteur \(R^0\tau_* \) en restriction à \(\text{Coh}_X \) découle des propriétés de la cohomologie des faisceaux cohérents sur la version relative de la courbe de Fargues-Fontaine, qui permettent de donner une autre définition de \(\text{Coh}_X \) : voir la section 2.6. Un certain nombre de corollaires du théorème sont rassemblés dans la section 2.7 : en particulier, le fait que la catégorie \(BC \) ne dépend que de \(C^o \), le fait que les espaces de Banach-Colmez sont des diamants et une caractérisation cohomologique des algèbres sympathiques.

Il est facile de voir que l’image par \(R^0\tau_* \) de \(\text{Coh}_X \) tombe dans \(BC \). Le reste de la preuve est plus difficile. Le point clé est de réussir à décrire les groupes d’extensions entre les faisceaux \(\mathbb{Q}_p \) et \(\mathcal{G}_a \) dans la catégorie des faisceaux de \(\mathbb{Q}_p \)-espaces vectoriels sur \(\text{Perf}_{C, \text{proet}} \), en petits degrés et de les comparer aux groupes d’extensions analogues dans \(\text{Coh}_X \), que l’on sait calculer plus facilement. Ces calculs sont effectués dans la section 2.4 de ce texte.

L’usage de la résolutions partielles explicite de [12] ramène le calcul des groupes d’extensions à des calculs de cohomologie pro-étale, que nous faisons donc au préalable dans la section 2.3. La connaissance de ces groupes en petit degré est suffisante, mais nous avons choisi de mener le calcul en tout degré. Plus précisément, nous démontrons le résultat suivant.

Théorème 2.1.3. — Soit \(n \geq 1 \) et \(i \geq 0 \). Notons

\[
\mathcal{O}(A^n_C) \xrightarrow{d_p} \Omega^1(A^n_C) \xrightarrow{d_1} \ldots \xrightarrow{d_{n-1}} \Omega^n(A^n_C)
\]

le complexe des sections globales du complexe de de Rham de \(A^n_C \). Alors, d’une part, pour tout \(i \geq 0 \),

\[
H^i(A^n_C, \mathcal{G}_a) = \Omega^i(A^n_C).
\]

D’autre part, \(H^0(A^n_C, \mathbb{Q}_p) = \mathbb{Q}_p \) et pour tout \(i > 0 \), on a un isomorphisme :

\[
H^i(A^n_C, \mathbb{Q}_p) = \text{Ker}(d_i) = \text{Im}(d_{i-1}) \subset \Omega^i(A^n_C).
\]

Tous les groupes de cohomologie considérés sont des groupes de cohomologie pro-étale.

Dans le cas du faisceau \(\mathbb{Q}_p \), le lecteur notera le contraste avec la cohomologie étale. La première partie de ce théorème se déduit facilement des résultats de [129] ; la seconde est nettement plus délicate. Pour \(i = 0, 1 \), qui sont les seuls degrés nécessaires pour l’application à la démonstration de l’équivalence entre \(\text{Coh}_X \) et \(BC \), on peut tout faire à l’aide de la suite exacte de Kummer. En degré quelconque, nous y parvenons à l’aide de la version « faisceautique » d’une variante de la suite exacte bien connue en théorie de Hodge \(p \)-adique :

\[
0 \rightarrow \mathbb{Q}_p \rightarrow B^{c_{i+1}}_{\text{cris}} \rightarrow B^{d_{i+1}}_{\text{dR}} \rightarrow 0.
\]

Les mêmes méthodes s’appliquent au disque unité ouvert en dimension quelconque.

La dernière section (section 2.8) de ce chapitre est relativement indépendante du reste du texte, à l’exception précisément d’une partie de la section 2.3. Nizioł a prouvé ([111]) que les groupes de cohomologie syntomique géométrique d’un schéma formel semi-stable sur un corps \(p \)-adique sont naturellement les \(C \)-points de certains espaces de Banach-Colmez. Notre objectif initial, au vu du théorème 2.1.2, était de redémontrer ce résultat dans le cas de bonne réduction, en le reliant plus directement à la courbe de Fargues-Fontaine. Nous n’y sommes pas vraiment parvenus, mais chemin faisant nous obtenons une réinterprétation de...
certaines constructions syntomiques dans le langage de Bhatt-Morrow-Scholze [14] et une preuve synthétique du théorème de comparaison étale-syntomique. Le foncteur de décalage $L\eta_t$, qui faisait déjà son apparition dans la section 2.3, y joue un rôle crucial\(^{(5)}\).

Terminons cette introduction en soulignant encore une fois l’analogie frappante, déjà évoquée dans l’introduction générale, entre la catégorie \mathcal{BC} des espaces de Banach-Colmez et celle des groupes quasi-algébriques unipotents (ou proalgébriques unipotents) de Serre ([136]). Non seulement les définitions de ces deux catégories ont un air de famille, mais ces objets font leur apparition dans des contextes similaires. Ils interviennent tous deux en théorie du corps de classes : voir respectivement [136] et [64]. Les groupes de cohomologie plate (fppf) de μ_p sur une variété propre et lisse sur un corps parfait de caractéristique p sont les points de groupes algébriques unipotents, de même que la cohomologie syntomique géométrique donne naissance à des espaces de Banach-Colmez. Il conviendrait d’expliquer et d’explorer cette analogie.

2.2. La catégorie des espaces de Banach-Colmez

Dans cette section, nous définissons les espaces de Banach-Colmez comme faisceaux pro-étale sur la catégorie des espaces perfectoïdes sur $\text{Spa}(C)$ (définition 2.2.11). Nous expliquons ensuite pourquoi les revêtements universels de groupes p-divisibles sur \mathcal{O}_C donnent naissance à des espaces de Banach-Colmez, ce qui permet d’en fabriquer des exemples explicites (corollaire 2.2.23).

2.2.1. Espaces perfectoïdes, topologie pro-étale et ν-topologie.

Dans tout ce paragraphe, $K = C$ ou $K = C^\circ$.

Définition 2.2.1. Une K-algèbre perfectoïde est une K-algèbre de Banach R uniforme, i.e. telle que l’ensemble R° des éléments de R à puissances bornées soit borné, et telle que le Frobenius $\Phi : R^\circ/p \to R^\circ/p$ soit surjectif (en particulier, une C°-algèbre perfectoïde est simplement une C°-algèbre de Banach uniforme et parfaite).

Si R est une C-algèbre perfectoïde, le basculement $R^{\circ, \flat}$ est défini par

$$R^\circ = \lim_{\Phi} R^\circ/p ;\quad R^\circ = R^\circ,\flat \otimes_{\mathcal{O}_C} C^\circ.$$

C’est une C°-algèbre perfectoïde, et $(R^\circ)^\circ = R^{\circ, \flat, \circ}$. On dispose d’une application continue et multiplicative $R^\circ = \lim_{\leftarrow x \in R^\circ} R \to R$ de projection sur la première coordonnée, notée $f \mapsto f^\sharp$.

Définition 2.2.2. Une K-algèbre affinoïde perfectoïde est un couple (R, R^+), avec R une K-algèbre perfectoïde et $R^+ \subset R$ un sous-anneau ouvert intégralement clos.

Théorème 2.2.3. Soit (R, R^+) une K-algèbre perfectoïde et $X = \text{Spa}(R, R^+)$. Alors \mathcal{O}_X est un faisceau et pour tout ouvert rationnel $U \subset X$, $\mathcal{O}_X(U)$ est encore une K-algèbre perfectoïde.

Si (R°, R^+) est la bascule de (R, R^+), l’application qui à $x \in X$ associe $x^\circ \in X^\circ = \text{Spa}(R^\circ, R^+)\flat$, défini par $|f(x^\circ)| = |f(x)|^{(\circ)}$, si $f \in R$, induit un homéomorphisme entre X et X° qui identifie les ouverts rationnels.

Définition 2.2.4. Un espace perfectoïde sur K est un espace adique sur K recouvert par des ouverts isomorphes à $\text{Spa}(R, R^+)$, pour certaines K-algèbres perfectoïdes (R, R^+). On notera Perf_K la catégorie des espaces perfectoïdes sur K.

\(^{(5)}\) Même si pour des raisons techniques, c’est μ plutôt que t que nous utilisons.

\(^{(6)}\) Rappelons que $|f(x)|$ est la notation consacrée pour $x(f)$.
Introduisons maintenant deux topologies de Grothendieck sur la catégorie Perf_K, la topologie pro-étale et la v-topologie.

Définition 2.2.5. — Soit $f : Y \to X$ un morphisme entre espaces adiques analytiques sur K. Le morphisme f est dit affinoïde pro-étale si $X = \text{Spa}(R, R^+)$ et $Y = \text{Spa}(S, S^+)$ sont affinoïdes et si $Y = \lim_{i} Y_i \to X$ s'écrit comme limite projective cofiltrante de morphismes étales $Y_i \to X$, avec $Y_i = \text{Spa}(S_i, S_i^+)$ affinoïde. Le morphisme $f : X \to Y$ est dit pro-étale s'il est affinoïde pro-étale localement sur X et sur Y.

Définition 2.2.6. — i) Le gros site pro-étale de K, noté $\text{Perf}_{K,\text{proét}}$, est la topologie de Grothendieck sur Perf_K pour laquelle une famille de morphismes $\{f_i : S_i \to S, i \in I\}$ est un recouvrement si chaque f_i est pro-étale et si pour tout ouvert quasi-compact U de S, il existe un ensemble fini d’indices $J \subset I$ et des ouverts quasi-compacts $U_i \subset S_i$ pour chaque $i \in J$, tels que $U = \bigcup_{i \in J} f_i(U_i)$.

ii) Soit Y un espace affine analytique sur K. Le petit site pro-étale de Y est la topologie de Grothendieck sur la catégorie des $f : X \to Y$ pro-étalés sur Y, $X \in \text{Perf}_K$, avec les recouvrements définis de façon analogue à ce qui précède.

iii) Le site de K, noté $\text{Perf}_{K,v}$, est la topologie de Grothendieck sur Perf_K pour laquelle une famille de morphismes $\{f_i : S_i \to S, i \in I\}$ est un recouvrement si pour tout ouvert quasi-compact U de S, il existe un ensemble fini d’indices $J \subset I$ et des ouverts quasi-compacts $U_i \subset S_i$ pour chaque $i \in J$, tels que $U = \bigcup_{i \in J} f_i(U_i)$.

Théorème 2.2.7. — Le foncteur basculement induit des équivalences entre sites $\text{Perf}_{C,\text{proét}} \simeq \text{Perf}_{C',\text{proét}}$ et $\text{Perf}_{C,v} \simeq \text{Perf}_{C',v}$.

2.2.2. La catégorie \mathcal{BC}. — Donnons deux exemples simples de faisceaux pour la v-topologie (et donc pour la topologie pro-étale).

Théorème 2.2.8. — Le préfaisceau \mathcal{G}_a qui à $S \in \text{Perf}_C$ associe $\mathcal{O}_S(S)$ est un faisceau pour la v-topologie (et donc aussi pour la topologie pro-étale).

La preuve de ce résultat est difficile ([131, Th. 6.6]). Le faisceau \mathcal{G}_a est représenté par \mathbb{A}_C^1, la droite affine adique sur C (qui n’est pas un espace perfectoïde).

Proposition 2.2.9. — Soit T un espace topologique. Le préfaisceau \mathcal{I}_T qui envoie $S \in \text{Perf}_C$ sur $\mathcal{O}_T([S], T)$ est un faisceau pour la v-topologie (et donc aussi pour la topologie pro-étale). Si T est totalement discontinu et S quasi-compact quasi-séparé, $\mathcal{I}_T(S) = \mathcal{O}_T(\tau_0(S), T)$.

Démonstration. — La preuve est la même que celle de [15, Lem. 4.2.12] : le point clé est qu’un morphisme quasi-compact quasi-séparé surjectif $f : S' \to S$ entre espaces perfectoïdes quasi-compacts quasi-séparés est une application quotient au niveau des espaces topologiques sous-jacents (car généralisante), i.e. si $U \subset S$, U est ouvert dans S si et seulement si $f^{-1}(U)$ l’est dans S'.

Si T est supposé profini, en écrivant T comme limite projective d’ensembles finis, on obtient que \mathcal{I}_T est en fait représenté par l’espace perfectoïde $\text{Spa}(\mathcal{O}(T, C), \mathcal{O}(T, \mathcal{O}_C))$.

7. Rappelons qu’un point d’un espace adique est dit non analytique si la valuation correspondante a un noyau ouvert. Un espace adique est dit analytique si aucun de ses points n’est non analytique. De façon équivalente, il peut être recouvert par des ouverts $\text{Spa}(R, R^+)$ avec R un anneau de Huber-Tate. En particulier, un espace perfectoïde est analytique.

8. Dans la suite, on aura à considérer des groupes d’extensions entre faisceaux sur le site $\text{Perf}_{C,\text{proét}}$. Pour éviter les problèmes de théorie des ensembles, on se restreindra aux espaces perfectoïdes X sur C, avec $\text{card}(|X|) < \kappa$, κ étant un cardinal inaccessible (donc non dénombrable). Cela suffit à garantir que tout objet du site est localement sympathique (voir plus loin). Même convention pour les groupes de cohomologie pro-étale et les groupes de v-cohomologie d’un espace adique analytique.
Définition 2.2.10. — On appellera \(\mathbb{Q}_p \)-Espace Vectoriel de dimension finie un faisceau de la forme \(V \), où \(V \) est un \(\mathbb{Q}_p \)-espace vectoriel de dimension finie \(^9\) et \(\mathbb{C} \)-Espace Vectoriel de dimension finie un faisceau de la forme \(W \otimes_C G_a \), où \(W \) est un \(C \)-espace vectoriel de dimension finie.

Ce texte est consacré à l’étude de la catégorie abélienne suivante.

Définition 2.2.11. — La catégorie \(BC \) des espaces de Banach-Colmez est la plus petite sous-catégorie abélienne stable par extensions contenant les faisceaux \(\mathbb{Q}_p \) et \(G_a \), de la catégorie des faisceaux de \(\mathbb{Q}_p \)-espaces vectoriels sur \(\text{Perf}_{C,\text{proét}} \).

En particulier, cette catégorie contient évidemment tous les \(\mathbb{Q}_p \)-Espaces Vectoriels de dimension finie et tous les \(\mathbb{C} \)-Espaces Vectoriels de dimension finie. Dans la suite, on notera simplement \(\mathbb{Q}_p \) au lieu de \(\overline{\mathbb{Q}_p} \), pour alléger les notations.

Remarques 2.2.12. — a) On obtiendrait une catégorie équivalente en remplaçant \(\text{Perf}_{C,\text{proét}} \) par \(\text{Perf}_{C,v} \) (cf. la remarque 2.4.2).

b) Cette définition est en fait équivalente à la définition originale de Colmez, qui était formulée différemment, comme on le verra plus loin (corollaire 2.7.11).

c) On pourrait remplacer \(\mathbb{Q}_p \) par un corps local \(E \) de caractéristique \(p \), \(C \) par \(C^p \), et définir la catégorie des \(E \)-espaces de Banach-Colmez comme plus petite sous-catégorie abélienne stable par extensions contenant les faisceaux \(E \) et \(G_a \), de la catégorie des faisceaux de \(E \)-espaces vectoriels sur \(\text{Perf}_{C,\text{proét}} \) (noter que désormais \(G_a \) est représentable par un objet de \(\text{Perf}_{C,v} \), à savoir \(\mathbb{A}_C^{p,\text{perf}} \)).

2.2.3. Revêtements universels de groupes \(p \)-divisibles. — Comment fabriquer des exemples intéressants d’espaces de Banach-Colmez ? Une méthode possible, qui a l’avantage d’être de nature géométrique, est d’utiliser la théorie des groupes \(p \)-divisibles. Les résultats de ce paragraphe sont dus à Fargues-Fontaine ([66]) et Scholze-Weinstein ([132]) ; nous les rappelons pour la commodité du lecteur.

Soit \(G \) un groupe \(p \)-divisible sur \(\mathcal{O}_C \). Son revêtement universel \(\tilde{G} \) est le préfaisceau qui associe à une \(C \)-algèbre perfectoïde \(R \) le \(\mathbb{Q}_p \)-espace vectoriel

\[\tilde{G}(R) = \lim_{\xrightarrow{\leftarrow} k} \lim_{\xrightarrow{\leftarrow} n} G[p^n](R^{p^n}/p^{nk}). \]

Ce préfaisceau sera vu dans la suite comme un préfaisceau sur \(\text{Perf}_{C,\text{proét}} \), par restriction.

Exemple 2.2.13. — Si \(G \) est un groupe \(p \)-divisible étale sur \(\mathcal{O}_C \), \(G \) est isomorphe à \(T(G) \otimes \mathbb{Q}_p/\mathbb{Z}_p \), \(T(G) \) étant le module de Tate de \(G \). Dans ce cas, on a immédiatement \(\tilde{G} = V(G) \) et \(\tilde{G} \) est donc un \(\mathbb{Q}_p \)-Espace Vectoriel de dimension finie.

Proposition 2.2.14. — Le foncteur \(G \mapsto \tilde{G} \) transforme les isogénies en isomorphismes. De plus, si \(A \) est une \(\mathcal{O}_C \)-algèbre \(p \)-adique, \(\tilde{G}(A) \simeq \tilde{G}(A/p) \).

Démonstration. — La première affirmation est une conséquence immédiate du fait que la multiplication par \(p \) est un isomorphisme de \(\tilde{G} \). Pour la seconde, voir par exemple [66, Prop. 4.5.2].

Notons \(H \) le groupe \(p \)-divisible sur \(k = \overline{\mathbb{F}}_p \) obtenu en réduisant \(G \) modulo l’idéal maximal de \(\mathcal{O}_C \). On sait ([132, Th. 5.1.4]) que \(G \otimes_{\mathcal{O}_C} \mathcal{O}_C/p \) est quasi-isogène à \(H \otimes_k \mathcal{O}_C/p \). De la proposition précédente on déduit alors facilement :

\(^9\) Pour alléger les notations, on notera le plus souvent simplement \(V \) au lieu de \(V \).
La suite exacte connexe-étale de H :
\[0 \to H^\circ \to H \to H^\text{ét} \to 0 \]
est scindée, puisque k est un corps parfait. On en déduit immédiatement que \tilde{G} est la somme directe d’un \mathbb{Q}_p-Espace Vectoriel de dimension finie et du revêtement universel d’un groupe p-divisible connexe en fibre spéciale.

On peut donc supposer désormais G connexe en fibre spéciale (i.e. H connexe). Dans ce cas, le morphisme de systèmes projectifs
\[\begin{array}{c}
H \xrightarrow{p} H \xleftarrow{p} H \xleftarrow{\cdots} \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
H \xrightarrow{E} H^{(p^{-1})} \xleftarrow{E} H^{(p^{-2})} \xleftarrow{\cdots}
\end{array} \]
induit un isomorphisme
\[\tilde{H}(R^p/p) \simeq H(R^\infty), \]
puisque H étant connexe, il existe une isogénie u et un entier $n \geq 1$ tel que $F^n = p \circ u$. Il existe un entier d tel que H est (non canoniquement) isomorphe à $\text{Spf}(k[[T_1, \ldots, T_d]])$, et donc $H(R^\infty) \simeq (R^\infty)^d$. On en déduit que \tilde{G} est représentable par l’espace perfectoïde qui est l’espace adique fibre générique sur C du formel $\text{Spf}(\mathcal{O}_C[[T_1^{1/p^\infty}, \ldots, T_d^{1/p^\infty}]]).$ Finalement, on a montré dans tous les cas :

Proposition 2.2.16. — Si G est un groupe p-divisible sur \mathcal{O}_C, \tilde{G} est représenté par un espace perfectoïde (c’est donc en particulier un faisceau).

Proposition 2.2.17. — Si G est un groupe p-divisible sur \mathcal{O}_C, le faisceau \tilde{G} est un espace de Banach-Colmez.

Démonstration. — Comme on l’a noté plus haut, on peut supposer H connexe. Alors \tilde{G} est obtenu en prenant la limite inverse sur la multiplication par p du faisceau associé à la fibre générique adique \mathcal{G}_a du schéma en groupes formel G obtenu en complétant formellement G le long de sa section neutre. Cette fibre générique adique est à distinguer de la fibre générique schématique de G, qui est un schéma en groupes étale sur $\text{Spec}(C)$, donc constant de faisceau associé $T(G) \otimes \mathbb{Q}_p/\mathbb{Z}_p$ ainsi que de la fibre générique formelle $\tilde{G} \otimes_{\mathcal{O}_C} C$ de G, qui est isomorphe à $\text{Lie}(G) \otimes G_a$.

On a une suite exacte d’espaces adiques en groupes ([62, Th. 1.2]) :
\[0 \to T(G) \otimes \mathbb{Q}_p/\mathbb{Z}_p = \mathcal{G}_a^{\text{ad}}[p^{\infty}] \to \mathcal{G}_a^{\text{ad}} \longrightarrow \text{Lie}(G) \otimes G_a = (G \otimes_{\mathcal{O}_C} C)^{\text{ad}} \to 0, \]
donnée par l’application logarithme $\log : \mathcal{G}_a^{\text{ad}} \to \text{Lie}(G) \otimes G_a$, qui est un revêtement au sens de de Jong. On peut appliquer à cette suite exacte le foncteur $\lim_{\leftarrow \mathbb{N}}(\cdot)$, les morphismes de transition étant $(\cdot) \times_p \cong (\cdot)$. On obtient une suite exacte de faisceaux pro-étalas :
\[0 \to V(G) \to \tilde{G} \to \text{Lie}(G) \otimes G_a \to 0. \]
Cette suite exacte montre \tilde{G} est un espace de Banach-Colmez.

Le lemme de Yoneda et le fait que les perfectoïdes forment une base de la topologie pro-étale permettent de voir la catégorie dont les objets sont les revêtements universels de groupes p-divisibles sur \mathcal{O}_C (et les morphismes les morphismes d’espaces adiques en groupes) comme une sous-catégorie pleine de la catégorie des faisceaux abéliens sur $\text{Perf}_{C,\text{proéti}}$.

10. Il s’agit du foncteur associant $\tilde{H}(R \otimes_{W(k)} k)$ à une $W(k)$-algèbre adique R. Cf. [66, §4.6.3].
Définition 2.2.18. — On note \mathcal{B}^rep la sous-catégorie pleine de \mathcal{B}^C formée des revêtements universels de groupes p-divisibles.

La théorie des groupes p-divisibles permet de décrire explicitement les objets de \mathcal{B}^rep : Soit R une C-algèbre perfectoïde. Le complété p-adique $A_{\text{cris}}(R)$ de l’enveloppe à puissances divisées de la surjection $W(R^\circ) \to R^p$ est l’épaisseissement à puissances divisées p-adiquement complet universel de R^p/p. La construction de $A_{\text{cris}}(R)$ est fonctorielle en R. On note $B^+_\text{cris}(R) = A_{\text{cris}}(R)[1/p]$ et simplement B^+_cris si $R = C$. Si Γ est un groupe p-divisible sur R^p/p, on notera $M(\Gamma)$ l’évaluation du cristal de Dieudonné de Γ sur $A_{\text{cris}}(R)$. Si Γ provient par extension des scalaires de k à R^p/p d’un groupe p- divisible H, $M(\Gamma)$ est simplement $M(H) \otimes_L A_{\text{cris}}(R)$, $M(H)$ étant le module de Dieudonné usuel de H. On a le théorème suivant ([1132, Th. A]) :

Théorème 2.2.19. — Si R est une C-algèbre perfectoïde, le foncteur $\Gamma \mapsto M(\Gamma)[1/p]$ de la catégorie des groupes p-divisibles sur R^p/p à isogénie près dans la catégorie des $B^+_\text{cris}(R)$-modules finis projectifs avec Frobenius est pleinement fidèle.

On en déduit la

Proposition 2.2.20. — Soit R une C-algèbre affinoïde perfectoïde. On a des isomorphismes fonctoriels en R

$$\tilde{G}(R) = (B^+_\text{cris}(R) \otimes Q_p, M(H))^p = \tilde{G}(R) = H(R^\circ).$$

Démonstration. — Il suffit de remarquer que $$\tilde{G}(R) = H(R^\circ/p) = \text{Hom}_{R^\circ/p}(M(Q_p/Z_p, H)[1/p], M(H)[1/p]) $$

(la dernière égalité venant du théorème 2.2.19) et d’utiliser la description de $M(H)$.

Remarque 2.2.21. — On a observé plus haut que si H est connexe

$$\tilde{G}(R) = H(R^\circ)$$

pour toute C-algèbre perfectoïde R. Autrement dit, via l’équivalence de Scholze $\text{Perf}_{C^\text{,proét}} \simeq \text{Perf}^\text{proét}_{C^\text{,proét}}$, le faisceau \tilde{G} correspond à la fibre générique adique de $H \otimes O_C$. Par pleine fidélité du foncteur de Dieudonné (utilisée cette fois-ci sur O_C), si G et G' sont deux groupes p-divisaibles sur O_C connexes en fibre spéciale :

$$\text{Hom}(\tilde{G}, \tilde{G'}) = \text{Hom}(H \otimes O_{C^p}, H' \otimes O_{C^p}) = \text{Hom}_{B^+_\text{cris} \otimes L} (M(H), M(H')) ,$$

les deux premiers Hom étant des Hom comme faisceaux. Cette remarque sera utile plus loin.

Exemple 2.2.22. — Soit $G = \mu_{p^\infty}$. Alors $\tilde{G}(R) = B^+_\text{cris}(R)^{p^\infty}$. Si $R = C$, la suite obtenue en prenant les C-points de la suite exacte (16) pour G reste exacte et c’est la suite exacte (11)

$$0 \to \mathbb{Q}_p \to (B^+_\text{cris}(\cdot))^p \xrightarrow{\theta} C \to 0,$$

souvent appelée **suite exacte fondamentale de la théorie de Hodge p-adique**, qui apparaît un peu partout en théorie de Hodge p-adique et est à l’origine de la théorie des espaces de Banach-Colmez.

Corollaire 2.2.23. — Tout objet de \mathcal{B}^rep est somme directe de faisceaux $U_\lambda := (B^+_\text{cris}(\cdot))^p, \text{avec } 0 \leq \lambda = \frac{d}{R} \leq 1.$

11. Il serait plus habituel d’écrire $Q_p(1)$ au lieu de Q_p, mais nous voyons simplement ici cette suite exacte comme suite des C-points d’espaces de Banach-Colmez, sans nous préocupper de l’action de Galois.
2.3. Quelques calculs de cohomologie pro-étale

Pour mener à bien le calcul des groupes d’extensions de la section 2.4, il nous faut au préalable être capable de décrire certains groupes de cohomologie pro-étale. Ces calculs ont un intérêt en soi indépendamment du problème que nous avons en vue et les méthodes utilisées permettent de donner des résultats plus généraux et plus précis. Nous les effectuons dans le cas qui nous intéresse : celui de l’espace affine, pour les faisceaux \mathbb{Q}_p et \mathbb{G}_a. Les mêmes techniques permettent de calculer la cohomologie du disque unité ouvert en toute dimension.

Nous allons démontrer les résultats suivants\(^{(12)}\).

Théorème 2.3.1. — Soit $n \geq 1$ et $i \geq 0$. On a:

$$H^i(A^n_C, \mathbb{G}_a) = \Omega^i(A^n_C).$$

Théorème 2.3.2. — Notons $\mathcal{O}(A^n_C) \xrightarrow{d_0} \Omega^1(A^n_C) \xrightarrow{d_1} \ldots \xrightarrow{d_{n-1}} \Omega^n(A^n_C)$ le complexe des sections globales du complexe de de Rham de A^n_C. Alors $H^0(A^n_C, \mathbb{Q}_p) = \mathbb{Q}_p$ et pour tout $i > 0$, on a un isomorphisme:

$$H^i(A^n_C, \mathbb{Q}_p) = \text{Ker}(d_i) = \text{Im}(d_{i-1}) \subset \Omega^i(A^n_C).$$

Remarque 2.3.3. — Les cohomologies étale et pro-étale du faisceau constant \mathbb{Z}/p^k sur l’espace affine sont les mêmes, d’après la proposition 2.3.7 ci-dessous. Or Berkovich [11] a prouvé que pour tout $i > 0$, $H^i_{et}(A^n_C, \mathbb{Z}/p^k) = 0$. On en déduit facilement que $H^i(A^n_C, \mathbb{Z}_p) = 0$ pour tout $i > 0$. Cela ne contredit évidemment pas le théorème 2.3.2, puisque l’espace affine n’est pas quasi-compact.

Démonstration du théorème 2.3.1. — La cohomologie de \mathbb{G}_a se calcule aisément, grâce au résultat remarquable suivant\(^{(13)}\) ([130, Prop. 3.23]), où le faisceau que nous notons \mathbb{G}_a est appelé \mathcal{O}:

Proposition 2.3.4. — Soit $n \geq 1$ et $\nu : \mathbb{G}_a \rightarrow \mathbb{G}_a$ le morphisme du topos pro-étale vers le topos étale de A^n_C. On a:

$$R^i\nu_*\mathbb{G}_a = \Omega^i(A^n_C),$$

pour tout $i \geq 0$ (en particulier ces faisceaux sont nuls si $i > n$).

\(^{(12)}\) Dans la suite nous ignorons systématiquement l’action de Galois et donc les twists à la Tate dans l’énoncé des résultats, bien qu’il soit facile de les suivre à la trace.

\(^{(13)}\) Qui est, notamment, à l’origine de la suite spectrale de Hodge-Tate.
Comme $\mathbb{A}^n_\mathbb{C}$ est Stein, donc n’a pas de cohomologie cohérente en degré positif, on en déduit que pour tout i,

$$H^i(\mathbb{A}^n_\mathbb{C}, G_a) = \Omega^i(\mathbb{A}^n_\mathbb{C}),$$

grâce à la suite spectrale de Leray pour le morphisme ν.

La démonstration du théorème 2.3.2 est plus difficile et le reste de cette section lui est consacré. Nous commençons par le cas de la dimension 1 à l’aide de la suite exacte de Kummer et de théorèmes d’annulation de Berkovich\(^{(14)}\). Puis nous traitons le cas général à l’aide de la version faisceautique de la suite exacte fondamentale en théorie de Hodge p-adique. Notons que nous n’utiliserons dans la suite du texte que le calcul de la cohomologie en degrés 0 et 1, pour lequel la suite exacte de Kummer suffit. Le lecteur qui le souhaite peut donc sauter en première lecture le paragraphe 2.3.2.

2.3.1. Cohomologie de la droite affine. — Rappelons tout d’abord la proposition suivante, qui servira constamment ([48, Prop. 13.2.2] et [48, Rem. 13.2.4]).

Proposition 2.3.5. — Soit I un ensemble ordonné filtrant ayant une partie cofinale dénombrable et $(A_i)_{i \in I}$ un système projectif de groupes abéliens. On note $f_{ij}: A_j \rightarrow A_i$ pour $j \geq i$. Si (A_i) vérifie la condition de Mittag-Leffler,

$$R^1 \lim_{\leftarrow i} A_i = 0.$$

La conclusion reste valable si l’on suppose que chacun des groupes A_i est muni d’une structure d’espace métrique complet compatible à la structure de groupe, que les f_{ij} sont uniformément continues et que pour tout i, il existe $j \geq i$ tel que pour tout $k \geq j$, $f_{ik}(A_k)$ est dense dans $f_{ij}(A_j)$.

Un autre fait utile est le suivant.

Proposition 2.3.6. — Soit I un ensemble ordonné filtrant ayant une partie cofinale dénombrable et $(F_i)_{i \in I}$ un système projectif de faisceaux abéliens pour la topologie pro-étale sur un espace adique analytique X. Alors

$$\forall k > 0, \ R^k \lim_{\leftarrow i} F_i = 0.$$

Démonstration. — Voir [15, Prop. 3.1.10].

On utilisera également le résultat de comparaison suivant.

Proposition 2.3.7. — Soit X un espace adique analytique sur C et \mathcal{F} un faisceau étale sur X. Notons $\nu: \overline{X}_{\text{pro-ét}} \rightarrow \overline{X}_{\text{ét}}$ le morphisme de topos. Alors pour tout $i \geq 0$,

$$H^i_{\text{pro-ét}} (X, \nu^* \mathcal{F}) = H^i_{\text{ét}} (X, \mathcal{F}).$$

Démonstration. — Ceci est démontré dans [131, Prop. 12.8], avec X remplacé par X°, le diamant associé à l’espace adique analytique X. Or la cohomologie pro-étale de X est la même que celle de X°, par définition des sites pro-étalés et l’équivalence $	ext{Perf}_{C,\text{pro-ét}} \simeq \text{Perf}_{C,\text{ét}}$. La cohomologie étale de X est aussi la même que celle de X° car les sites étalés de X et X° sont les mêmes : en effet, les morphismes étalés descendent pour la topologie pro-étale\(^{(15)}\) (voir la deuxième partie de la preuve de [131, Prop. 7.7]).

\(^{(14)}\) Dans la suite, nous utiliserons sans plus de commentaire le fait que la cohomologie étale d’un espace analytique Hausdorff au sens de Berkovich est la même que celle de la variété rigide ou de l’espace adique associé. Voir [86, Ch. 8].

\(^{(15)}\) Et même pour la ν-topologie, cf. [131, Prop 7.7].
Démonstration. — Pour tout \(n > 1 \), notons \(\bar{B}_n = \text{Spa}(\mathcal{O}(\mathbb{Q}^1/n T)) \) la boule fermée de rayon \(p^{-1/n} \).

Montrons dans un premier temps que \(H^1_{\et}(\bar{B}_n, \mathbb{Q}_p) \) est nul pour \(i > 1 \). D’après [10, Th. 4.2.6], \(H^1_{\et}(\bar{B}_n, \mathbb{Z}/p^k) = 0 \) si \(i > 2 \). On a donc \(H^1_{\et}(\bar{B}_n, \mathbb{Q}_p) = 0 \) si \(i > 2 \). La suite exacte de Kummer donne une suite exacte longue

\[
0 \to \mathcal{O}(\bar{B}_n)^*/(\mathcal{O}(\bar{B}_n)^*)^{p^k} \to H^1_{\et}(\bar{B}_n, \mathbb{Z}/p^k) \to H^1_{\et}(\bar{B}_n, G_m) \to H^2_{\et}(\bar{B}_n, G_m) \to H^2_{\et}(\bar{B}_n, \mathbb{Z}/p^k).
\]

Or d’après [10, Lem. 6.1.2], \(H^2_{\et}(\bar{B}_n, G_m) = 0 \); comme on a aussi \(\text{Pic}(\bar{B}_n) = 0 \) ([104, Satz 1]), on obtient

\[
H^2_{\et}(\bar{B}_n, \mathbb{Z}/p^k) = 0.
\]

On en déduit que \(H^2_{\et}(\bar{B}_n, \mathbb{Q}_p) = 0 \).

Calculons maintenant \(H^1(D, \mathbb{Q}_p) \). On regarde la suite exacte:\n
\[
0 \to R^1\lim_{n} H^0(\bar{B}_n, \mathbb{Q}_p) \to H^1(D, \mathbb{Q}_p) \to \lim_{n} H^1(\bar{B}_n, \mathbb{Q}_p) \to 0.
\]

Le terme de gauche est nul (proposition 2.3.5). Or \(H^1(\bar{B}_n, \mathbb{Q}_p) = H^1(\bar{B}_n, \mathbb{Z}_p)[1/p] \) par quasi-compacité de \(\bar{B}_n \) ([140, Lem. 21.17.1]) et on a une suite exacte (proposition 2.3.6):

\[
0 \to R^1\lim_{n} H^0(\bar{B}_n, \mathbb{Z}/p^k) \to H^1(\bar{B}_n, \mathbb{Z}_p) \to \lim_{n} H^1(\bar{B}_n, \mathbb{Z}/p^k) \to 0,
\]

où à nouveau le terme de gauche est nul. La cohomologie du faisceau \(\mathbb{Z}/p^k \) sur \(\bar{B}_n \) se calcule indifféremment pour la topologie étale ou pro-étale, d’après la proposition 2.3.7. La suite exacte de Kummer donne donc que pour tout \(n \),

\[
H^1_{\et}(\bar{B}_n, \mathbb{Z}_p) = \lim_{k} \mathcal{O}((\bar{B}_n)^*/(\mathcal{O}(\bar{B}_n)^*)^{p^k}).
\]

On a

\[
\mathcal{O}((\bar{B}_n)^*) = C^* \cdot \{1 + \sum_{i \geq 1} a_i X_i, \forall i, |a_i| p^{-i/n} < 1\}.
\]

Notons \(M_n = \{1 + \sum_{i \geq 1} a_i X^i, \forall i, |a_i| p^{-i/n} < 1\} \), de sorte que l’on a aussi \(H^1_{\et}(\bar{B}_n, \mathbb{Z}_p) = \lim_{i} M_n / M_n^{p^i} \).

Si \(f \in M_n \), \(\log \phi \) est bien définie et est un élément de l’espace \(\mathcal{O}(\bar{B}_n)_0 \) des fonctions rigides analytiques sur \(\bar{B}_n \) nulles en zéro. Notons \(\Phi_n(f) \) la restriction de cet élément à \(\bar{B}_n \). Nous affirmons que l’application \(\Phi_n \) s’étend à \(\lim_{i} M_n / M_n^{p^i} \). En effet, soit \(f \in M_n \). Alors \(\Phi_n(f) \in \mathcal{O}(\bar{B}_n-1)^{\leq r_0} \), où \(r_0 = \sup \{|z|, z \in \log(B(1, p^{-1/n}))\} \) et \(\mathcal{O}(\bar{B}_n-1)^{\leq r} \) pour \(r > 0 \) désigne l’ensemble des fonctions bornées par \(r \). Si \(f \in M_n^{p^i} \), \(\Phi_n(f) \in p^k \mathcal{O}(\bar{B}_n-1)^{\leq r_0} \). On en déduit que \(\Phi_n \) induit une flèche de \(\lim_{i} M_n / M_n^{p^i} \) vers le complété \(p \)-adique de \(\mathcal{O}(\bar{B}_n-1)^{\leq r_0} \), qui est \(\mathcal{O}(\bar{B}_n-1)^{\leq r_0} \) lui-même, et donc en particulier une flèche de \(\lim_{i} M_n / M_n^{p^i} \) vers \(\mathcal{O}(\bar{B}_n-1)_0 \). On a donc défini pour chaque \(n \) un morphisme

\[
\Phi_n : H^1(\bar{B}_n, \mathbb{Q}_p) = (\lim_{k} M_n / M_n^{p^k})[1/p] \to \mathcal{O}(\bar{B}_n-1)_0.
\]

16. Si \(X \) est un espace adique, pour nous \(H^1_{\et}(X, \mathbb{Z}_p) = \lim_{k} H^1_{\et}(X, \mathbb{Z}/p^k) \) et \(H^1_{\et}(X, \mathbb{Q}_p) = H^1_{\et}(X, \mathbb{Z}/p^k)[1/p] \), par définition.

17. Dont l’existence découle de la proposition 2.3.6, mais se vérifie facilement dans ce cas en utilisant [48, Prop. 13.3.1].
Ces flèches sont évidemment compatibles quand \(n \) varie et donnent donc un morphisme continu

\[
\Phi : H^1(D, Q_p) \to \lim_{\rightarrow n} \mathcal{O}(\bar{B}_{n-1})_0 = \mathcal{O}(D)_0.
\]

C’est un isomorphisme : pour le voir, construisons la bijection réciproque. Soit \(g \in \mathcal{O}(D)_0 \), vue comme une suite \((g_n)\) d’éléments de \(\mathcal{O}(\bar{B}_{n-1})_0 \). Pour tout \(n \), \(g_n \) est bornée, donc il existe \(k_n \geq 0 \) tel que \(p^{k_n} g_n \) soit à valeurs dans la boule centrée en 0 de rayon \(p^{-1/(p-1)} \). Alors \(\exp(g_n) \) est bien défini ; c’est une fonction inversible sur \(\bar{B}_{n-1} \), que l’on peut en particulier voir comme un élément de \(H^1(\bar{B}_{n-1}, Q_p) \). On pose alors \(f_n = p^{-k_n} \exp(g_n) \in H^1(\bar{B}_{n-1}, Q_p) \) (pour la structure de \(Q_p \)-espace vectoriel de \(H^1(\bar{B}_{n-1}, Q_p) \)). Alors \(f = (f_n)_n \) est un antécédent de \(g \) par \(\Phi \).

Pour conclure la preuve de la proposition, il ne reste plus qu’à montrer que les \(H^i(D, Q_p) \) sont nuls pour \(i > 1 \). Soit \(B_n \) la boule ouverte de rayon \(p^{-1/n} \). On a une suite exacte

\[
0 \to R^1\lim_{\rightarrow n} H^1(B_n, Q_p) \to H^2(D, Q_p) \to \lim_{\rightarrow n} H^2(B_n, Q_p) \to 0.
\]

Le terme de gauche s’annule, car les flèches de restriction \(\mathcal{O}(B_{n+1})_0 \to \mathcal{O}(B_n)_0 \) sont d’image dense (proposition 2.3.5). De plus dans la limite inverse de droite, on peut remplacer les groupes de cohomologie pro-étale par des groupes de cohomologie étale. En effet, on peut remplacer les \(B_n \) par le système cofinal des \(B_{n-1} \). Alors, comme on l’a vu ci-dessus, \(H^i(B_n, Q_p) = H^i_{\text{pro}}(B_n, Q_p) \) pour tout \(i \) (facile). On en déduit avec ce qu’on a dit plus haut que le terme de droite est également nul et donc \(H^2(D, Q_p) = 0 \). Enfin pour \(i \geq 3 \), on utilise la suite exacte

\[
0 \to R^1\lim_{\rightarrow n} H^{i-1}(B_n, Q_p) \to H^i(D, Q_p) \to \lim_{\rightarrow n} H^i(B_n, Q_p) \to 0
\]

et le fait que les termes de gauche et de droite sont nuls (toujours parce qu’on peut remplacer cohomologie pro-étale par cohomologie étale et par le début de la démonstration).

Remarque 2.3.9. — Même en dimension 1, il semble plus délicat de décrire explicitement le \(H^1 \) étale à coefficients \(Q_p \) de la boule ouverte ou fermée, ou le \(H^1 \) pro-étale du disque fermé.

On en déduit le cas \(n = 1 \) du théorème 2.3.2.

Corollaire 2.3.10. — On a \(H^i(\Lambda^1_{\mathcal{C}}, Q_p) = 0 \) pour tout \(i > 1 \). De plus, \(H^0(\Lambda^1_{\mathcal{C}}, Q_p) = Q_p \) et \(H^1(\Lambda^1_{\mathcal{C}}, Q_p) \) s’identifie à l’espace \(\mathcal{O}(\Lambda^1_{\mathcal{C}})_0 \) des fonctions rigides analytiques sur \(\Lambda^1_{\mathcal{C}} \), nulles en 0.

Démonstration. — Notons pour tout \(m > 0 \), \(D_m \) la boule ouverte de rayon \(m \). L’existence de la suite exacte

\[
0 \to R^1\lim_{\rightarrow m} H^{i-1}(D_m, Q_p) \to H^i(\Lambda^1_{\mathcal{C}}, Q_p) \to \lim_{\rightarrow m} H^i(D_m, Q_p) \to 0
\]

et la proposition 2.3.8 donnent immédiatement le résultat (pour \(i = 2 \), on utilise une fois de plus la proposition 2.3.5).

Notons qu’exactement la même preuve donne également le résultat suivant, en dimension quelconque. C’est de celui-ci que nous ferons usage dans la section 2.4.

Proposition 2.3.11. — Soit \(n \geq 1 \). On a \(H^0(\Lambda^n_{\mathcal{C}}, Q_p) = Q_p \) et \(H^1(\Lambda^n_{\mathcal{C}}, Q_p) \) s’identifie à l’espace des fonctions rigides analytiques sur \(\Lambda^n_{\mathcal{C}} \), nulles en 0.
2.3.2. Cohomologie de l’espace affine de dimension arbitraire. — Nous allons maintenant démontrer le théorème 2.3.2 sans restriction sur la dimension. L’idée est d’exploiter la suite exacte de faisceaux pro-étales (18):

\[
0 \to \mathbb{Q}_p \to \mathbb{B}[1/t]^{\varphi=1} \to \mathbb{B}_{\text{dR}}/\mathbb{B}_{\text{dR}}^+ \to 0.
\]

La définition des faisceaux de périodes qui apparaissent dans cette suite exacte et quelques unes de leurs propriétés sont rappelées dans l’appendice 2.9; le point clé est que cohomologie de ces faisceaux est plus accessible que celle de \(\mathbb{Q}_p \).

Commençons par l’analyse de la cohomologie de \(\mathbb{B}_{\text{dR}}/\mathbb{B}_{\text{dR}}^+ \).

Rappelons tout d’abord quelques résultats sur la cohomologie des variétés rigides lisses Stein ([79]).

Proposition 2.3.12. — Soit \(X \) un espace Stein lisse sur un corps \(p \)-adique \(K \), de dimension \(d \). Les groupes de cohomologie de de Rham de \(X \) (au sens de [79]) sont les groupes de cohomologie du complexe

\[O(X) \to \Omega^1(X) \to \cdots \to \Omega^d(X). \]

Les différentielles sont strictes et les \(H^i_{\text{dR}}(X) \) ont donc une topologie naturelle, qui en fait des \(K \)-espaces de Fréchet. La topologie du dual topologique de ces \(K \)-espaces de Fréchet est la topologie localement convexe la plus fine.

La dernière assertion traduit le fait que la cohomologie de de Rham des affinoïdes sur-convergents est de dimension finie.

Lemme 2.3.13. — Soit \(K \) un corps \(p \)-adique (c’est-à-dire une extension finie de \(\mathbb{Q}_p \)), \(W \) un \(K \)-espace de Banach et \(C^\bullet \) un complexe strict de \(K \)-espaces de Fréchet. Pour tout \(i \),

\[H^i(C^\bullet) \otimes_K W \simeq H^i(C^\bullet \otimes_K W). \]

Démonstration. — On sait qu’il existe un ensemble \(I \) tel que \(W \simeq \ell_0(I,K) \), car \(K \) est de valuation discrète. Comme \(C^\bullet \) un complexe de Fréchet , d’après [120, §17], on a pour tout \(i \)

\[C^i \otimes_K W \simeq \ell_0(I,H^i(C^\bullet)). \]

On en déduit immédiatement que pour tout \(i \)

\[H^i(C^\bullet \otimes_K W) \simeq \ell_0(I,H^i(C^\bullet)), \]

d’où le lemme.

On en déduit la

Proposition 2.3.14. — Soit \(X \) une variété rigide lisse et Stein sur un corps \(p \)-adique \(K \). Pour toute \(K \)-algèbre de Banach \(W \) et tout \(i \),

\[H^i_{\text{dR}}(X_W) \simeq H^i_{\text{dR}}(X) \otimes K W. \]

Démonstration. — La proposition 2.3.12 permet d’appliquer le lemme aux complexes des sections globales du complexe de de Rham de \(X \) et à \(W \).

Proposition 2.3.15. — Soit \(X \) une variété rigide lisse sur un corps \(p \)-adique \(K \), de dimension \(n \). On a une suite exacte de faisceaux pro-étales sur \(X \):

\[0 \to \mathbb{B}_{\text{dR},X} \to O_{\mathbb{B}_{\text{dR},X}} \to O_{\mathbb{B}_{\text{dR},X}} \otimes_{O_X} \Omega_X^1 \to \cdots \to O_{\mathbb{B}_{\text{dR},X}} \otimes_{O_X} \Omega_X^n \to 0. \]

ainsi que pour tout \(r \in \mathbb{Z} \) une suite exacte de faisceaux pro-étales sur \(X \):

\[0 \to \text{Fil}^r \mathbb{B}_{\text{dR},X} \to \text{Fil}^r O_{\mathbb{B}_{\text{dR},X}} \to \text{Fil}^{r-1} O_{\mathbb{B}_{\text{dR},X}} \otimes_{O_X} \Omega_X^1 \to \cdots \to \text{Fil}^{r-n} O_{\mathbb{B}_{\text{dR},X}} \otimes_{O_X} \Omega_X^n \to 0. \]

18. Cette idée (en remplaçant \(B \) par \(B_{\text{crys}} \)) nous a été suggérée par Gabriel Dospinescu.
Démonstration. — Voir [129, Cor. 6.13]. Nous attirons l’attention du lecteur sur le fait que la notation \(O_X, \Omega^1_X \) désigne ici les faisceaux pro-étales \(\nu^*O_X, \nu^*\Omega^1_X \) et le morphisme de sites de \(X_{\text{proét}} \) vers \(X_{\text{ét}} \).

Nous aurons également besoin du fait suivant. On dispose de morphisme de topos :

\[
\tilde{X}_{\text{proét}} \xrightarrow{\nu'} \tilde{X}_{C,\text{ét}} \xrightarrow{\lambda} \tilde{X}_{\text{ét}},
\]

donc la composée est le morphisme de topos \(\nu : \tilde{X}_{\text{proét}} \to \tilde{X}_{\text{ét}} \). Le morphisme \(\lambda \) est induit par le morphisme de sites \(X_{C,\text{ét}} \to X_{\text{ét}} \) tel que si \(U \to X \) est étale, \(\lambda^*(U) = U_C \). Le théorème d’Elkik ([56]) donne une équivalence :

\[
\lim_{K' \mid K} X_{K',\text{ét}} \simeq \tilde{X}_{C,\text{ét}},
\]

\(K' \) parcourant les extensions de degré fini de \(K \). Si \(i < j \) sont deux entiers et \(F \) un fibré vectoriel sur \(X \), \(\hat{\otimes}_K \text{Fil}^i B_{\text{dR}}/\text{Fil}^j B_{\text{dR}} \) est un faisceau de \(O_{X_{K'}} \)-modules pour toute extension finie \(K' \) de \(K \), car \(B_{\text{dR}} \) est une \(K \)-algèbre. On peut donc par l’équivalence d’Elkik voir \(\hat{\otimes}_K \text{Fil}^i B_{\text{dR}}/\text{Fil}^j B_{\text{dR}} \) comme un faisceau étale sur \(X_C \), que l’on notera encore \(\hat{\otimes}_K \text{Fil}^i B_{\text{dR}}/\text{Fil}^j B_{\text{dR}} \) pour simplifier, en particulier dans l’énoncé suivant.

Proposition 2.3.16. — Soit \(F \) un fibré vectoriel sur \(X \). Alors, pour tout \(i < j \),

\[
R\nu'_*(\hat{\otimes}_K \text{Fil}^i B_{\text{dR}}/\text{Fil}^j B_{\text{dR}} \otimes O_X F) = \hat{\otimes}_K \text{Fil}^i B_{\text{dR}}/\text{Fil}^j B_{\text{dR}}.
\]

Démonstration. — Nous affirmons que la flèche naturelle

\[
\hat{\otimes}_K \text{Fil}^i B_{\text{dR}}/\text{Fil}^j B_{\text{dR}} \to R\nu'_*(\hat{\otimes}_K \text{Fil}^i B_{\text{dR}}/\text{Fil}^j B_{\text{dR}} \otimes O_X F),
\]

est un quasi-isomorphisme filtré, pour les filtrations naturelles des deux côtés. Il suffit de le tester sur les gradués.

On a, par la formule de projection, pour tout \(k \) :

\[
R\nu'_*(g^k \hat{\otimes}_K \text{Fil}^i B_{\text{dR}}/\text{Fil}^j B_{\text{dR}} \otimes O_X \lambda^{-1} F) = R\nu'_*g^k \hat{\otimes}_K \text{Fil}^i B_{\text{dR}}/\text{Fil}^j B_{\text{dR}}.
\]

Or, d’après [129, Prop. 6.16 (i)],

\[
R\nu'_*g^k \hat{\otimes}_K \text{Fil}^i B_{\text{dR}}/\text{Fil}^j B_{\text{dR}} = \nu'_*g^k \hat{\otimes}_K \text{Fil}^i B_{\text{dR}}/\text{Fil}^j B_{\text{dR}} = O_{X_C}(k).
\]

Décritons le faisceau \(\lambda^{-1} F \otimes_{\lambda^{-1} O_X} O_{X_C} \). Soit \(U \) un ouvert étale de \(X_C \). Quitte à rétrécir \(U \), on peut supposer que \(U \to X_C \) provient par extension des scalaires d’un ouvert étale \(V \to X_{K'} \), avec \(K'/K \) finie. Alors on a

\[
\lambda^{-1} F(U) = \lim_{K''/K' \text{ finie}} F(V_{K''}).
\]

D'où

\[
(\lambda^{-1} F \otimes_{\lambda^{-1} O_X} O_{X_C})(U) = \lim_{K''/K' \text{ finie}} F(V_{K''}) \otimes_{V_{K''}} U = F_C(U).
\]

Par conséquent, on a bien

\[
R\nu'_*(g^k \hat{\otimes}_K \text{Fil}^i B_{\text{dR}}/\text{Fil}^j B_{\text{dR}} \otimes O_X F) \simeq \lambda^{-1} \hat{\otimes}_K C(k).
\]

Proposition 2.3.17. — Soit \(n \geq 1 \). On a \(H^0(A^+_C, B^+_d) = B^+_d \) et pour tout \(i > 0 \),

\[
H^i(A^+_C, B^+_d) = \text{Ker}(d_i),
\]

avec les notations du théorème 2.3.2.

19. Soit \(\mathcal{G} \) un faisceau cohérent sur un espace rigide sur \(K \) et \(W \) un \(K \)-espace de Banach. Le faisceau \(\mathcal{G} \otimes_K W \) est le faisceau dont les sections sur un ouvert quasi-compact \(U \) sont \(\mathcal{G}(U) \otimes_K W \) (noter que \(\mathcal{G}(U) \) a une structure naturelle de \(K \)-espace de Banach). Il s’agit bien d’un faisceau, puisque \(\otimes_K W \) préserve les suites exactes, cf. le lemme 2.3.13.
Considérons la suite spectrale de complexes filtrés

$$E^1_{p,i} = H^i(X_C, \mathcal{O}_{X_C}(i)) \Longrightarrow H^i(X_C, \mathcal{O}_{X_C}(i)).$$

On va supposer $k > n$ et $k > 2$, ce qui est loisible, puisque l'on prendra à la fin la limite sur $k \to +\infty$. Calculons les termes de la première page. Si $p < 0$ ou $p \geq k$, $E^p_{p,i} = 0$. Sinon,

$$\text{gr}^p(\mathbb{B}^+_{\text{dR}}/t^k) = \widehat{\Omega}_X(p).$$

Or, le lemme de Poincaré 2.3.15 donne une résolution :

$$0 \to \widehat{\Omega}_X \to \text{gr}^0\mathcal{O}_{X,\text{dR}} \to \text{gr}^{-1}\mathcal{O}_{X,\text{dR}} \otimes \mathcal{O}_X \to \cdots \to \text{gr}^{-n}\mathcal{O}_{X,\text{dR}} \otimes \mathcal{O}_X \Omega^n_X \to 0.$$

Comme on l’a noté au cours de la preuve de la proposition 2.3.19,

$$R\nu'_i(\text{gr}^{-k}\mathcal{O}_{X,\text{dR}} \otimes \mathcal{O}_X \Omega^k_X) = \Omega^k_{X}\text{Gal}(k(-k)).$$

Les différentielles dans la résolution obtenue en appliquant $R\nu'_i$ à la résolution précédente vont donc de $\Omega^k_{X}\text{Gal}(k(-k))$ vers $\Omega^{k+1}_{X}\text{Gal}(k(-k)-1)$ et sont C-linéaires et compatibles à l'action de Galois, donc forcément nulles. On en déduit que pour tout $p \geq 0$,

$$R\nu'_i\widehat{\Omega}_X(p) = \bigoplus_{k=0}^{n} \Omega^k_{X}(p-k)[-k]$$

et donc que si $0 \leq p < k$,

$$E^p_{1,i} = H^i(X_{C,\text{ét}}, R\nu'_i\widehat{\Omega}_X(p)) = \Omega^i(X_{C})(p-i),$$

puisque X_C est Stein.

La différentielle d_1 envoie $E^p_{1,i} = \Omega^{p+q}(X_C)(-q)$ vers $E^{p+1}_{1,i} = \Omega^{p+1+q}(X_C)(-q)$ et s'identifie à d_{p+q}. On a :

$$E^p_{2,i} = \ker(E^p_{1,i} \to E^{p+1}_{1,i})/\operatorname{im}(E^{p-1}_{1,i} \to E^{p}_{1,i}),$$

et pour $p = k-1$,

$$E^{k-1}_{2,i} = \operatorname{Ker}(d_i)(k-i-1) = \operatorname{Coker}(d_i)(k-i-1).$$

Prenons maintenant $K = \mathbb{Q}_p$ et $X = \mathbb{A}_C^n$. Sa cohomologie de de Rham en degré positif est trivialement.

Montrons par récurrence sur $r \geq 2$ que $E^{p,i}_{r} = E^{p,i}_{r-1}$ pour tout p et pour tout $i > 0$. Supposons le résultat connu pour un $r \geq 2$. Il suffit pour obtenir le résultat pour $r+1$ de montrer que toutes les différentielles à la r-ième page sont nulles. Alors d_r envoie $E^{p,i}_{r-1}$ vers $E^{p,i}_{r-1}$ vers $E^{p,i}_{r-1}$ vers $E^{p,i}_{r-1}$ vers $E^{p,i}_{r-1}$. C'est donc par les calculs précédents la flèche nulle, sauf éventuellement si $p = 0$ et $r = k-1$; dans ce cas, c'est une flèche de $\operatorname{Ker}(d_i)(-i)$ vers $\operatorname{Coker}(d_{i+1})(k-i-2)$. Comme cette flèche est compatible à l'action de Galois, si elle était non nulle, on aurait $-i = k-i-2$, i.e. $k = 2$, ce qu'on a exclu. On en déduit finalement que la suite spectrale dégénère à la deuxième page. Pour tout $i > 0$, on a donc une extension :

$$0 \to \operatorname{Coker}(d_i)(k-i-1) \to \operatorname{H}^i(\mathbb{A}_C^n, \mathbb{B}_{\text{dR}}^+)/t^k \to \ker(d_i)(k-i) \to 0.$$
on a en définitive, si $i > 0$ et que l’on oublie l’action de Galois :
\[H^i(A^n_C, \mathbb{B}^+_{dR}) = \text{Ker}(d_i). \]
Il reste à calculer la cohomologie en degré 0. La résolution ci-dessus et la proposition 2.3.16 donnent que pour tout $k > 0$,
\[H^0(A^n_C, \mathbb{B}^+_{dR}/t^k) = \text{Ker} \left(\mathcal{O}(A^n_{Qp}) \otimes_{Q_p} B_{dR}^+/t^k \to \Omega^1(A^n_{Qp}) \otimes_{Q_p} t^{-1} B_{dR}^+/t^{k-1} B_{dR}^+ \right). \]
C’est donc une extension
\[0 \to B_{dR}^+/t^k \to H^0(A^n_C, \mathbb{B}^+_{dR}/t^k) \to \mathcal{O}(A^n_{Q_p}) \otimes_{Q_p} C(k-1) \to 0. \]
Quand on passe de k à $k+1$, la flèche naturelle de $H^0(A^n_C, \mathbb{B}^+_{dR}/t^{k+1})$ vers $H^0(A^n_C, \mathbb{B}^+_{dR}/t^k)$ est la flèche évidente sur le terme de gauche et le morphisme nul sur celui de droite. En prenant la limite inverse sur k, on récupère donc finalement :
\[H^0(A^n_C, \mathbb{B}^+_{dR}) = B^+_{dR}. \]

Remarque 2.3.18. — Plutôt que d’utiliser la suite spectrale d’un complexe filtré, on pourrait utiliser le quasi-isomorphisme, valable pour toute variété rigide lisse sur une extension finie K de Q_p, de dimension n :
\[R\Gamma(U^+_d, X) = \mathcal{O}_X \otimes_K B_{dR}^+ \to \Omega^1_X \otimes_K B_{dR}^+ \to \cdots \to \Omega^n_X \otimes_K B_{dR}^+ \]
(la différentielle du complexe de droite étant donnée par la différentielle du complexe de de Rham de X), qui se montre en reprenant les arguments de la proposition 2.3.16 et dont on reparlera plus bas (remarque 2.3.21 et proposition 2.8.6).

Proposition 2.3.19. — Soit $n \geq 1$. On a $H^0(A^n_C, \mathbb{B}_{dR}) = B_{dR}$ et pour tout $i > 0$, $H^i(A^n_C, \mathbb{B}_{dR}) = 0$.

Démonstration. — Pour $k \geq 1$, notons \mathring{U}_k la boule fermée de rayon p^k et U_k la boule ouverte de rayon p^k. Observons que
\[R\Gamma(A^n_C, \mathbb{B}_{dR}) = R \varprojlim_k R\Gamma(\mathring{U}_k, \mathbb{B}_{dR}) = R \varprojlim_k(R\Gamma(U_k, \mathbb{B}_{dR}^+)/[1/t]), \]
par quasi-compacité de \mathring{U}_k. Pour tout k, la flèche
\[R\Gamma(U_{k+1}, \mathbb{B}_{dR}^+)/[1/t] \to R\Gamma(U_k, \mathbb{B}_{dR}^+)/[1/t] \]
se factorise à travers $R\Gamma(U_{k+1}, \mathbb{B}_{dR}^+)/[1/t]$. Par conséquent, l’isomorphisme précédent peut se réécrire :
\[R\Gamma(A^n_C, \mathbb{B}_{dR}) = R \varprojlim_k(R\Gamma(U_k, \mathbb{B}_{dR}^+)/[1/t]). \]
Or la proposition 2.3.17, ou plutôt sa preuve (qui s’adapte au cas du disque ouvert, puisque sa cohomologie de de Rham en degré strictement positif est elle aussi triviale), montre que pour tout $i > 0$ et tout $k > 0$, $H^i(U_k, \mathbb{B}_{dR}^+)$ est annulé par t et que $H^0(U_k, \mathbb{B}_{dR}^+) = B^+_{dR}$. On en déduit l’énoncé cherché.

D’où finalement :

Proposition 2.3.20. — Le groupe $H^0(A^n_C, \mathbb{B}_{dR}/\mathbb{B}^+_{dR})$ est une extension de $\text{Ker}(d_i) = \mathcal{O}(A^n_{Q_p})/C$ par B_{dR}/B^+_{dR} et pour tout $i > 0$, $H^i(A^n_C, \mathbb{B}_{dR}/\mathbb{B}^+_{dR}) = \text{Ker}(d_{i+1}) = \text{Im}(d_i)$.

Remarque 2.3.21. — La méthode utilisée permettrait de décrire plus généralement la cohomologie de \mathbb{B}_{dR}^+ et $\mathbb{B}^+_{dR}X$ pour X un espace Stein lisse sur un corps p-adique. La cohomologie de \mathbb{B}^+_{dR} se calcule à l’aide du quasi-isomorphisme :
\[R\Gamma(\mathbb{B}^+_{dR}, X) = \mathcal{O}_X \otimes_K B_{dR}^+ \to \Omega^1_X \otimes_K t^{-1} B_{dR}^+ \to \cdots \to \Omega^n_X \otimes_K t^{-n} B_{dR}^+ \]
évoqué dans la remarque 2.3.18. On déduit de cet isomorphisme l’existence d’un triangle distingué :
\[\Omega^1_X \otimes_K B^+_{\text{dir}} \rightarrow \text{R}^1\mathcal{H}_K^* \rightarrow 0 \rightarrow \Omega^1_X \otimes_K B^+_{\text{dir}}/t \rightarrow \cdots \rightarrow \Omega^1_X \otimes_K t^{-n}B^+_{\text{dir}}/t \].

Le complexe de droite se dévisse lui-même à nouveau comme extension de
\[0 \rightarrow 0 \rightarrow \Omega^2_X \otimes_K t^{-2}B^+_{\text{dir}}/t \rightarrow \cdots \rightarrow \Omega^1_X \otimes_K t^{-n}B^+_{\text{dir}}/t \]
par \(\Omega^1_X \otimes_K C(-1) \). L’hypercohomologie de ces complexes se calcule facilement à l’aide de la proposition 2.3.14. Pour le faisceau \(\mathbb{B}_{\text{dr}} \), sa cohomologie devrait pouvoir se calculer comme dans la preuve de la proposition 2.3.19, en choisissant un recouvrement affinoïde admissible \(\mathcal{U} \) par \(\mathcal{H} \) de \(X \) et une extension
1

Le complexe de droite se dévisse lui-même à nouveau comme extension de
\[0 \rightarrow 0 \rightarrow \mathcal{H}^i \rightarrow \Omega^1_X \otimes_K t^{-1}B^+_{\text{dir}}/B^+_{\text{dir}} \rightarrow 0 \]
(on utilise le fait que \(\mathcal{H} \) suit : sur le sous-espace \(B^{i>1} \))
\[\text{Ker}(\mathcal{H}_{i+1}(\mathcal{X}) \otimes_K \mathcal{B}_{\text{dr}}) = 0 \] si \(i = 2 \) puisque par dualité de Poincaré \(\mathcal{H}^2_{i\text{dr}}(\mathcal{X}) = \mathcal{H}^0_{i\text{dr,c}}(\mathcal{X})^* = 0 \). On a aussi :
\[\mathcal{H}^0(\mathcal{X}, C_{\text{dr}}, B_{\text{dr}}) = \mathcal{H}^1(\mathcal{X}, B_{\text{dr}}) = 0, \text{ si } i > 1 \]
Vie ces identifications, la flèche naturelle \(\mathcal{H}^1(\mathcal{X}, C_{\text{dr}}) \rightarrow \mathcal{H}^1(\mathcal{X}, B_{\text{dr}}) \) se décrit comme suit : sur le sous-espace \(\mathcal{H}^1_{\text{dr}}(\mathcal{X}) \otimes_K B^+_{\text{dr}} \), c’est la flèche évidente \(\mathcal{H}^1_{\text{dr}}(\mathcal{X}) \otimes_K B^+_{\text{dr}} \rightarrow \mathcal{H}^1_{\text{dr}}(\mathcal{X}) \otimes_K B^+_{\text{dr}} \) ; sur le quotient \(\Omega^1(\mathcal{X}) \otimes_K t^{-1}B^+_{\text{dr}}/B^+_{\text{dr}} \), c’est la composée de la projection \(\Omega^1(\mathcal{X}) \otimes_K t^{-1}B^+_{\text{dr}}/B^+_{\text{dr}} \rightarrow \mathcal{H}^1_{\text{dr}}(\mathcal{X}) \otimes_K t^{-1}B^+_{\text{dr}}/B^+_{\text{dr}} \) avec l’inclusion \(\mathcal{H}^1_{\text{dr}}(\mathcal{X}) \otimes_K B^+_{\text{dr}}/B^+_{\text{dr}} \).
Par conséquent, le groupe \(\mathcal{H}^0(\mathcal{X}, C_{\text{dr}}, B_{\text{dr}}) \) est une extention de \(\mathcal{O}(\mathcal{X}, C)/C \) par \(B_{\text{dr}}/B^+_{\text{dr}} \). On a \(\mathcal{H}^1(\mathcal{X}, C_{\text{dr}}, B_{\text{dr}}) = \mathcal{H}^1(\mathcal{X}) \otimes_K B_{\text{dr}}/t^{-1}B^+_{\text{dr}} \) et \(\mathcal{H}^i(\mathcal{X}, C_{\text{dr}}, B_{\text{dr}}) = 0 \) si \(i > 1 \).

L’analyse de la cohomologie de \(\mathbb{B}[1/t]^\varphi=1 \) est plus subtile. On va prouver le résultat suivant.

Proposition 2.3.22. — Soit \(n \geq 1 \). On note \(D^n \) le disque unité ouvert de dimension \(n \).
Pour tout \(i > 0 \),
\[\mathcal{H}^i(D^n_{\varphi}, \mathbb{B}[1/t]^\varphi=1) = 0. \]
De même, pour tout \(i > 0 \),
\[\mathcal{H}^i(A^n_{\varphi}, \mathbb{B}[1/t]^\varphi=1) = 0. \]

Dans tout ce paragraphe, \(I \) désigne un sous-intervalle compact de \([0, 1] \) à extrémités des nombresrationnels. Nous allons commencer par décrire la cohomologie du faisceau \(\mathbb{B}_I[1/t] \).
Modulo une hypothèse formulée ci-dessous (preuve de la proposition 2.3.25) et appelée
(•), nous obtiendrons des résultats plus fins, sans inverser \(t \). Ces résultats conditionnels
n’interviennent pas dans la démonstration de la proposition 2.3.22 ; nous les mentionnons
seulement car ils mettent en évidence l’importance du foncteur \(L_{\eta_I} \).

Avant de calculer la cohomologie du disque ouvert ou de l’espace affine, traitons le cas
de d’une couronne ouverte. Soit \(r, r' \) deux nombresrationnels. Notons
\[\tilde{C}_{r, r'} = \text{Spa}(\mathbb{Q}[p^r T_1, \ldots, p^r T_n, p'^r T_1^{-1}, \ldots, p'^r T_n^{-1}]) \]
la couronne fermée de rayons p^{-r} et $p^{r'}$. On notera simplement \mathcal{T} pour T_1, \ldots, T_n et de même pour les autres variables qui apparaissent. On note $\mathcal{C}_{r,r'}$ la couronne ouverte de rayons $p^{-r'}$ et $p^{r'}$; c'est une variété Stein.

Lemme 2.3.23. — Notons

$$(R_\infty, R^+_\infty) = (C/\langle (p^r \mathcal{T} 1/p^\infty), (p^{r'} \mathcal{T} 1/p^\infty) \rangle, \mathcal{O}_C/\langle (p^r \mathcal{T} 1/p^\infty), (p^{r'} \mathcal{T} 1/p^\infty) \rangle).$$

Alors

$$B_I(R_\infty, R^+_\infty) = B_I((p^r \mathcal{T} 1/p^\infty), (p^{r'} \mathcal{T} 1/p^\infty),$$
avec pour tout i, $X_i = [T_i]$.

Démonstration. — Pour toute algèbre affinoïde perfectoïde (S, S^+), on a par définition

$$B_I(S, S^+) = W(S^+) \left\langle \frac{|\alpha|}{p}, \frac{p}{|\beta|} \right\rangle,$$

si $I = [a, b]$ et $|\alpha| = a$, $|\beta| = b$. On a donc :

$$B_I(R_\infty, R^+_\infty) = W(R^+_\infty) \left\langle \frac{|\alpha|}{p^r}, \frac{p}{|\beta|} \right\rangle.$$

Or

$$W(R^+_\infty) = A_{\inf}(\langle [p^r \mathcal{T} 1/p^\infty], (p^{r'} \mathcal{T} 1/p^\infty) \rangle),$$

comme on le voit immédiatement en utilisant l'adjonction entre vecteurs de Witt et basculement. D'où

$$B_I(R_\infty, R^+_\infty) = A_{\inf}(\langle [p^r \mathcal{T} 1/p^\infty], (p^{r'} \mathcal{T} 1/p^\infty) \rangle) \left\langle \frac{|\alpha|}{p^r}, \frac{p}{|\beta|} \right\rangle = B_I((p^r \mathcal{T} 1/p^\infty), (p^{r'} \mathcal{T} 1/p^\infty),$$

la dernière égalité étant obtenue en prenant $(S, S^+) = (C, \mathcal{O}_C)$ dans la formule ci-dessus.

On aura également besoin de la proposition suivante.

Proposition 2.3.24. — Soit A un anneau, $g_1, \ldots, g_n \in A$ et $f \in A$ non diviseurs de zéro. Soit M un A-module sans f-torsion. Si h_1, \ldots, h_d sont des endomorphismes de M qui commutent, on note $K_M(h_1, \ldots, h_d)$ le complexe de Koszul

$$M \rightarrow \bigoplus_{1 \leq i \leq d} M \rightarrow \bigoplus_{1 \leq i_1 < i_2 \leq d} M \rightarrow \cdots \rightarrow \bigoplus_{1 \leq i_1 < \cdots < i_k \leq d} M \rightarrow \ldots$$

où la différentielle de M en position $i_1 < \cdots < i_k$ vers M en position $j_1 < \cdots < j_{k+1}$ est non nulle seulement si $\{i_1, \ldots, i_k\} \subset \{j_1, \ldots, j_{k+1}\}$ et vaut dans ce cas $(-1)^{m-1} h_m$, m étant l'unique indice entre 1 et $k+1$ tel que $j_m \notin \{i_1, \ldots, i_k\}$.

(i) Si f divise tous les g_i,

$$\eta_f K_M(g_1, \ldots, g_n) = K_M(g_1/f, \ldots, g_n/f).$$

(ii) Si il existe un i tel que g_i divise f, $\eta_f K_M(g_1, \ldots, g_n)$ est acyclique.

Démonstration. — Voir [14, Lem. 7.9].

Proposition 2.3.25. — On a des quasi-isomorphismes :

$$R^\Gamma(\mathcal{C}_{r,r'}/\mathcal{C}_r, \mathbb{B}_I[1/t]) \simeq \Omega^r(\mathcal{C}_{r,r'}) \otimes \mathcal{O}_B[1/t].$$

En outre, si l’on admet l’hypothèse (*), ci-dessus, on a même

$$R^\Gamma(\mathcal{C}_{r,r'}/\mathcal{C}_r, \mathbb{L}_{\eta_f} \mathbb{B}_I[1/t]) \simeq \Omega^r(\mathcal{C}_{r,r'}) \otimes \mathcal{O}_B[1/t].$$
Démonstration. — Tout d’abord, comme $\mathbb{B}_I \simeq \mathbb{B}_{\varphi^k(I)}$ pour tout entier $k \in \mathbb{Z}$ et comme (pour la deuxième assertion) $\varphi(t) = pt$, avec p inversible dans B_I, on peut supposer $I \subset [p^{-1}, 1]$. On sait alors que t et $[e] - 1$ diffèrent par une unité de B_I.

Notons $R = C(p^r T, p^r T^{-1})$ et
\[R_\infty = C((p^r T)_{1/p_\infty}, (p^r T^{-1})_{1/p_\infty}) , \]
comme dans le lemme. Notons $\tilde{C}_{r,r',C} = \text{Spa}(R_\infty, R_\infty^+)$. On sait que
\[H^0(\tilde{C}_{r,r',C}, \mathbb{B}_I) = B_1(R_\infty, R_\infty^+) \]
et que
\[H^i(\tilde{C}_{r,r',C}, \mathbb{B}_I) = 0 \]
si $i > 0$, d’après la proposition 2.9.3. En outre, la proposition 2.9.4 dit que les sections de \mathbb{B}_I sur le produit fibré de $\tilde{C}_{r,r',C}$ k-fois avec lui-même au-dessus de $\tilde{C}_{r,r',C}$ sont
\[C^0(Z_p^{k-1}, B_1(R_\infty, R_\infty^+)) \]
La suite spectrale de Cartan-Leray pour le recouvrement pro-étale $\tilde{C}_{r,r',C} \to \tilde{C}_{r,r',C}$ dégénère donc et identifie le complexe de cohomologie de \mathbb{B}_I sur $\tilde{C}_{r,r',C}$ au complexe de cohomologie continue du groupe Z_p^k agissant sur $B_1(R_\infty, R_\infty^+)$; autrement dit, la flèche
\[R\Gamma_{\text{cont}}(Z_p^k, B_1(R_\infty, R_\infty^+)) \to R\Gamma(\tilde{C}_{r,r',C}, \mathbb{B}_I) \]
est un quasi-isomorphisme. On a donc également, en appliquant $L\eta_\ell$ des deux côtés, un quasi-isomorphisme
\[L\eta_\ell R\Gamma_{\text{cont}}(Z_p^k, B_1(R_\infty, R_\infty^+)) \to L\eta_\ell R\Gamma(\tilde{C}_{r,r',C}, \mathbb{B}_I) \]
Le résultat suivant devrait être vrai mais nous ne l’avons pas démontré. Nous le formulons donc comme une hypothèse.

Hypothèse (\ast). Soit S un espace affinoïde lisse sur $\text{Spa}(C, \mathcal{O}_C)$. La flèche naturelle
\[L\eta_\ell R\Gamma(S, \mathbb{B}_I) \to R\Gamma(S_{\ell}, L\eta_\ell R\nu'_I \mathbb{B}_I) \]
est un quasi-isomorphisme.

Si l’on admet cette hypothèse, on a donc un quasi-isomorphisme
\[L\eta_\ell R\Gamma_{\text{cont}}(Z_p^k, B_1(R_\infty, R_\infty^+)) \to R\Gamma(\tilde{C}_{r,r',C,\ell_\ell}, L\eta_\ell R\nu'_I \mathbb{B}_I). \]

Pour obtenir le premier quasi-isomorphisme de l’énoncé de la proposition, il ne reste donc plus qu’à calculer le membre de gauche, ce que nous allons faire à l’aide des complexes de Koszul. On note $(\gamma_1, \ldots, \gamma_n)$ le système de générateurs canonique de Z_p^k. Le lemme 2.3.23 affirme que
\[B_1(R_\infty, R_\infty^+) = B_1(\langle [p^r T] \sum [p^r T^{-1}] \rangle_{1/p_\infty}) , \]
avec pour tout $i, X_i = [T_i]$. On peut donc décomposer :
\[B_1(R_\infty, R_\infty^+) = B_1(R_\infty, R_\infty^+)_{\text{int}} \oplus B_1(R_\infty, R_\infty^+)_{\text{non int}} , \]
avec $B_1(R_\infty, R_\infty^+)_{\text{int}} = B_1(\langle [p^r T] \sum [p^r T^{-1}] \rangle)$ et $B_1(R_\infty, R_\infty^+)_{\text{non int}}$ le sous-espace de $B_1(\langle [p^r T] \sum [p^r T^{-1}] \rangle)$ engendré par les monômes à coefficients non entiers.

Pour tout $i \geq 0$, le groupe de cohomologie $H^i_{\text{cont}}(Z_p^k, B_1(R_\infty, R_\infty^+)_{\text{non int}})$ est annulé par t, et donc
\[L\eta_\ell R\Gamma_{\text{cont}}(Z_p^k, B_1(R_\infty, R_\infty^+)_{\text{non int}}) = 0. \]

La preuve de cette assertion est tout à fait analogue à celle de [14, Lem. 9.6] ; on montre que la multiplication par t sur $R_{\text{cont}}(Z_p^k, B_1(R_\infty, R_\infty^+)_{\text{non int}})$ est homotope à zéro. En écrivant ce
complexes de cohomologie comme complexe de Koszul, on se ramène à fabriquer l’homotopie pour le complexe
\[B_I(\mathbb{R}_x, \mathbb{R}_x^+) \int (\mathbb{I}^p)_{\mathbb{I}^n} \prod_{j \neq i} (\mathbb{I}^p)_{\mathbb{I}^n} \mathbb{I}^j \mathbb{I}^1 \mathbb{I}^1 \mathbb{I}^1 \rightarrow B_I(\mathbb{R}_x, \mathbb{R}_x^+) \int (\mathbb{I}^p)_{\mathbb{I}^n} \prod_{j \neq i} (\mathbb{I}^p)_{\mathbb{I}^n} \mathbb{I}^j, \]
avec \(1 \leq i \leq n, a(i) = m/p^i, r \geq 1 \) et \(m \in \mathbb{Z}/\mathbb{Z} \), qui est quasi-isomorphe au complexe
\[B_I(\mathbb{R}_x, \mathbb{R}_x^+) \int \mathbb{I}^i \mathbb{I}^1 \mathbb{I}^1 \mathbb{I}^1 \rightarrow B_I(\mathbb{R}_x, \mathbb{R}_x^+) \int . \]
On conclut pour ce complexe en utilisant le fait que \(t \) divise \(\gamma_i \mathbb{I}^i - 1 \) (ici on utilise l’hypothèse sur \(I \)). Nous renvoyons à loc. cit. pour les détails.

Au contraire, dans le complexe de Koszul de \(B_I(\mathbb{R}_x, \mathbb{R}_x^+) \int \), toutes les flèches sont divisibles par \(t \), donc on a d’après la proposition 2.3.24 (ii) :
\[\mathcal{L}_t K \mathbb{K}_I(\mathbb{R}_x, \mathbb{R}_x^+) \int (\mathbb{I}^1 - 1, \ldots, \mathbb{I}^n - 1) = K \mathbb{K}_I(\mathbb{I}^p)_{\mathbb{I}^n} \mathbb{I}^1 \mathbb{I}^1 \mathbb{I}^1 (\mathbb{I}^1 - 1, \ldots, \mathbb{I}^n - 1). \]
On sait qu’à une unité de \(B_I \) près, pour chaque \(i \), \(\frac{\mathbb{I}^i - 1}{t} \) et \(X_i d/dX_i \) coïncident ([14, Lem. 12.3]). Le complexe considéré est donc quasi-isomorphe au complexe
\[K \mathbb{K}_I(\mathbb{I}^p)_{\mathbb{I}^n} \mathbb{I}^1 \mathbb{I}^1 \mathbb{I}^1 \mathbb{I}^1 \left(X_1 \frac{d}{dX_1}, \ldots, X_n \frac{d}{dX_n} \right), \]
qui est lui-même quasi-isomorphe au complexe de de Rham
\[\Omega^*(\tilde{C}_{r,r'}) \otimes_{\mathbb{Q}_p} B_I. \]
en utilisant la base \(d \log(X_1), \ldots, d \log(X_n) \). Ceci prouve le deuxième quasi-isomorphisme de l’énoncé, modulo l’hypothèse (c).

Enfin, notons que \(\mathbb{R}^\mathcal{I}(\tilde{C}_{r,r',C,\mathcal{G}}, \mathcal{R}_x^* \mathcal{B}_I) \) et \(\mathbb{L}_t \mathbb{R}^\mathcal{I}(\tilde{C}_{r,r',C,\mathcal{G}}, \mathcal{R}_x^* \mathcal{B}_I[1/t]) \) sont tous deux isomorphes à \(\mathbb{R}^\mathcal{I}(\tilde{C}_{r,r',C,\mathcal{G}}, \mathcal{R}_x^* \mathcal{B}_I[1/t]) \) après inversion de \(t \) (par quasi-compacité de \(\tilde{C}_{r,r'} \)); par conséquent le premier quasi-isomorphisme de l’énoncé est vrai de façon inconditionnelle.

Remarque 2.3.26. — La partie de la preuve ci-dessous qui consiste à exprimer la cohomologie de \(\mathbb{B}_I \) comme cohomologie d’un complexe de Koszul est standard depuis Faltings, et valable si l’on remplace l’algèbre \(R \) qui y apparaît par une algèbre affinoïde « petite » au sens de Faltings. Néanmoins pour une telle algèbre \(R \), il ne semble pas évident de décrire le complexe de Koszul de \(\mathbb{B}_I(\mathbb{R}_x) \) (ou sa structure de \(\mathbb{R}_x \)-algèbre) par le choix d’une carte) en termes du complexe de de Rham de \(\mathcal{R}(R) \), à l’exception presque des difficultés techniques complémentaires. Voir le paragraphe 2.8.5.

En outre, le complexe de de Rham d’un affinoïde n’est pas très sympathique ; il vaudrait donc mieux travailler avec des affinoïdes surconvergents, ce qui introduit de plus de difficultés complémentaires. Voir le paragraphe 2.8.5.

Proposition 2.3.27. — On a :
\[\mathbb{R}^\mathcal{I}(\tilde{D}_C, \mathcal{B}_I[1/t]) = \Omega^*_D \otimes_{\mathbb{Q}_p} B_I[1/t]. \]

En outre, si l’hypothèse (c) est valable,
\[\mathbb{R}^\mathcal{I}(\tilde{D}_C, \mathcal{B}_I[1/t]) = \Omega^*_D \otimes_{\mathbb{Q}_p} B_I. \]

Démonstration. — Le morphisme \(\tilde{D}_C \rightarrow \tilde{D}_C \) n’est pas un recouvrement pro-étale de \(\tilde{D}_C \), bien sûr, mais c’en est un recouvrement quasi-pro-étale (c’est-à-dire localement pro-étale pour la topologie pro-étale), et cela nous suffira, puisqu’un faisceau pro-étale est automatiquement un faisceau pour la topologie quasi-pro-étale. La cohomologie de \(\mathbb{B}_I \) sur \(\tilde{D}_C \) est
null (proposition 2.9.3); on peut donc calculer la cohomologie de \(B_I \) sur \(D_C \) comme cohomologie du complexe de Cech pour le recouvrement \(D_C \rightarrow D_C \). Pour le décrire, on utilise le lemme suivant.

Lemme 2.3.28. — Pour \(i = 1, \ldots, n \), on note \(ev_i \) l’application d’évaluation en \(T_i = 0 \). Pour tout \(k \geq 1 \), le produit fibré \(k \)-fois \(D_C \times_{D_C} \cdots \times_{D_C} D_C \) est affinoïde perfectoïde, d’algèbre affinoïde \((A_{n,k}, A_{n,k}^+) \), avec \(A_{n,k} = A_{n,k}^+ [1/p] \) et \(A_{n,k}^+ \) est l’ensemble des \(f \in C^0(\mathbb{Z}_p^{k-1}, OC(\mathbb{Z}_p^{k-1})) \) telles que pour tout \(0 \leq i_1, \ldots, i_j \leq n \), et tout \(x = (x_1, \ldots, x_{k-1}) \), \(y = (y_1, \ldots, y_{k-1}) \in \mathbb{Z}_p^{k-1} \) avec \(x_i = y_i \) dès que \(l \notin \{i_1, \ldots, i_j \} \), alors

\[
\text{ev}_{i_1} \circ \cdots \circ \text{ev}_{i_j} \circ f(x) = \text{ev}_{i_1} \circ \cdots \circ \text{ev}_{i_j} \circ f(y).
\]

Démonstration. — Tout d’abord, il est clair que l’algèbre affinoïde \((A_{n,k}, A_{n,k}^+) \) est une algèbre affinoïde perfectoïde.

Pour alléger les notations, nous ne traitons que le cas \(n = 1, k = 2 \), mais le cas général est parfaitement similaire. Montrons que \(\tilde{D} \times_{\tilde{D}} \tilde{D} \) et \(\text{Spa}(A_{1,2}) \) sont isomorphes. On peut définir deux morphismes d’algèbres continus \(\lambda, \mu : C(\mathbb{T}^{1/p^m}) \rightarrow A_{1,2} : \lambda \) envoie \(f \in C(\mathbb{T}^{1/p^m}) \) sur la fonction constante égale à \(f \) sur \(\mathbb{Z}_p \); le second envoie \(f \in C(\mathbb{T}^{1/p^m}) \) sur la fonction

\[
\mu(f) : \mathbb{Z}_p \rightarrow C(\mathbb{T}^{1/p^m}) ; x \mapsto x \cdot f,
\]

\(x \cdot f \) désignant l’élément de \(C(\mathbb{T}^{1/p^m}) \) obtenu en remplaçant dans l’écriture de \(f \) chaque terme \(T^{a/p^m} \) par \(a \cdot x T^{a/p^m} \). L’image de ce morphisme est incluse dans \(A_{1,2} \). De plus si \(f \in C(\mathbb{T}) \), l’image de \(f \) par ces deux morphismes est la même. En d’autres termes, les deux morphismes d’espaces adiques \(\lambda^*, \mu^* : \text{Spa}(A_{1,2}) \rightarrow \tilde{D} \) correspondants sont les mêmes après composition avec le morphisme \(\tilde{D} \rightarrow \tilde{D} \). On a donc un morphisme \(\text{Spa}(A_{1,2}) \rightarrow \tilde{D} \times_{\tilde{D}} \tilde{D} \).

Pour montrer que c’est un isomorphisme, nous utiliserons le critère suivant ([131, Lem. 3.4]) : un morphisme \(f : X \rightarrow Y \) quasi-compact quasi-séparable entre espaces perfectoïdes est un isomorphisme si et seulement s’il induit une bijection entre les espaces topologiques sous-jacents et des isomorphismes entre corps résiduels en tous les points de rang 1. Comme le \(\nu \)-recouvrement \(\tilde{D} \rightarrow \tilde{D} \) donne en restriction au disque privé de l’origine un recouvrement pro-étale \(\tilde{D}\{0\} \rightarrow \tilde{D}\{0\} \) de groupe \(\mathbb{Z}_p \), on sait déjà que le morphisme \(\text{Spa}(A_{1,2}) \rightarrow \tilde{D} \times_{\tilde{D}} \tilde{D} \) considéré est un isomorphisme en dehors de l’unique point de \(\tilde{D} \times_{\tilde{D}} \tilde{D} \) au-dessus de l’origine. Par le critère ci-dessus, il suffit pour conclure de montrer que la pré-image de ce point est un seul point, de corps résiduel \(C \). Soit donc \(K \) un corps contenant \(C \) et \(\alpha : A_{1,2} \rightarrow K \) un morphisme d’algèbres tel que

\[
\alpha \circ \lambda = \alpha \circ \mu : C(\mathbb{T}^{1/p^m}) \rightarrow K ; f \mapsto f(0).
\]

On peut écrire tout élément de \(A_{1,2} \) comme somme d’une constante et d’un élément de \(C^0(\mathbb{Z}_p, C(\mathbb{T}^{1/p^m})) \) dont le terme constant est nul. L’image de ce dernier est nulle. En effet, on peut approcher une fonction localement constante sur \(\mathbb{Z}_p \) à valeurs dans \(C(\mathbb{T}^{1/p^m}) \), sans terme constant. L’identité

\[
\forall x \in \mathbb{Z}_p, \quad 1 + x^p \mathbb{Z}_p(x) = \frac{1}{p^l} \sum_{\zeta \in \mu^l} \zeta^{x-i}
\]

si \(i \in \mathbb{Z} \) et \(l > 0 \) montre qu’il suffit de vérifier que l’image de la fonction \(x \mapsto \zeta^x T^a T^{m} \), \(a \neq 0, l, m \in \mathbb{N} \), est nulle. Or on peut toujours écrire cette fonction comme un multiple de \(\mu(T^{1/p^m}) \), \(k \) assez grand, par une fonction de \(\mathbb{Z}_p \) dans \(C(\mathbb{T}^{1/p^m}) \) sans terme constant. Comme l’image de \(\mu(T^{1/p^m}) \) est nulle, c’est gagné.

On a une suite exacte

\[
0 \rightarrow C^0(\mathbb{Z}_p^{k-1}, \cap_{i=1}^n \text{Ker}(\text{ev}_i)) \rightarrow A_{n,k} \rightarrow A_{n-1,k-1} \rightarrow 0,
\]

la deuxième flèche étant \(f \mapsto \oplus \text{ev}_i \circ f \) et \(A_{-1,k} \) étant \(C \) par convention pour tout \(k \).
Montrons que le sous-complexe du complexe de Cech de \mathbb{B}_t (où l’on suppose comme précédemment que $I \subset [p^{-1},1]$) pour le recouvrement $D_C \to D_C$ dont le k-ème terme est donné par:

$$\mathbb{B}_t(C_0(\mathbb{Z}_p^{k-1}, \cap^n_{i=1} \text{Ker}(ev_i)))$$

est isomorphe après application du foncteur décalage $L\eta_t$ au sous-complexe du complexe $\Omega^*_D \otimes \mathbb{Q}_p B_I$ dont le k-ème terme est formé des $\sum f_{i_1,\ldots,i_{k-1}} dT_{i_1} \wedge \cdots \wedge dT_{i_{k-1}}$ tels que pour chaque (i_1,\ldots,i_{k-1}), $f_{i_1,\ldots,i_{k-1}}$ est divisible par $T_{i_1}\cdots T_{i_{k-1}}$.

Le k-ème terme de ce complexe se réécrit:

$$C_0(\mathbb{Z}_p^{k-1}, \cap^n_{i=1} \text{Ker}(ev_i)),$$

où cette fois-ci, $ev_i : B_I(X^{1/p^n}) \to B_I$ est l’évaluation en $X_i = 0$, d’après la proposition 2.9.4 et le lemme 2.3.23.

C’est donc le complexe standard des cochaînes continues pour l’action du groupe \mathbb{Z}_p^n sur $\cap^n_{i=1} \text{Ker}(ev_i)$. Il est isomorphe au complexe de Koszul

$$K_{\cap^n_{i=1} \text{Ker}(ev_i)}(\gamma_1-1,\ldots,\gamma_n-1).$$

La suite de l’argument est semblable au raisonnement employé pour prouver 2.3.25. On décompose:

$$\cap^n_{i=1} \text{Ker}(ev_i) = (\cap^n_{i=1} \text{Ker}(ev_i))^{\text{int}} \oplus (\cap^n_{i=1} \text{Ker}(ev_i))^{\text{nonint}},$$

avec $(\cap^n_{i=1} \text{Ker}(ev_i))^{\text{int}} = X_1 \cdots X_n B_I(X)$, puis l’on montre exactement de la même manière que la multiplication par t est homotope à zéro sur $K(\cap^n_{i=1} \text{Ker}(ev_i))^{\text{nonint}}(\gamma_1-1,\ldots,\gamma_n-1)$ et que

$$L\eta_t K_{(\cap^n_{i=1} \text{Ker}(ev_i))^{\text{int}}}(\gamma_1-1,\ldots,\gamma_n-1) = K_{(\cap^n_{i=1} \text{Ker}(ev_i))^{\text{int}}}(\frac{\gamma_1-1}{t},\ldots,\frac{\gamma_n-1}{t}).$$

Il ne reste donc à la fin que

$$K_{X_1\cdots X_n B_I(X)}(X_1 \frac{d}{dX_1},\ldots,X_n \frac{d}{dX_n}).$$

Un petit calcul montre que ce complexe est isomorphe au sous-complexe du complexe de de Rham mentionné ci-dessus, via la flèche qui envoie $X_1 \cdots X_n f_{i_1,\ldots,i_{k-1}} dX_{i_1} \wedge \cdots \wedge dX_{i_{k-1}}$, en degré k sur $X_1 \cdots X_nX_{i_1}^{-1} \cdots X_{i_{k-1}}^{-1} f_{i_1,\ldots,i_{k-1}} dX_{i_1} \wedge \cdots \wedge dX_{i_{k-1}}$ en degré k.

Finalement, on obtient par récurrence sur n avec la suite exacte (18) que le complexe de Cech de \mathbb{B}_t pour le recouvrement $D_C \to D_C$ devient quasi-isomorphe, après qu’on lui a appliqué $L\eta_t$, à $\Omega^*_D \otimes \mathbb{Q}_p B_I$. Cela conclut la preuve des quasi-isomorphismes de l’énoncé, modulo l’hypothèse (*) pour le second.

Armé des propositions 2.3.25 et 2.3.27, nous pouvons enfin calculer la cohomologie du faisceau $L\eta_t R\nu_\circ \mathbb{B}_t$ pour les couronnes et les disques ouverts, ainsi que pour l’espace affine.

Corollaire 2.3.29. Soit r,r' deux rationnels et $i \geq 0$ (éventuellement r ou r' est $+\infty$). On a

$$H^i(C_{r,r',C},\mathbb{B}_t[1/t]) = H^i_{dR}(C_{r,r'}) \otimes \mathbb{Q}_p B_I[1/t] = \bigwedge B_I[1/t]^n.$$

Si l’hypothèse (*) est vérifiée, on a même:

$$H^i(C_{r,r',C},\mathbb{B}_t, L\eta_t R\nu_\circ \mathbb{B}_t) = H^i_{dR}(C_{r,r'}) \otimes \mathbb{Q}_p B_I = \bigwedge B_I^n.$$

Démonstration. Les deux formules se déduisent de la même façon de la proposition 2.3.25. Nous expliquons l’argument pour le complexe de faisceaux $L\eta_t R\nu_\circ \mathbb{B}_t$. En appliquant le même argument en inversant t à chaque étape, on obtiendrait de même le résultat pour $\mathbb{B}_t[1/t]$.

On choisit des réels \(r_n, r'_n\) pour tout \(n\) de sorte que les couronnes fermées \(\tilde{C}_{r_n, r'_n}\) forment un recouvrement admissible de la couronne \(C_{r, r'}\). Si \(i_n\) dénote l’inclusion \(\tilde{C}_{r_n, r'_n, C} \rightarrow C_{r, r', C}\), notons \(\mathcal{F}_n\) le complexe \(Ri_n_* L\eta R^{i'}\mathbb{B}_I, \mathcal{C}_{r_n, r'_n, C}\), de façon que

\[
L\eta R^{i'}\mathbb{B}_I, \mathcal{C}_{r', r', C} = \lim_{n} \mathcal{F}_n.
\]

Nous affirmons que pour tout \(i\),

\[
H^i(C_{r, r', C, \delta}, \lim_{n} F_n) = \lim_{n} H^i(C_{r, r', C, \delta}, F_n) = \lim_{n} H^i(C_{r_n, r'_n, C, \delta}, L\eta R^{i'}\mathbb{B}_I)
\]

(la dernière égalité est une conséquence directe de la définition de \(\mathcal{F}_n\)). Pour cela on applique [48, Prop. 13.3.1], ou plutôt [48, Rem. 13.3.2 (ii)], dans sa version topologique. Les conditions (i)-(iii) de loc. cit sont trivialement vérifiées en prenant comme base les ouverts étalé quasi-compacts (20). Il faut seulement s’assurer que le système projectif formé des groupes de cohomologie des \(\mathcal{F}_n\) vérifie Mittag-Leffler (topologique). Pour chaque \(n\), choisissons des suites \(r_{n, k}, r'_{n, k}\) de réels de sorte que les couronnes fermées \(\tilde{C}_{r_{n, k}, r'_{n, k}, C}\) soient strictement emboîtées d’intersection \(\tilde{C}_{r_n, r'_n, C}\), et considérons (21)

\[
\lim_{k} H^i(\tilde{C}_{r_{n, k}, r'_{n, k}, C, \delta}, L\eta R^{i'}\mathbb{B}_I).
\]

On a

\[
R \lim_{n} H^i(C_{r_n, r'_n, C, \delta}, L\eta R^{i'}\mathbb{B}_I) = R \lim_{n} (\lim_{k} H^i(\tilde{C}_{r_{n, k}, r'_{n, k}, C, \delta}, L\eta R^{i'}\mathbb{B}_I)).
\]

Il suffit donc de considérer le membre de droite. Or on a pour tout \(n\), d’après la proposition précédente :

\[
\lim_{k} H^i(\tilde{C}_{r_{n, k}, r'_{n, k}, C, \delta}, L\eta R^{i'}\mathbb{B}_I) \simeq \lim_{k} H^i(\Omega^\bullet(\tilde{C}_{r_{n, k}, r'_{n, k}}) \otimes_{Q_p} B_I).
\]

Notons que le membre de droite peut aussi se réécrire

\[
\lim_{k} H^i(\Omega^\bullet(C_{r_{n, k}, r'_{n, k}}) \otimes_{Q_p} B_I).
\]

Comme une couronne ouverte est Stein, on peut appliquer le lemme 2.3.13 avec \(W = B_I\) comme dans la preuve de la proposition 2.3.14 ; puisque le foncteur limite inductive est exact, on obtient finalement que pour tout \(i\) :

\[
\lim_{k} H^i(\tilde{C}_{r_{n, k}, r'_{n, k}, C, \delta}, L\eta R^{i'}\mathbb{B}_I)) \simeq \lim_{k} (H^{i}_{\text{dR}}(C_{r_{n, k}, r'_{n, k}}) \otimes_{Q_p} B_I).
\]

Le système projectif quand \(n\) varie des groupes de droite est le même que le système projectif formé des \(H^{i}_{\text{dR}}(C_{r, r'}) \otimes_{Q_p} B_I\), et ces groupes vérifient Mittag-Leffler. Finalement, on a donc pour tout \(i\) :

\[
H^i(C_{r, r', C, \delta}, L\eta R^{i'}\mathbb{B}_I, \mathcal{C}_{r', r'}) = \lim_{n} H^{i}_{\text{dR}}(C_{r, r'}) \otimes_{Q_p} B_I.
\]

qui est \(H^{i}_{\text{dR}}(C_{r, r'}) \otimes_{Q_p} B_I\).

Exactement les mêmes arguments, en utilisant cette fois la proposition 2.3.27, donnent le

Corollaire 2.3.30. — Soit \(X\) le disque ouvert de dimension \(n\) et de rayon \(r\) (éventuellement \(r = +\infty\), i.e. \(X = \mathbb{A}^n\)). On a \(H^i(X_C, \mathbb{B}_I[1/t]) = B_I[1/t]\) et \(H^i(X_C, \mathbb{B}_I[1/t]) = 0\) si \(i > 0\). Si l’hypothèse (*) est vraie, on a \(H^0(X_C, L\eta R^\omega \mathbb{B}_I) = B_I\) et \(H^i(X_C, L\eta R^\omega \mathbb{B}_I) = 0\) si \(i > 0\).

20. Dans le cas du faisceau pro-étale \(\mathbb{B}_I[1/t]\), on pourrait aussi directement appliquer la proposition 2.3.6. 21. Ces groupes de cohomologie « surconvergente » de \(L\eta R^\omega \mathbb{B}_I\) referent leur apparition dans le paragraphe 2.8.5.
Démonstration de la proposition 2.3.22. — L’inclusion naturelle

\[\mathbb{B}[1/t]_{\varphi=1} \to \left(\lim_{\leftarrow} \mathbb{B}_I[1/t] \right)_{\varphi=1}, \]

\(I \) décrivant les sous-intervalles compacts de \([0,1]\), est un isomorphisme. On déduit de la proposition 2.3.6 et du corollaire 2.3.30 que la cohomologie de \(\lim_{\leftarrow} \mathbb{B}_I[1/t] \) en degré positif est nulle. Par conséquent, la cohomologie de \(\mathbb{B}[1/t]_{\varphi=1} \) est nulle en degré > 1 et est en degré 1 le conoyau de \(1 - \varphi \) sur \(B[1/t] \), c’est-à-dire zéro.

On peut désormais conclure la preuve du théorème 2.3.2.

Démonstration du théorème 2.3.2. — C’est maintenant immédiat : on applique pour finir la suite exacte longue qui se déduit de la « suite exacte fondamentale faisceautique » (17) et les propositions 2.3.20 et 2.3.22 donnent que pour tout \(i \),

\[H^i(A^n_C, \mathbb{Q}_p) = \ker(d_i) = \text{im}(d_{i-1}). \]

Remarque 2.3.31. — Colmez, Dospinescu et Nizioł obtiennent dans [44] une description de la cohomologie pro-étale de \(\mathbb{Q}_p \) sur un affinoïde surconvergent ou un espace Stein de dimension 1 sur un corps \(p \)-adique, ayant un modèle formel \(p \)-adique strictement semi-stable, en termes de la cohomologie de Hyodo-Kato de la fibre spéciale de ce modèle et de la cohomologie de de Rham. Cette description redonne en particulier le calcul de la cohomologie de l’espace affine (puisqu’on peut en construire un modèle formel \(p \)-adique semi-stable sur \(\mathbb{Q}_p \)), mais pas celui de la cohomologie du disque ouvert. Réciproquement, on peut espérer qu’une analyse plus fine de la cohomologie du faisceau pro-étale \(\mathbb{B}[1/t]_{\varphi=1} \) permette de donner une preuve alternative de leur résultat.

Leur démonstration passe par un théorème de comparaison entre cohomologies étale et syntomique. Ce n’est pas un hasard et ceci est relié à l’apparition du foncteur décalage \(L_\eta \) dans ce paragraphe, comme on le verra dans la section 2.8. Voir le paragraphe 2.8.5 pour une brève - et spéculative... - discussion de ces questions.

2.4. Groupes d’extensions de certains faisceaux pro-étalès

L’objectif de cette section est la démonstration du résultat suivant.

Théorème 2.4.1. — Dans la catégorie abélienne des faisceaux de groupes abéliens sur \(\text{Perf}_{C,v} \), on a

\[
\begin{array}{ccc|ccc|ccc|ccc}
\text{Hom} & G_a & \mathbb{Q}_p & \text{Ext}^1 & G_a & \mathbb{Q}_p & \text{Ext}^2 & G_a & \mathbb{Q}_p \\
G_a & C & 0 & G_a & C & C & G_a & 0 & 0 \\
\mathbb{Q}_p & C & \mathbb{Q}_p & 0 & 0 & 0 & \mathbb{Q}_p & 0 & 0 \\
\end{array}
\]

(ces tableaux se lisant de gauche à droite).

La stratégie générale pour ce faire est la suivante :

Soit \(G \) un groupe abélien dans un topos \(T \). Il existe une résolution canonique de \(G \) de longueur infinie par un complexe dont chaque composante est une somme de termes de la forme \(\mathbb{Z}[G] \times \mathbb{Z}^i \), dont on trouvera une construction dans le style cubique dans [105] ou dans le cadre simplicial dans [88]. Soit \(n > 0 \) un entier. Si on ne s’intéresse qu’aux calculs des groupes \(\text{Ext}^i \) avec \(i < n \), il suffit de se donner une résolution partielle de \(G \) de longueur \(n \), i.e. un complexe \(C \) d’objets de ce topos, concentré en degrés négatifs, muni d’un morphisme d’augmentation \(C \to G \) (\(G \) vu comme complexe concentré en degré 0) induisant un isomorphisme \(H^0(C) \cong G \) et tel que \(H^i(C) = 0 \) si \(i \neq 0, -n \). Le triangle distingué

\[H^{-n}(C)[n] \to C \to G \xrightarrow{+1} \]
montre que si G' est un autre groupe abélien du topos \mathcal{T}, en appliquant à ce triangle le foncteur $R\text{Hom}(\cdot,G')$ on obtient des isomorphismes

$$\text{Ext}_i^\mathcal{T}(G,G') \simeq \text{Ext}_i^\mathcal{T}(C,G')$$

pour tout $0 \leq i < n$.

Pour $n = 3$, ce complexe est construit dans [12] en tronquant le complexe d’Eilenberg-MacLane stabilisé de [105] et [88], et s’explicite comme suit :

$$\mathbb{Z}[G^3] \times \mathbb{Z}[G^3] \times \mathbb{Z}[G^3] \times \mathbb{Z}[G^2] \times \mathbb{Z}[G] \xrightarrow{\partial_3} \mathbb{Z}[G^3] \times \mathbb{Z}[G^2] \xrightarrow{\partial_2} \mathbb{Z}[G^2] \xrightarrow{\partial_1} \mathbb{Z}[G].$$

L’augmentation vers G est le morphisme canonique $\varepsilon : \mathbb{Z}[G] \to G$. Les flèches sont définies par :

$$\partial_1[x,y] = [x + y] - [x] - [y],$$

$$\partial_2[x,y,z] = [x + y, z] - [y, z] - [x, y + z] + [x, y],$$

$$\partial_2[x,y] = [x, y] - [y, x],$$

$$\partial_3[x,y,z,w] = -[y, z, w] + [x + y, z, w] - [x, y + z, w] + [x, y, z + w] - [x, y, z],$$

$$\partial_3[x,y,z] = -[y, z] + [x + y, z] - [x, z] - [x, y, z] + [x, y, z] - [z, x, y]$$

pour le premier facteur $\mathbb{Z}[G^3],$

$$\partial_3[x,y,z] = -[x, z] + [x, y + z] - [x, y] + [x, y, z] - [y, x, z] + [y, z, x]$$

pour le second facteur $\mathbb{Z}[G^3],$

$$\partial_4[x,y] = [x, y] + [y, x],$$

$$\partial_4[x] = [x, x].$$

Si G' est un autre groupe abélien du topos \mathcal{T}, on a une suite spectrale (complex filtré)

$$E_1^{pq} = \text{Ext}_i^\mathcal{T}(C^{-p},G') \Rightarrow \text{Ext}_i^{p+q}(C,G').$$

Le point est maintenant que les groupes E_1^{pq} se calculent plus facilement, puisque si G et G' sont deux groupes abéliens du topos des faisceaux sur un espace muni d’une topologie de Grothendieck et que G est représentable, alors pour tout $i \geq 0$ et tout $k \geq 1$,

$$\text{Ext}_i^\mathcal{T}(\mathbb{Z}[G],G') = H_i^\mathcal{T}(G,G').$$

Dans la suite, le topos \mathcal{T} sera le topos \mathbb{Z} – Sh des faisceaux de groupes abéliens sur $\text{Perf}_{C,\text{proét}}$; G et G' seront soit le faisceau constant \mathbb{Q}_p soit \mathbb{G}_a.

Pour calculer les groupes d’extensions entre G et G', on est donc ramené à calculer des groupes de cohomologie pro-étales et à analyser des morphismes entre ces groupes de cohomologie.

Remarque 2.4.2. — On pourrait en fait, comme on l’a indiqué dans la remarque 2.2.12, remplacer partout la topologie pro-étales par la v-topologie. En effet, d’après [131, Prop. 12.7], on sait que si X est un espace adique analytique sur C et X le diamant sur $\text{Spa}(C^\circ)$ associé, \mathcal{F} un faisceau pro-étales de groupes abéliens sur X et $\mu : X^\circ \to X^\circ_{\text{proét}}$ le morphisme de sites, alors pour tout $i \geq 0$,

$$H_i^\mathcal{T}(X^\circ,\mu^*\mathcal{F}) = H_i^\text{proét}(X,\mathcal{F}),$$

et donc les calculs de la section précédente peuvent aussi être vus comme des calculs de v-cohomologie.
2.4.1. Le cas $G = \mathbb{G}_a$, $G' = \mathbb{Q}_p$. — On veut calculer les groupes $\text{Ext}^i(G_a, \mathbb{Q}_p)$ pour $i = 0, 1, 2$. On va montrer que pour $i = 1$ ce groupe est un C-espace vectoriel de dimension 1 et qu'il est nul pour $i = 0, 2$.

Pour $i = 0$, on a une flèche $\text{Hom}(C^0, \mathbb{Q}_p) \to \text{Hom}(C^{-1}, \mathbb{Q}_p)$, qui est

$$H^0(A^0_C, \mathbb{Q}_p) = \mathbb{Q}_p \to H^0(A^2_C, \mathbb{Q}_p) = \mathbb{Q}_p ; \ x \mapsto x - x - x = -x,$$

donc évidemment injective. Par conséquent, $\text{Hom}(G_a, \mathbb{Q}_p) = 0$.

Pour $i = 2$, il y a trois flèches à analyser :

$$\text{Hom}(C^{-2}, \mathbb{Q}_p) \to \text{Hom}(C^{-3}, \mathbb{Q}_p),$$
$$\text{Ext}^1(C^{-1}, \mathbb{Q}_p) \to \text{Ext}^1(C^{-2}, \mathbb{Q}_p),$$
$$\text{Ext}^2(C^0, \mathbb{Q}_p) \to \text{Ext}^2(C^{-1}, \mathbb{Q}_p).$$

La dernière flèche a un noyau nul, puisque $\text{Ext}^2(C^0, \mathbb{Q}_p) = H^2(A^1_C, \mathbb{Q}_p) = 0$ d’après la proposition 2.3.10. La première flèche envoie $(x, y) \in \mathbb{Q}_p^2$ sur (x, y, y), donc est injective. Il reste à étudier la deuxième flèche. Elle va de $H^1(A^1_C, \mathbb{Q}_p) \to H^1(A^1_C, \mathbb{Q}_p) \oplus H^0(A^2_C, \mathbb{Q}_p)$ sur $(-x, -2y, 2(x - y), 2y, y)$, donc est injective. Il reste à étudier la deuxième flèche. Elle va de $H^1(A^1_C, \mathbb{Q}_p) \to H^1(A^1_C, \mathbb{Q}_p) \oplus H^0(A^2_C, \mathbb{Q}_p)$ sur $(-x, -2y, 2(x - y), 2y, y)$, donc est injective.

$$f(X, Y) \mapsto f(X, Y) - f(Y, Z) + f(X, Y).$$

Soit f dans le noyau. Écrivons $f = \sum_{q \geq 2} f_q$, où pour tout q, f_q est un polynôme homogène en X, Y de degré q. D’après [100, Lem. 3], f_q est un multiple scalaire de C_q pour tout $q \geq 2$. Autrement dit, f est dans l’image de la flèche

$$\text{Ext}^1(C^0, \mathbb{Q}_p) \to \text{Ext}^1(C^{-1}, \mathbb{Q}_p) ; \ f(X) \mapsto f(X + Y) - f(X) - f(Y).$$

Tous les termes en degré 2 de la deuxième page de la suite spectrale sont nuls et on a donc bien en définitive $\text{Ext}^2(G_a, \mathbb{Q}_p) = 0$.

Pour $i = 1$, il s’agit d’analyser les flèches

$$\text{Hom}(C^{-1}, \mathbb{Q}_p) \to \text{Hom}(C^{-2}, \mathbb{Q}_p),$$
$$\text{Ext}^1(C^0, \mathbb{Q}_p) \to \text{Ext}^1(C^{-1}, \mathbb{Q}_p),$$

La première flèche est la flèche nulle de $H^0(A^1_C, \mathbb{Q}_p) = \mathbb{Q}_p$ vers $H^0(A^2_C, \mathbb{Q}_p) \oplus H^0(A^2_C, \mathbb{Q}_p) = \mathbb{Q}_p^2$. On a aussi une flèche $\text{Hom}(C^0, \mathbb{Q}_p) \to \text{Hom}(C^{-1}, \mathbb{Q}_p)$, qui est

$$H^0(A^1_C, \mathbb{Q}_p) = \mathbb{Q}_p \to H^0(A^2_C, \mathbb{Q}_p) = \mathbb{Q}_p ; \ x \mapsto x - x - x = -x,$$

et est donc surjective. Donc le noyau de $\text{Hom}(C^{-1}, \mathbb{Q}_p) \to \text{Hom}(C^{-2}, \mathbb{Q}_p)$ est inclus dans l’image de $\text{Hom}(C^0, \mathbb{Q}_p) \to \text{Hom}(C^{-1}, \mathbb{Q}_p)$. Donc $E^{1,0}_2 = 0$.

La seconde flèche va de $\text{Ext}^1(C^0, \mathbb{Q}_p) = H^1(A^1_C, \mathbb{Q}_p)$ vers $\text{Ext}^1(C^{-1}, \mathbb{Q}_p) = H^1(A^2_C, \mathbb{Q}_p)$. Elle envoie $f(X) \in \mathcal{O}(A^1_C)_{\mathbb{Q}}$ sur $f(X + Y) - f(X) - f(Y)$. Si f est dans le noyau, f est donc nécessairement un multiple scalaire de l’identité 1. Donc $E^{0,1}_2 = C$.

À la r-ième page de la suite spectrale, la différentielle d_r envoie $E^{p,q}_r$ vers $E^{p+r,q-r+1}_r$. Donc

$$E^{0,1}_r = \ker(E^{0,1}_r \to E^{r,2-r}_r)/\text{Im}(E^{r-r}_r \to E^{0,1}_r) = \ker(E^{0,1}_r \to E^{r,2-r}_r).$$

Or on vient de voir que pour $r = 2$, $E^{2,2-2}_2 = 0$ pour tout k. Il en est donc de même pour tout $r \geq 2$ et on a ainsi pour tout r, $E^{0,1}_r = E^{2,0}_r$. On a donc finalement $\text{Ext}^1(G_a, \mathbb{Q}_p) \simeq C$.

Si G et G' sont deux faisceaux abéliens avec G' représentable par Z, une extension

$$0 \to G \to F \to G' \to 0$$

de termine une classe dans $H^1(Z, G)$ qui est l’image de $\text{Id} \in \text{Hom}(G', G') = C(G'(Z) = H^0(Z, G'))$ par la flèche de connexion déduite de la suite exacte précédente. Ici, l’isomorphisme $\mathcal{O}(A^1_C)/C \simeq H^1(A^1_C, \mathbb{Q}_p)$ utilisé est le morphisme de connexion déduit de la suite exacte de faisceaux

$$0 \to \mathbb{Q}_p \to \mathbb{B}[1/t]^{\varphi=1} \to \mathbb{B}_{\text{dr}}/t\mathbb{B}_{\text{dr}}^+ \to 0.$$
En prenant le tiré en arrière de cette extension le long de $\mathbb{B}^+_{dR}/t\mathbb{B}^+_{dR} \to \mathbb{B}_{dR}/t\mathbb{B}^+_{dR}$, on obtient une extension

$$0 \to \mathcal{Q}_a \to \mathbb{B}[1/t]^{et} \to \mathbb{B}^+_{dR}/t\mathbb{B}^+_{dR} \cong \mathcal{G}_a \to 0,$$

qui est celle donnée par l'application θ de Fontaine. L'identité de \mathcal{G}_a dans lui-même correspond à la fonction identité dans $H^0(\mathcal{A}_C^1, \mathcal{G}_a) = \mathcal{O}(\mathcal{A}_C^1)$. La flèche composée $H^0(\mathcal{A}_C^1, \mathcal{G}_a) \to H^0(\mathcal{A}_C^1, \mathbb{B}_{dR}/t\mathbb{B}^+_{dR}) \to H^1(\mathcal{A}_C^1, \mathcal{Q}_a)$ est la flèche quotient $\mathcal{O}(\mathcal{A}_C^1) \to \mathcal{O}(\mathcal{A}_C^1)/C$. On en déduit que l'élément $\text{Id} \in \text{Ext}^1(\mathcal{G}_a, \mathcal{Q}_a)$ exhibé ci-dessus correspond à l'extension \mathbb{B}^+_{dR} de \mathcal{G}_a par \mathcal{Q}_a donnée par l'application θ de Fontaine.

2.4.2. Le cas $G = G' = \mathcal{G}_a$. — Pour $i = 0$, on a une flèche $\text{Hom}(\mathcal{C}_0, \mathcal{G}_a) \to \text{Hom}(\mathcal{C}^{-1}, \mathcal{G}_a)$, qui s'identifie à

$$H^0(\mathcal{A}_C^1, \mathcal{G}_a) = \mathcal{O}(\mathcal{A}_C^1) \to H^0(\mathcal{A}_C^2, \mathcal{G}_a) = \mathcal{O}(\mathcal{A}_C^2),$$

et de même en échangeant les rôles de H^0 et H^1. Enfin $\text{Hom}(\mathcal{C}_0, \mathcal{G}_a) = C$.

Pour $i = 2$, on regarde

$$\text{Ext}^1(\mathcal{C}^{-1}, \mathcal{G}_a) \to \text{Ext}^1(\mathcal{C}^{-2}, \mathcal{G}_a),$$

et de même en échangeant les rôles de k et m. Enfin $\text{Ext}^2(\mathcal{C}_0, \mathcal{G}_a) = 0$.

Si $a_{k,l} = (k + 1)c_{k+1,l} = (l + 1)c_{k,l+1}$ pour $k, l > 0$, on vérifie immédiatement par récurrence avec la relation ci-dessus que

$$a_{k,l} = \left(\begin{array}{c} k + j \hfill \\
\hfill j \end{array}\right) a_{k+j,l,m} - \left(\begin{array}{c} j + l \\
\hfill l \end{array}\right) a_{k,j+l,m} + \left(\begin{array}{c} l + m \\
\hfill m \end{array}\right) a_{k,j,l+m} = 0,$$

pour $k, m \neq 0$ (en particulier $a_{k,0,l} = 0$ pour $k, l > 0$). Pour $m \neq 0$, on a aussi

$$a_{0,j+l,m} = \left(\begin{array}{c} j + l \\
\hfill l \end{array}\right) a_{0,j+l,m} = 0$$

et de même en échangeant les rôles de k et m. Enfin $a_{0,j,0} = 0$.

Si $a_{k,1,l} = (k + 1)c_{k+1,l} = (l + 1)c_{k,l+1}$ pour $k, l > 0$, on vérifie immédiatement par récurrence avec la relation ci-dessus que

$$a_{k,j,l} = \left(\begin{array}{c} k + j \\
\hfill j \end{array}\right) a_{k+j,l,m} - \left(\begin{array}{c} j + l \\
\hfill l \end{array}\right) a_{k,j+l,m} = 0,$$

pour tout $j > 0$. On pose aussi $j c_{0,j} = a_{0,j-1,1}$ pour $j > 0$. Une récurrence immédiate à l'aide de la relation ci-dessus donne $a_{0,j,l} = (j + l)c_{0,j+l}$ pour tout $l > 0$. Enfin on pose $c_{1,k} - c_{k,1} = b_{1,k}$.

Si les $c_{j,k}$ sont ainsi définis, alors la première flèche vers \mathcal{A}_C^2 donne $b_{j,k} = c_{j,k} - c_{k,j}$ pour $j > 1$. L'autre flèche donne la même égalité pour $k > 1$. En fin de compte, si l'on pose

$$h(x, y) = \sum_{k,j} b_{j,k} x^k y^j,$$

on a

$$f(x, y, z) = h(x + y, z) - h(y, z) + h(x, y + z) + h(x, y),$$

et $g(x, y) = h(x, y) - h(y, x)$. De plus, si f, g est dans l'image de la flèche $\text{Hom}(\mathcal{C}^{-1}, \mathcal{G}_a) \to \text{Hom}(\mathcal{C}^{-2}, \mathcal{G}_a)$. On obtient

$$f(x + y, z) - f(x, y + z) + f(x, y) = 0,$$

et

$$g(x + y, z) - g(y, z) - g(x, y + z) + g(x, y) = 0,$$

et

$$g(x + y, z) - g(y, z) - g(x, y + z) = 0.$$
On vérifie aisément l’existence de $h \in \mathcal{O}(A^1_C)$ telle que $f(x, y) = h(x + y) - h(x)$ et $g(x, y) = g(x + y) - g(x)$. En définitive, $\text{Ext}^q(G_a, G_a) = 0$.

Pour $i = 1$, il s’agit d’analyser les flèches

$$\text{Hom}(C^{-1}, G_a) \to \text{Hom}(C^{-2}, G_a),$$

$$\text{Ext}^1(C^0, G_a) \to \text{Ext}^1(C^{-1}, G_a).$$

La première va de $H^0(A^2_C, G_a) = \mathcal{O}(A^2_C)$ dans $H^0(A^2_C, G_a) \oplus H^0(A^2_C, G_a) = \mathcal{O}(A^2_C) \oplus \mathcal{O}(A^2_C)$ et envoie $f(X, Y)$ sur $(f(X + Y, Z) - f(Y, Z) - f(X, Y + Z) + f(X, Y), f(X, Y) - f(Y, X))$. Son noyau, toujours d’après [100, Lem. 3], est inclus dans l’image de la flèche $\text{Hom}(C^0, G_a) \to \text{Hom}(C^{-1}, G_a)$ ci-dessus.

La deuxième flèche va de $H^1(A^2_C, G_a) = \Omega^1(A^2_C)$ vers $H^1(A^2_C, G_a) = \Omega^1(A^2_C)$. Elle envoie ω sur $m^\ast \omega - p_1^\ast \omega - p_2^\ast \omega$ (on a noté p_1, p_2 les deux morphismes de projection de $A^1_C \times A^1_C$ vers A^1_C et $m : A^1_C \times A^1_C \to A^1_C$ le morphisme de multiplication). Son noyau est l’espace des formes différentielles invariantes par translation sur A^1_C, donc est de dimension 1.

Le cas $i = 2$ déjà traité permet comme ci-dessus de voir que $E_p^{0,1} = E_2^{0,1}$ pour tout $r \geq 2$: ainsi, $\text{Ext}^1(G_a, G_a) = C$. Identifions la classe correspondant à la forme différentielle invariante dT. L’identification $R^1\nu_\ast G_a, X \simeq \Omega^1_X$ est le morphisme de connexion déduit de la suite exacte

$$0 \to G_{a,X}(1) \to \text{gr}^1\mathcal{O}\mathbb{D}_{\mathbb{B}} \to \Omega^1_X \otimes \mathcal{O}_X \to 0$$

(le premier gradué du lemme de Poincaré). Si $X = A^1_C$, $f \mapsto f dT$ donne un isomorphisme $\mathcal{O}_X \simeq \Omega^1_X$. On a donc que l’extension correspondant à dT est $\text{gr}^1\mathcal{O}\mathbb{D}_{\mathbb{B}}$.

Or, comme les flèches du lemme de Poincaré sont strictes exactes, on a une suite exacte

$$0 \to \mathbb{B}^+_{\mathbb{D}}/\text{Fil}^2 \to \mathcal{O}\mathbb{B}_{\mathbb{D}}/\text{Fil}^2 \to \text{gr}^0\mathcal{O}\mathbb{D}_{\mathbb{B}} \otimes \Omega^1$$

qui donne un isomorphisme $\mathbb{B}^+_{\mathbb{D}}/\text{Fil}^2 \simeq \text{gr}^1\mathcal{O}\mathbb{D}_{\mathbb{B}}$.

2.4.3. Le cas $G = \mathbb{Q}_p$ et $G' = \mathbb{Q}_p$ ou $G' = G_a$.

— Notons tout d’abord que le groupe $\text{Ext}^i(\mathbb{Q}_p, G')$ s’insère dans une suite exacte :

$$0 \to R^1\lim_{\supset p} \text{Ext}^{i-1}(\mathbb{Z}_p, G') \to \text{Ext}^i(\mathbb{Q}_p, G') \to \lim_{\supset p} \text{Ext}^i(\mathbb{Z}_p, G') \to 0.$$

Notons

$$X = \text{Spa}(\mathcal{O}^0(\mathbb{Z}_p, C), \mathcal{O}^0(\mathbb{Z}_p, \mathcal{O}_C)).$$

Cet espace adique représente le faisceau pro-étale \mathbb{Z}_p.

Proposition 2.4.3. — Pour tout $n \geq 1$, on a $H^0(X^n, \mathbb{Q}_p) = \mathcal{O}^0(\mathbb{Z}_p^n, \mathbb{Q}_p)$ et $H^1(X^n, \mathbb{Q}_p) = 0$ pour tout $i > 0$. On a $H^0(X^n, G_a) = \mathcal{O}^0(\mathbb{Z}_p^n, C)$ et $H^1(X^n, G_a) = 0$ si $i > 0$.

Démonstration. — Soit $i \geq 1$ et $k \geq 0$. Comme X^n est profini sur C (donc strictement totalement discontinu), $H^i(X^n, \mathbb{Z}/p^k) = H_{\text{ét}}^i(X^n, \mathbb{Z}/p^k) = 0$. On en déduit avec la suite exacte

$$0 \to R^1\lim_{\supset p} H^{i-1}(X^n, \mathbb{Z}/p^k) \to H^i(X^n, \mathbb{Z}_p) \to \lim_{\supset p} H^i(X^n, \mathbb{Z}/p^k) \to 0$$

que $H^i(X^n, \mathbb{Z}_p) = 0$ pour tout $i \geq 1$ (pour $i = 1$, on vérifie à la main que $R^1\lim_{\supset p}$ s’annule). Comme $H^i(X^n, \mathbb{Q}_p) = H^i(X^n, \mathbb{Z}_p)[1/p]$ par quasi-compacité de X^n, on a le résultat. La deuxième phrase est une conséquence du fait que

$$X^n = \text{Spa}(\mathcal{O}^0(\mathbb{Z}_p^n, C), \mathcal{O}^0(\mathbb{Z}_p^n, \mathcal{O}_C))$$

est affinoïde perfectoïde, cf. [91, Th. 6.5 (ii)].

\square
Supposons d’abord $G’ = G_a$. Considérons le complexe

$$C \to C^0(Z_p, C) \to C^0(Z_p^2, C) \to C^0(Z_p^3, C) \to C^0(Z_p^4, C) \to C^0(Z_p^5, C),$$

la première flèche étant $a \mapsto (x \mapsto ax)$ et les flèches suivantes étant les flèches évidentes déduites de la définition du complexe C. On va montrer que ce complexe est exact.

Si f est dans le noyau de la première flèche, f est un multiple scalaire de l’identité sur Z donc sur Z_p par densité. Par conséquent, $\text{Hom}(Z_p, G_a) = C$. Vériﬁons l’exactitude en $C^0(Z_p^k, C)$: comme $C^0(Z_p^k, C) = C^0(Z_p, C) \otimes C^0(Z_p, C)$ (puisque Z_p est compact), les fonctions $(x, y) \mapsto (f(x)^k)_{(i)}$, avec $k, l \in \mathbb{N}$, forment une base orthonormale de $C^0(Z_p^k, C)$ (développement de Mahler d’une fonction continue sur Z_p). Soit $f = \sum_{k,l \geq 0} a_{k,l}(f(x)^k)_{(i)}$, avec $a_{k,l} \to 0$ quand $k + l \to 0$, vérifiant

$$f(x + y, z) - f(y, z) - f(x, y + z) + f(x, y) = 0 ; f(x, y) - f(y, x) = 0.$$

A l’aide de ces deux égalités et de la relation $(x + y)^k = \sum_{j=0}^{k} (\binom{k}{j} x^j y^{k-j})$, on obtient immédiatement que $a_{k,l}$ ne dépend que de la somme $k + l$ si $k, l > 0$, et que $a_{k,0} = a_{0,l} = 0$ si $k, l > 0$. Donc alors $b_{n} = a_{k,l}$ si $n > 1$ avec k, l non nuls tels que $k + l = n$, $b_0 = a_{0,0}$ et b_1 quelconque. On vériﬁe que

$$f(x, y) = g(x + y) - g(x) - g(y),$$

avec $g(x) = \sum_{n} b_n x^n$. Notons que si l’on écrit plutôt f sous la forme $f = \sum_{k,l \geq 0} a_{k,l}'k!l!(f(x)^k)_{(i)}$, sans se préoccuper du comportement asymptotique des coefficients, comme $k!l!(f(x)^k)_{(i)} = \sum_{j=0}^{k} (\binom{k}{j} j!l!)(k-j)!l!(f(x)^{k-j})_{(i)}$, les relations obtenues sur les coefficients $a_{k,l}'$ sont exactement les mêmes que celles obtenues ci-dessus dans le calcul de $\text{Ext}^1(G_a, G_a)$. Cette observation permet de montrer aussi l’exactitude en $C^0(Z_p^3, C) \otimes C^0(Z_p^2, C)$: il suffit de reprendre le même calcul que celui montrant l’annulation de $\text{Ext}^2(G_a, G_a)$ ci-dessus (la convergence ne pose pas de problème).

Si $G’ = Q_p$, il faut considérer le complexe

$$Q_p \to C^0(Z_p, Q_p) \to C^0(Z_p^2, Q_p) \to C^0(Z_p^3, Q_p) \to C^0(Z_p^4, Q_p) \to C^0(Z_p^5, Q_p),$$

avec les mêmes flèches que ci-dessus, dont on montre exactement de la même manière qu’il est exact.

2.5. Faisceaux cohérents sur la courbe de Fargues-Fontaine

2.5.1. Rappels sur la courbe de Fargues-Fontaine

— On fixe une extension ﬁnie E de Q_p d’uniformisant π et de corps résiduel F_p. Soit $S = \text{Spa}(R, R^+)$ un espace affinoïde perfectoïde de caractéristique p. On déﬁnit l’espace

$$Y_{S,E} = \text{Spa}(W_{O_S}(R^c), W_{O_S}(R^+)) \setminus V(\pi[x_\pi]),$$

S étant une pseudo-uniformisante (élément inversible topologiquement nilpotent) de R. Il s’agit d’un espace adique (i.e. le préfaiseau structural est un faisceau), qui est l’analogue en caractéristique mixte du disque unité ouvert épisenté sur la base S, si l’on pense aux vecteurs de Witt comme à des « fonctions holomorphes de la variable π ». On peut écrire

$$Y_{S,E} = \bigcup_{n,m \geq 1} Y_{S,E,n,m} = \bigcup_{n,m \geq 1} \text{Spa}(W_{O_S}(R^c)(\frac{[x_\pi]^n}{\pi^n}, \frac{[x_\pi]^m}{\pi^m}), W_{O_S}(R^+)(\frac{[x_\pi]^n}{\pi^n}, \frac{[x_\pi]^m}{\pi^m})).$$

L’espace $Y_{S,E}$ est muni d’un Frobenius φ qui agit sur les fonctions par

$$\varphi(\sum_{n} x_n \pi^n) = \sum_{n} x_{\varphi(n)} \pi^n.$$
L’anneau $\mathcal{O}(Y_{S,E})$ des fonctions sur $Y_{S,E}$ est le complété $B_E(R)$ de
\[
B_E^0(R) := \left\{ \sum_{n \geq -\infty} [x_n] \pi^n, x_n \in R, (x_n) \text{ bornée.p} \right\} = W_{\mathcal{O}_E}(R^\circ)[1/\pi, 1/|\varpi|],
\]
l’anneau des « fonctions méromorphes le long des diviseurs $\pi = 0$ et $|\varpi| = 0$ », relativement aux normes $\|.|\rho, 0 < \rho < 1$, définies par
\[
\|\sum_n [x_n] \pi^n\|_\rho = \sup_n \|x_n\|\rho^n,
\]
$\|.|$ étant une norme sur R multiplicative pour les puissances qui fait de R° la boule unité de R.

A l’intérieur de $B_E^0(R)$ vit
\[
B_E^{0+}(R) = \left\{ \sum_{n \geq -\infty} [x_n] \pi^n, x_n \in R, \|x_n\| \leq 1 \right\} = W_{\mathcal{O}_E}(R^\circ)[1/\pi],
\]
dont l’adhérence dans $B_E(R)$ est notée $B_E^+(R)$.

Si $f \in B_E(R)$, $\|f\|_\rho = \|f\|^{1/\rho}_\rho$. L’action de φ sur $Y_{S,E}$ est donc proprement continue et on peut passer au quotient.

\[X_{S,E} := Y_{S,E}/\varphi\] ainsi obtenu est la courbe de Fargues-Fontaine relative sur S, pour le corps local E. Si $E = \mathbb{Q}_p$ est l’extension non ramifiée de degré h de \mathbb{Q}_p, on écrira $Y_{S,h}$ et $X_{S,h}$ au lieu de $Y_{S,E}$ et $X_{S,E}$; si $h = 1$ on oubliera carrément l’indice 1.

Remarque 2.5.1. — Les anneaux $B_E(R)$ et $B_E^+(R)$ sont étudiés en détail dans [66] lorsque $R = C^\circ$ et dans [91] dans le cas général, avec des notations différentes : l’anneau $B(R)$ (resp. $B^+(R)$) y est noté \mathcal{R}_R (resp. \mathcal{R}_R^+).

Si $S = \text{Spa}(C^\circ)$, on notera simplement Y_E et X_E au lieu de $Y_{S,E}$ et $X_{S,E}$ (par exemple, en accord avec la convention précédente, X désigne la courbe associée au choix $S = \text{Spa}(C^\circ)$ et $E = \mathbb{Q}_p$). Il s’agit alors de la courbe de Fargues-Fontaine originale, étudiée en détail dans [66]. La courbe adique X_E admet un pendant schématique $X_E^{\text{sch}} := \text{Proj}(P_E)$, où P_E est l’algèbre graduée :
\[
P_E = \bigoplus_{d \geq 0} \mathcal{O}(Y_E)^{x=d} = \bigoplus_{d \geq 0} B_E^{d=\pi^d}
\]
(on a noté $B_E = B_E(C)$). Le schéma X_E^{sch} est régulier noethérien de dimension 1 sur E, mais très loin d’être de type fini : le corps résiduel de X_E^{sch} en un point fermé x est un corps perfectoïde de caractéristique 0 dont le basculement est isomorphe à C°, donc en particulier de dimension infinie sur E ! Toutefois, tout se passe comme si X_E était la courbe adique associée à X_E^{sch}. En particulier, on a une équivalence de type GAGA entre faisceaux cohérents sur X_E et sur X_E^{sch} ([91, Th. 8.7.7]). En outre, bien que X_E^{sch} ne soit pas de type fini, Fargues et Fontaine prouvent que X_E est une courbe complète, au sens où si $f \in E(X_E^{\text{sch}})$,
\[
\sum_{x \in X_E^{\text{sch}}} v_x(f) = 0
\]
(v_x est la valuation sur l’anneau local de X_E^{sch} en le point fermé x, qui est un anneau de valuation discrète puisque X_E^{sch} est régulier de dimension 1). Cela permet de définir le degré d’un fibré en droites et, en utilisant le déterminant, le degré d’un fibré de rang quelconque sur X_E^{sch}. Si l’on définit la pente d’un fibré vectoriel comme le quotient de son degré par son rang, tout fibré F sur X_E^{sch} admet une unique filtration croissante (la filtration de Harder-Narasimhan)
\[
0 = F_0 \subset F_1 \subset \cdots \subset F_n = F,
\]
telle que chaque F_{i+1}/F_i soit semi-stable de pente μ_{i+1} (tout sous-fibré est de pente $\leq \mu_{i+1}$) avec $\mu_1 > \cdots > \mu_n$. Si l’on décroît en outre qu’un faisceau cohérent de torsion
est de pente $+\infty$, le formalisme de Harder-Narasimhan s’étend aux faisceaux cohérents sur X^sch_E, puisque, X^sch_E étant régulier de dimension 1, tout faisceau cohérent sur X^sch_E est somme d’un fibré et d’un faisceau de torsion. Ces résultats se transposent via l’équivalence GAGA à X_E.

Soit (D, φ) un isocristal sur l’extension non ramifiée maximale \tilde{E} de E. On peut associer à (D, φ) un fibré vectoriel sur X_E, noté $\mathcal{E}(D)$, dont la réalisation géométrique est le quotient $Y \times_X D$, φ agissant diagonalement. Le théorème GAGA pour la courbe donne un fibré vectoriel $\mathcal{E}(D)^\text{sch}$ sur X^sch_E qui est en fait le faisceau quasi-cohérent associé au P_E-module gradué

$$\bigoplus_{d \geq 0} (B_E \otimes_E D)^{\varphi=p^d}$$

(qui est donc en fait un fibré). La catégorie $\varphi-\text{Mod}_E$ des isocristaux sur \tilde{E} est semi-simple, avec pour chaque rationnel λ un unique objet simple de pente λ. On a donc pour chaque $\lambda \in \mathbb{Q}$ un fibré $\mathcal{O}_{X_E}(\lambda)$ sur X_E défini comme l’image par \mathcal{E} de l’unique isocristal simple de pente $-\lambda$. C’est le fibré associé au diviseur $\lambda\infty$ si λ est entier. Pour tout λ, $\mathcal{O}_{X_E}(\lambda)$ est de pente λ (22). Dans la suite de ce texte, nous nous intéresserons aux fibrés sur X mais le fait suivant est utile pour les arguments : si $\lambda = d/h$, le fibré de rang h $\mathcal{O}_X(\lambda)$ est le poussé en avant du fibré en droites $\mathcal{O}_X(d)$ sur X_h.

Le théorème principal de [66] concernant les fibrés sur X_E (ou X^sch_E) est le suivant.

Théorème 2.5.2. — Le foncteur $\mathcal{E} : D \mapsto \mathcal{E}(D)$ de $\varphi-\text{Mod}_E$ vers la catégorie des fibrés vectoriels sur X_E est essentiellement surjectif. En d’autres termes, tout fibré sur la courbe se décompose (non canoniquement) comme somme de fibrés $\mathcal{O}_{X_E}(\lambda)$, $\lambda \in \mathbb{Q}$, et les λ qui apparaissent sont uniquement déterminés à permutation près.

Remarque 2.5.3. — a) En particulier, la filtration de Harder-Narasimhan des faisceaux cohérents sur X est (non canoniquement) scindée. Cela se traduit par le fait que $\text{Ext}^1(\mathcal{O}_X(\lambda), \mathcal{O}_X(\mu)) = \bigoplus H^1(X, \mathcal{O}_X(\mu - \lambda)) = 0$ si $\lambda \leq \mu$. Les objets semi-stables de pente λ sont somme directe de copies de l’unique objet stable de pente λ, $\mathcal{O}(\lambda)$.

b) Le foncteur \mathcal{E} est très loin d’être pleinement fidèle. A titre d’exemple, le \mathbb{Q}_p-espace vectoriel $\text{Hom}(\mathcal{O}_X, \mathcal{O}_X(1)) = B^p$ est de dimension infinie, alors que le groupe correspondant dans la catégorie des isocristaux est nul.

2.5.2. Paires de torsion et coeurs abéliens.

Définition 2.5.4. — Soit A une catégorie abélienne. Une **paire de torsion** de A est la donnée de deux sous-catégories pleines T et T' de A, telles que $\text{Hom}_A(T, T') = 0$ pour tout $T \in T$ et $T' \in T'$ et telles que pour tout objet $A \in A$, il existe une suite exacte

$$0 \to T \to A \to T' \to 0$$

avec $T \in T$ et $T' \in T'$.

Soit D la catégorie dérivée bornée de A. On suppose que l’on s’est donné une paire de torsion (T, T'). Le fait suivant est standard (voir, par exemple, [82, Ch. 1]).

Proposition 2.5.5. — Soit $k \in \mathbb{Z}$. La sous-catégorie pleine

$$A_{T, T', k} := \{ A \in D, H^i(A) = 0 \text{ pour } i \neq k - 1, k ; \ H^{k-1}(A) \in T', H^k(A) \in T \}$$

est un coeur de D.

22. Ce qui explique la convention de signe.
En d’autres termes, il existe une \(t \)-structure bornée sur \(D \) dont le cœur est \(\mathcal{A}_{\mathcal{F},\mathcal{T},k} \).

L’exemple fondamental sera pour nous le suivant. Soit \(\mathcal{A} \) une catégorie abélienne munie de deux fonctions rang et degré, telle que les objets de \(\mathcal{A} \) admettent une filtration de Harder-Narasimhan relativement à la fonction pente associée. Si \(m \in \mathbb{R} \), on note \(\mathcal{T}^m \) (resp. \(\mathcal{T}^m_{-} \)) comme la sous-catégorie pleine de \(\mathcal{A} \) formée des objets dont tous les quotients de la filtration de Harder-Narasimhan sont de pente \(\geq m \) (resp. \(< m \)). C’est une paire de torsion de la catégorie dérivée bornée de \(\mathcal{A} \) sur \(\mathbb{R} \). On définit de même une paire de torsion \((\mathcal{T}^m_{+}, \mathcal{T}^m_{-}) \) en remplaçant \(\geq m \) par \(> m \) et \(< m \) par \(\leq m \). Pour alléger les notations, on notera dans la suite :

\[
\mathcal{A}^{-} := \mathcal{A}_{\mathcal{T}^{-}_{-}, \mathcal{T}^{-}_{0}} ; \quad \mathcal{A}^{+} := \mathcal{A}_{\mathcal{T}^{+}_{-}, \mathcal{T}^{+}_{0}}.
\]

Si l’on étend additivement à la catégorie dérivée les fonctions rang et degré, la catégorie \(\mathcal{A}^{-} \) est munie de fonctions degré, rang et pente définies par

\[
deg^{-} = -\text{rg} ; \quad \text{rg}^{-} = \deg ; \quad \mu^{-} = -\text{rg/deg}
\]

et ses objets admettent des filtrations de Harder-Narasimhan pour \(\mu^{-} \). Si \(A \in \mathcal{A}^{-} \), le triangle exact

\[
H^{-1}(A)[1] \rightarrow A \rightarrow H^{0}(A) \xrightarrow{+1} 0
\]

donne une suite exacte dans la catégorie abélienne \(\mathcal{A}^{-} \)

\[
0 \rightarrow H^{-1}(A)[1] \rightarrow A \rightarrow H^{0}(A) \rightarrow 0.
\]

Dans cette suite exacte, le terme de gauche correspond à la partie de pentes \(> 0 \) et le terme de droite à la partie de pentes \(\leq 0 \). On a des formules analogues pour \(\mathcal{A}^{+} \) en posant cette fois-ci \(\deg^{+} = \text{rg} \) et \(\text{rg}^{+} = -\deg \).

Choisissons pour catégorie abélienne la catégorie \(\text{Coh}_{X} \) des faisceaux cohérents sur \(X \). Soit \(\mathcal{F} \in \text{Coh}_{X} \). Comme

\[
\text{Ext}^{1}_{\text{Coh}_{X}}(H^{0}(\mathcal{F}), H^{-1}(\mathcal{F})[1]) = \text{Ext}^{1}_{D^{b}(\text{Coh}_{X})}(H^{0}(\mathcal{F}), H^{-1}(\mathcal{F})[1])
\]

(car \(X \) est noethérien régulier de dimension 1), \(\mathcal{F} \approx H^{-1}(\mathcal{F})[1] \oplus H^{0}(\mathcal{F}) \) (non canoniquement) ; on peut donc penser à un élément de \(\text{Coh}_{X}^{0} \) comme à un couple \((\mathcal{F}', \mathcal{F}'') \) de faisceaux cohérents sur \(X \), avec \(\mathcal{F}' \) à pentes strictement négatives, \(\mathcal{F}'' \) à pentes positives. De même, le fait que la filtration de Harder-Narasimhan soit scindée permet de voir un faisceau cohérent sur \(X \) comme un couple de faisceaux \((\mathcal{F}', \mathcal{F}'') \) comme précédemment. Mais bien sûr les morphismes entre deux tels couples \((\mathcal{F}', \mathcal{F}'') \) et \((\mathcal{G}', \mathcal{G}'') \) dans les deux catégories sont différents. On a

\[
\text{Hom}_{\text{Coh}_{X}}((\mathcal{F}', \mathcal{F}''), (\mathcal{G}', \mathcal{G}'')) = \begin{pmatrix} \text{Hom}(\mathcal{F}', \mathcal{G}') & 0 \\ \text{Hom}(\mathcal{F}', \mathcal{G}'') & \text{Hom}(\mathcal{F}'', \mathcal{G}'') \end{pmatrix}
\]

et

\[
\text{Hom}_{\text{Coh}_{X}}((\mathcal{F}', \mathcal{F}''), (\mathcal{G}', \mathcal{G}'')) = \begin{pmatrix} \text{Hom}(\mathcal{F}', \mathcal{G}') & \text{Ext}^{1}(\mathcal{F}'', \mathcal{G}') \\ 0 & \text{Hom}(\mathcal{F}'', \mathcal{G}'') \end{pmatrix}.
\]

Si l’on étend additivement à la catégorie dérivée les fonctions rang et degré, la catégorie \(\text{Coh}_{X}^{-} \) est munie de fonctions degré, rang et pente définies par

\[
\deg^{0,-} = -\text{rg} ; \quad \text{rg}^{0,-} = \deg ; \quad \mu^{0,-} = -\text{rg/deg}
\]

et ses objets admettent des filtrations de Harder-Narasimhan pour \(\mu^{0,-} \). Dans la suite exacte dans \(\text{Coh}_{X}^{-} \) :

\[
0 \rightarrow H^{-1}(\mathcal{F})[1] \rightarrow \mathcal{F} \rightarrow H^{0}(\mathcal{F}) \rightarrow 0
\]

23. Noter que les objets de torsion sont de pente \(-\infty \) dans la nouvelle catégorie.
2.6. Une description alternative de la catégorie \(\text{Coh}_X^- \)

2.6.1. Algèbres sympathiques. — Les algèbres sympathiques ont été introduites par Colmez pour définir les espaces de Banach-Colmez.

Définition 2.6.1. — Une \(C \)-algèbre de Banach \(R \) est dite *sympathique* si elle est uniforme (ce qui signifie que \(R^0 \) est borné, ou, de façon équivalente, qu’il existe sur \(R \) une norme multiplicative pour les puissances induisant la topologie de \(R \)) et \(p \)-close : tout élément de \(1 + R^0 \) admet une racine \(p \)-ème.

24. Noter que les objets de torsion sont de pente \(-\infty\) dans la nouvelle catégorie.
Remarque 2.6.2. — Une algèbre de Banach R est uniforme si et seulement si la norme qui définit sa topologie est équivalente à la semi-norme spectrale de R ([91, Def. 2.8.1]). La définition précédente est donc la même que celle de Colmez ([35, §4]), la condition de connexité – qui n’est pas essentielle – mise à part.

Proposition 2.6.3. — Une algèbre sympathique est perfectoïde. Pour toute C-algèbre perfectoïde R, il existe une R-algèbre sympathique pro-fini-étale. En particulier, les spectres affinoïdes d’algèbres sympathiques forment une base de la topologie du site $\text{Perf}_{C,\text{proét}}$.

Démonstration. — Pour la preuve, voir [35, Lemme 1.15 (iii)] et [35, Prop. 4.20 (i)].

Exemples 2.6.4. — a) Le corps C est sympathique.

b) La C-algèbre $C(T^{1/p^\infty})$ (obtenue en complétant p-adiquement $\bigcup_{n \geq 1} O_C[T^{1/p^n}]$ puis en inversant p) n’est pas sympathique, bien qu’elle soit perfectoïde. En effet, soit $a \in O_C$, avec $|p| < |a|$. Alors

$$y_a = \sum_{k=0}^{\infty} \left(\frac{1}{p^k}\right) a^k T^k$$

est une racine p-ème de $1 + aT$ dans $C[T^{1/p^\infty}]$, qui contient $C(T^{1/p^\infty})$. Si $1 + aT$ avait une racine p-ème dans $C(T^{1/p^\infty})$, y_a serait dans $O_C(T^{1/p^\infty})$: c’est absurde, puisque par choix de a le coefficient de T n’est pas dans O_C.

Proposition 2.6.5. — Une C-algèbre de Banach uniforme R est sympathique si et seulement si l’application logarithme $\log : 1 + R^\infty \to R$ est surjective.

Démonstration. — Supposons R sympathique. Soit $x \in R$. On choisit n assez grand pour que p^nx soit dans l’image de \log (ce qui est possible, puisque l’exponentielle converge sur un voisinage de 0 et y définit un inverse du logarithme). On a donc $p^nx = \exp(y')$, et comme $y' \in 1 + R^\infty$, il existe par hypothèse $y \in 1 + R^\infty$ tel que $y^{p^n} = y'$, i.e. tel que $\exp(y) = x$.

Réciproquement, soit $y \in 1 + R^\infty$. Il existe $y' \in 1 + R^\infty$ tel que $\log(y') = p^{-1}x$ et donc $\log(y^{-p}y) = 0$. Donc $y^{-p}y \in \mu_{p^\infty}$ et y admet donc une racine p-ème.

Remarque 2.6.6. — Soit $h \geq 1$ et $d \in \mathbb{Z}$. On montre ([91, Cor. 5.2.12]) que

$$B(R)^{\phi^h=p^d} = B^+(R)^{\phi^h=p^d}$$

et comme $B^+(R) = \cap_{n \geq 0} \phi^n(B^+_\text{cris}(R))$, c’est aussi la même chose que $B^+_\text{cris}(R)^{\phi^h=p^d}$. Ainsi dans la définition du corollaire 2.2.23, on aurait aussi bien pu définir U_λ avec l’anneau $B(R)$.

Corollaire 2.6.7. — Une C-algèbre de Banach uniforme R est sympathique si et seulement si l’application $\theta : (B(R)^{\phi^p=1})^{\phi^p=1} \to R$ de Fontaine est surjective.

Démonstration. — En effet comme on l’a observé dans la section 2.2.3, la théorie des groupes p-divisibles (25) permet d’identifier

$$\theta : B(R)^{\phi^p=1} \to R$$

et

$$\lim_{\substack{\longrightarrow \\quad x \to x^p}} 1 + R^\infty \to R, \quad (x_n) \mapsto \log(x_0).$$

En outre, l’argument de la preuve précédente montre que R est sympathique si et seulement la deuxième application est surjective.

25. Entre autres possibilités...
2.6.2. La catégorie Coh_X^- comme catégorie de faisceaux « pervers cohérents » (au sens de [26]). — Soit S un espace perfectoïde sur C^o. On peut penser en première approximation à l’espace adique X_S comme à une famille $(X_{k(s)})$ de courbes de Fargues-Fontaine usuelles, indexée par les points géométriques de S. Néanmoins il faut prendre garde au fait qu’il n’y a pas de morphisme naturel d’espaces adiques X_S → $S!$ En caractéristique p cela vient du fait qu’on a quotienté par φ ; en caractéristique mixte, c’est encore pire, il n’y a même pas de tel morphisme au niveau de Y_S. Toutefois, bien que X_S ne vive pas au dessus de S, la construction de X_S est fonctorielle en S. On vérifie de plus (en étendant les scalaires à Q_p^{cycl} et en basculant en caractéristique p) que si $f : S → S'$ est un morphisme pro-étale (resp. surjectif), le morphisme induit $X_S → X_{S'}$ est pro-étale (resp. surjectif). De plus, f commute aux limites projectives finies.

En d’autres termes, on a un morphisme de topos τ du topos associé au gros site pro-étale de X vers le topos $(\text{Perf}_{C^o,\text{proét}})^-$. En particulier, si F est un complexe de faisceaux cohérents sur X, on peut lui associer un complexe de faisceaux $R\tau_* F$ sur $(\text{Perf}_{C^o,\text{proét}})^-$.

Proposition 2.6.8. — Soit $F ∈ \text{Coh}_X$. Alors :

- Si tous les quotients de la filtration de Harder-Narasimhan de F sont à pentes $≥ 0$, $R^i \tau_* F = 0$ pour tout $i \neq 0$.
- Si tous les quotients de la filtration de Harder-Narasimhan de F sont à pentes < 0, $R^i \tau_* F = 0$ pour tout $i \neq 1$.

Démonstration. — Le théorème de classification des fibrés montre qu’il suffit de vérifier que :

- $R^i \tau_* O_X(\lambda) = 0$ pour tout $i \neq 0$, si $\lambda ≥ 0$;
- $R^i \tau_* O_X(\lambda) = 0$ pour tout $i \neq 1$, si $\lambda < 0$;
- $R^i \tau_* B^+_{\text{dR}} (C_x)/t^k B^+_{\text{dR}} (C_x) = 0$ pour tout $i \neq 0$, si x est un point fermé de X, C_x le corps résiduel de X en x et $k > 0$.

Rappelons que $R^i \tau_* F$ est le faisceau associé au préfaisceau $S → H^i (X_S, F_S)$. On peut donc supposer $S = \text{Spa}(R, R^+)$ affinoïde perfectoïde.

Vérimons d’abord le troisième point. Le corps C_x est un corps perfectoïde de basculement C^o et donne naissance à un débasculement S^\sharp de S au-dessus de C_x par l’équivalence de Scholze entre espaces perfectoïdes sur C_x et sur C^o, et à un morphisme $i : S^\sharp → X_S$ (par produit fibré de i et $X_S → X$, puisque $\text{Hom}(S^\sharp, X) = \text{Hom}(S, C^o)$). On a

$$H^i (X_S, i_* B^+_{\text{dR}, S^\sharp}/t^k B^+_{\text{dR}, S^\sharp}) = H^i (S^\sharp, B^+_{\text{dR}, S^\sharp}/t^k B^+_{\text{dR}, S^\sharp})$$

qui est nul si $i > 0$ car S^\sharp est affinoïde perfectoïde ([129, Th. 6.5 (ii)]).

Traitons maintenant le cas des fibrés $O_X(\lambda), \lambda ∈ Q$. Si $i = 0$, il s’agit de calculer $B(R)^{p^k} = p^k$ si $\lambda = d/h$. On a pour tout $f ∈ B(R)$:

$$\|φ(f)\|_p = \|f\|_{p^k}^p.$$

Donc si $φ^k (f) = p^k f$, on a par une récurrence immédiate que pour tout $k ≥ 1$

$$\|f\|_{p^k}^p = p^{-dp^k} \|f\|_{p^k}^p.$$

Quitte à multiplier f par une constante, on peut supposer $\|f\|_p < 1$. On en déduit que si $d ≤ 0$, le membre de droite tend vers 0, et donc

$$\lim_{p → 0} \|f\|_p = 0.$$

Donc f a une singularité éliminable en 0 (la preuve de [66, Prop. 1.9.1] s’adapte sans problème au cas d’une algèbre perfectoïde R) et donc $f ∈ W(R)$ (pour le voir, on se ramène au cas connu des corps : cf. [91, Lem. 5.2.5]). Or on voit directement que $W(R)^{p^k} = p^k$ est nul
dès que $d \neq 0$ et vaut $W(R^{2i-1}) = Q_p^\sigma(S)$ si $d = 0$. Par conséquent, on a bien $R^0\tau_*\mathcal{O}_X(\lambda) = 0$ si $\lambda < 0$. On a aussi obtenu au passage que $R^0\tau_*\mathcal{O}_X = Q_p$.

Pour comprendre ce qui se passe en degré $i > 0$, notons pour commencer qu’on peut supposer $\lambda = d$ entier, quitte à remplacer X par X_h, $h \geq 1$. En effet, si $\lambda = d/h$, $\mathcal{O}_X(\lambda) = \pi_{h,*}\mathcal{O}_{X_h}(d)$, avec $\pi_h : X_h \to X$ étale et donc

$$H^i(X_S, \mathcal{O}_{X_S}(\lambda)) = H^i(X_h, \mathcal{O}_{X_{S,h}}(\lambda)).$$

Si $\pi : Y_S \to X_S$ est la surjection canonique, $\pi^*\mathcal{O}_{X_S}(d) = \mathcal{O}_{Y_S}$ par définition de $\mathcal{O}_X(d)$. Pour tout $i > 0$, $H^i(Y_S, \mathcal{O}_{Y_S})$ est nul. En effet, on peut écrire $Y_S = \bigcup_{n,m} Y_{S,n,m}$ comme ci-dessus et $H^0(Y_S, \mathcal{O}_{Y_S}) = \lim H^0(Y_{S,n,m}, \mathcal{O}_{Y_S})$, les morphismes de transition étant continus et d’image dense. On a donc une suite exacte pour tout $i > 0$:

$$0 \to R^1\lim H^{i-1}(Y_{S,n,m}, \mathcal{O}_{Y_S}) \to H^i(Y_S, \mathcal{O}_{Y_S}) \to \lim H^i(Y_{S,n,m}, \mathcal{O}_{Y_S}) \to 0.$$

Or chaque $Y_{S,n,m}$ est affinoïde perfectoïde et donc le terme de droite est nul pour $i > 0$ ([91, Lemma 9.2.8]). Cela donne l’annulation cherchée pour $i > 1$. Pour $i = 1$, on utilise que de plus

$$R^1\lim H^0(Y_{S,n,m}, \mathcal{O}_{Y_S}) = 0,$$

d’après la proposition 2.3.5. De la suite spectrale de Hochschild-Serre pour $\pi : Y_S \to X_S$ on déduit que

$$H^1(X_S, \mathcal{O}_{X_S}(d)) = 0$$

si $i > 1$ et que

$$H^1(X_S, \mathcal{O}_{X_S}(d)) = \ker(H^0(Y_S, \pi^*\mathcal{O}_{X_S}(d)) \xrightarrow{1d-\phi} H^0(Y_S, \pi^*\mathcal{O}_{X_S}(d)))$$

$$= \ker(B(R) \xrightarrow{1-p^{-\phi}} B(R)),$$

Or ce dernier groupe est nul si $d > 0$, d’après [91, Prop. 6.2.2].

Il ne reste donc plus à étudier que le cas $i = 1$, $\lambda = 0$, qui est plus délicat. Comme la question est locale pour la topologie pro-étale, on peut supposer $S = \Spa(R^\mathbb{P}, R^+)\blacktriangleright_\pro\mathbb{P}$, avec R une C-algèbre sympathique (proposition 2.6.3). Regardons la suite exacte de fibrés

$$0 \to \mathcal{O}_{X_S} \to \mathcal{O}_{X_S}(1) \to i_{\infty,*}\mathcal{O}_{S^2} \to 0.$$

(avec $S^2 = \Spa(R, R^+)$) et prenons la suite exacte longue de cohomologie qui s’en déduit en appliquant $\Gamma(X_{S,\mathbb{Z}})$. On voit qu’il suffit de montrer que la flèche

$$H^0(X_S, \mathcal{O}_{X_S}(1)) \to H^0(X_S, i_{\infty,*}\mathcal{O}_{S^2})$$

est surjective pour avoir que $H^1(X_S, \mathcal{O}_{X_S}) = 0$, puisque l’on sait déjà que $H^1(X_S, \mathcal{O}_{X_S}(1)) = 0$. Mais cette flèche n’est autre que $\theta : B(R^\mathbb{P})^\mathbb{Z} \to R$. Le corollaire 2.6.7 permet de conclure que $R^1\tau_*\mathcal{O}_X = 0$.

\begin{proof}
\end{proof}

\textbf{Remarque 2.6.9.} — La preuve montre que $R^0\tau_*\mathcal{O}_X = Q_p$. Si $\lambda = d/h > 0$, $R^0\tau_*\mathcal{O}_X(\lambda) = \mathcal{U}_\lambda$ qui est non nul. Si $\lambda = d/h < 0$, $R^1\tau_*\mathcal{O}_X(\lambda) \neq 0$; cela se vérifie aisément à l’aide des calculs précédents et de la suite exacte

$$0 \to \mathcal{O}_{X_E}(d) \to \mathcal{O}_{X_E} \to i_{\infty,*}B^+_\mathbb{P}/t^dB^+_\mathbb{P} \to 0,$$

où $E = Q_p^\sigma$.

De la proposition et de la remarque précédentes, on déduit le

\begin{corollary}
\end{corollary}

\textbf{Corollaire 2.6.10.} — La catégorie \Coh_X est exactement la sous-catégorie pleine de $D^b(\Coh_X)$ suivante

$$\{ F, H^i(F) = 0 \text{ si } i \neq 0, -1, R^1\tau_*H^0(F) = 0, R^0\tau_*H^{-1}(F) = 0 \}.$$

Autrement dit, le foncteur $R^0\tau_*$ restreint à la catégorie \Coh_X est exact.
2.7. La catégorie \mathcal{BC} en termes de la courbe

2.7.1. La catégorie \mathcal{BC} comme cœur abélien de $D^b(\text{Coh}_X)$. — On vient de voir que le foncteur $R^0\tau_*$ de Coh_X^\sim dans la catégorie des faisceaux sur $\text{Perf}_{\text{C},\text{proét}}$ était exact. On va voir maintenant qu’on en a fait beaucoup mieux. Le théorème 2.2.7 de Scholze permet d’identifier les sites $\text{Perf}_{\text{C},\text{proét}}$ et $\text{Perf}_{\text{C},\text{proét}}^\ast$, ce que l’on fait désormais, en particulier dans l’énoncé suivant, qui est le résultat principal de ce texte.

Théorème 2.7.1. — Le foncteur $R^0\tau_*$ réalise une équivalence de catégories entre Coh_X^\sim et \mathcal{BC}.

Démonstration. — Montrons tout d’abord que l’image de Coh_X^\sim par $R^0\tau_*$ tombe dans \mathcal{BC}. Le groupe de Grothendieck $K_0(\text{Coh}_X)$ est isomorphe à $K_0(\text{Coh}_X)$ via la flèche $[F] \mapsto [H^0(F)] - [H^{-1}(F)]$, Or

$$K_0(\text{Coh}_X) \simeq K_0(\text{Fib}_X) \simeq \mathbb{Z}[\mathcal{O}_X] \oplus \text{Pic}(X) \simeq \mathbb{Z}[\mathcal{O}_X] \oplus \mathbb{Z}[\mathcal{O}_X(1)].$$

Comme la catégorie \mathcal{BC} est par définition abélienne et stable par extensions, il suffit donc de vérifier que $R^0\tau_*\mathcal{O}_X, R^0\tau_*\mathcal{O}_X(1) \in \mathcal{BC}$. Or on a $R^0\tau_*\mathcal{O}_X(1) = U_1$ et $R^0\tau_*\mathcal{O}_X = \mathbb{Q}_p$ comme on l’a vu au cours de la preuve de la proposition 2.6.8.

Soit \mathcal{BC} la catégorie définie de façon analogue à \mathcal{BC} en remplaçant faisceaux de \mathbb{Q}_p-espaces vectoriels par faisceaux de groupes abéliens. La catégorie \mathcal{BC} est une sous-catégorie de \mathcal{BC}. Pour prouver le théorème, on va montrer que $R^0\tau_*$ induit une équivalence entre Coh_X^\sim et \mathcal{BC}. Observons alors que si $F, G \in \text{Coh}_X$, tout élément de $\text{Hom}_{\text{Coh}_X}(F, G)$ induit par $R^0\tau_*$ un morphisme \mathbb{Q}_p-linéaire entre les faisceaux de \mathbb{Q}_p-vectoriels $R^0\tau_*(F)$ et $R^0\tau_*(G)$. On en déduit donc que les trois catégories Coh_X, \mathcal{BC} et \mathcal{BC} sont nécessairement équivalentes.

L’exactitude du foncteur $R^0\tau_* : \text{Coh}_X^\sim \to \mathcal{BC}$ donne une flèche pour tout $F, G \in \text{Coh}_X^\sim$ et tout $i \geq 0$

$$(*)_{i,F,G} : \text{Ext}_{\text{Coh}_X}^i(F, G) \to \text{Ext}_{\text{BC}}^i(X, F, R^0\tau_* G).$$

Par définition de \mathcal{BC} comme plus petite sous-catégorie abélienne stable par extensions de la catégorie des faisceaux de groupes abéliens sur $\text{Perf}_{\text{C},\text{proét}}$ contenant les \mathbb{Q}_p-Espaces Vectoriels de dimension finie et les C-Espaces Vectoriels de dimension finie, il s’agit donc pour démontrer le théorème de prouver que la flèche ci-dessus est un isomorphisme pour $i = 0, 1$ et pour tout $F, G \in \text{Coh}_X^\sim$.

Proposition 2.7.2. — On suppose que F, G sont des \mathbb{Q}_p-Espaces Vectoriels de dimension finie ou des C-Espaces Vectoriels de dimension finie. Alors $(*)_{i,F,G}$ est un isomorphisme pour $i = 0, 1, 2$.

Démonstration. — C’est un corollaire des résultats de la section 2.4 et du calcul des Ext_{i} entre faisceaux cohérents sur la courbe.

Montrons pour commencer que l’énoncé de la proposition 2.7.2 reste valable lorsque F et G sont à pentes entre 0 et 1, i.e. que $(*)_{i,F,G}$ est un isomorphisme lorsque F et G sont à pentes entre 0 et 1 et $i = 0, 1, 2$. Il existe alors V, V' deux \mathbb{Q}_p-espaces vectoriels de dimension finie, W, W' deux C-espaces vectoriels de dimension finie et des suites exactes

$$0 \to V \otimes \mathcal{O}_X \to F \to i_{\infty, \ast} W \to 0 ; \quad 0 \to V' \otimes \mathcal{O}_X \to G \to i_{\infty, \ast} W' \to 0.$$

D’où des suite exactes

$$0 \to \text{Hom}_{\text{Coh}_X}(i_{\infty, \ast} W, G) \to \text{Hom}_{\text{Coh}_X}(F, G) \to \text{Hom}_{\text{Coh}_X}(V \otimes \mathcal{O}_X, G) \to \text{Ext}_{\text{Coh}_X}^1(i_{\infty, \ast} W, G),$$
\[\text{Hom}_{\text{Coh}_X}(V \otimes \mathcal{O}_X, \mathcal{G}) \to \text{Ext}^1_{\text{Coh}_X}(\iota_{\infty,*}W, \mathcal{G}) \to \text{Ext}^1_{\text{Coh}_X}((\mathcal{F}, \mathcal{G}) \to \text{Ext}^1_{\text{Coh}_X}(V \otimes \mathcal{O}_X, \mathcal{G}) \to \text{Ext}^2_{\text{Coh}_X}(\iota_{\infty,*}W, \mathcal{G}), \]

\[\text{et} \]

\[\text{Ext}^1_{\text{Coh}_X}(V \otimes \mathcal{O}_X, \mathcal{G}) \to \text{Ext}^2_{\text{Coh}_X}(\iota_{\infty,*}W, \mathcal{G}) \to \text{Ext}^2_{\text{Coh}_X}((\mathcal{F}, \mathcal{G}) \to \text{Ext}^2_{\text{Coh}_X}(V \otimes \mathcal{O}_X, \mathcal{G}). \]

Ce dernier groupe est nul dans les deux catégories considérées, puisque \[\text{Ext}^2_{\text{Coh}_X}(V \otimes \mathcal{O}_X, V' \otimes \mathcal{O}_X) \] (resp. \[\text{Ext}^2_{\text{Coh}_X}(V \otimes \mathcal{O}_X, \iota_{\infty,*}W') \] (resp. \[\text{Ext}^2_{\text{Coh}_X}(V \otimes \mathcal{O}_X, \iota_{\infty,*}W') \]) le sont, d’après le théorème 2.4.1. On peut donc supposer que \(\mathcal{F} \) est un \(\mathbb{Q}_p \)-Espace Vectoriel ou un \(\mathcal{C} \)-Espace Vectoriel de dimension finie. On écrit alors

\[0 \to \text{Hom}_{\text{Coh}_X}(\mathcal{F}, V' \otimes \mathcal{O}_X) \to \text{Hom}_{\text{Coh}_X}(\mathcal{F}, V' \otimes \mathcal{O}_X) \to \text{Hom}_{\text{Coh}_X}(\mathcal{F}, \mathcal{G}) \to \text{Hom}_{\text{Coh}_X}(\mathcal{F}, \iota_{\infty,*}W'), \]

\[\to \text{Ext}^1_{\text{Coh}_X}(\mathcal{F}, V' \otimes \mathcal{O}_X), \]

\[\text{Hom}_{\text{Coh}_X}(\mathcal{F}, \iota_{\infty,*}W') \to \text{Ext}^1_{\text{Coh}_X}(\mathcal{F}, \mathcal{G}) \to \text{Ext}^1_{\text{Coh}_X}(\mathcal{F}, \mathcal{G}) \to \text{Ext}^1_{\text{Coh}_X}(\mathcal{F}, \iota_{\infty,*}W') \to \text{Ext}^2_{\text{Coh}_X}(\mathcal{F}, V' \otimes \mathcal{O}_X)) \]

\[\text{et} \]

\[\text{Ext}^1_{\text{Coh}_X}(\mathcal{F}, \iota_{\infty,*}W') \to \text{Ext}^2_{\text{Coh}_X}(\mathcal{F}, \mathcal{G}) \to \text{Ext}^2_{\text{Coh}_X}(\mathcal{F}, \mathcal{G}) \to \text{Ext}^2_{\text{Coh}_X}(\mathcal{F}, \iota_{\infty,*}W'). \]

Ce dernier groupe est nul dans les deux catégories considérées, d’après le théorème 2.4.1. Le résultat cherché se déduit donc de la proposition 2.7.2.

Pour prouver que \((*)_{i,*}G\) est un isomorphisme pour \(i = 0, 1 \) dans le cas général, nous ferons usage du lemme suivant :

Lemme 2.7.3. — *On a les suites exactes suivantes dans \(\text{Coh}_X \) pour \(d > 1 \) et \(k > 0 \) :

\[
\begin{align*}
(19) & \quad 0 \to \mathcal{O}_X \to \mathcal{O}_X(1) \oplus \mathcal{O}_X(d-1) \to \mathcal{O}_X(d) \to 0, \\
(20) & \quad 0 \to \mathcal{O}_X \to \mathcal{O}_X(k) \to \iota_{\infty,*}B_{\text{dr}}^{+}/t^kB_{\text{dr}}^{+} \to 0, \\
(21) & \quad 0 \to \mathcal{O}_X \to i_{\infty,*}B_{\text{dr}}^{+}/t^kB_{\text{dr}}^{+} \to \mathcal{O}_X(-k)[1] \to 0.
\end{align*}
\]

Démonstration. — Ces suites exactes se déduisent respectivement des suites exactes suivantes dans \(\text{Coh}_X \), vues comme triangles exacts dans la catégorie dérivée :

\[
\begin{align*}
0 & \to \mathcal{O}_X \to \mathcal{O}_X(1) \oplus \mathcal{O}_X(d-1) \to \mathcal{O}_X(d) \to 0, \\
0 & \to \mathcal{O}_X \to \mathcal{O}_X(k) \to \iota_{\infty,*}B_{\text{dr}}^{+}/t^kB_{\text{dr}}^{+} \to 0, \\
0 & \to \mathcal{O}_X(-k) \to \mathcal{O}_X \to i_{\infty,*}B_{\text{dr}}^{+}/t^kB_{\text{dr}}^{+} \to 0.
\end{align*}
\]

Les deux dernières suites exactes, induites par la multiplication par un élément de \(\text{H}^{0}(X, \mathcal{O}_X(k)) = B_{\text{r}}^{p,k} \) sont les mêmes à torsion près et la traduction géométrique de la « suite exacte fondamentale » en théorie de Hodge \(p \)-adique : cf [66, 8.2.1.3]. L’existence de la première suite exacte se démontre comme dans [35, 8.20]. □
On déduit du lemme que pour tout \(F \in \text{Coh}_X \), il existe une suite exacte dans \(\text{Coh}_X \)

\[
0 \to V \otimes \mathcal{O}_X \to F' \to F \to 0,
\]

avec \(F' \) un fibré à pente entre 0 et 1 et \(V \) un \(\mathbb{Q}_p \)-espace vectoriel de dimension finie.

Soit donc \(F, G \in \text{Coh}_X \). On écrit

\[
0 \to V \otimes \mathcal{O}_X \to F' \to F \to 0 ; \quad 0 \to V' \otimes \mathcal{O}_X \to G' \to G \to 0,
\]

avec \(F', G' \) à pente entre 0 et 1, \(V, V' \) des \(\mathbb{Q}_p \)-espaces vectoriels de dimension finie. On a une suite exacte

\[
0 \to \text{Hom}_{\text{Coh}_X}(F, G) \to \text{Hom}_{\text{Coh}_X}(F', G) \to \text{Hom}_{\text{Coh}_X}(V \otimes \mathcal{O}_X, G) \to \text{Ext}^1_{\text{Coh}_X}(F, G)
\]

\[
\to \text{Ext}^1_{\text{Coh}_X}(F', G) \to \text{Ext}^1_{\text{Coh}_X}(V \otimes \mathcal{O}_X, G).
\]

On peut donc supposer, ce que l’on fera, \(F \) à pente entre 0 et 1. On a des diagrammes commutatifs de suites exactes

\[
\begin{array}{cccccc}
\text{Hom}_{\text{Coh}_X}(F', V' \otimes \mathcal{O}_X) & \to & \text{Hom}_{\text{Coh}_X}(F', G) & \to & \text{Hom}_{\text{Coh}_X}(V \otimes \mathcal{O}_X, G) & \to & \text{Ext}^1_{\text{Coh}_X}(F, G) \\
\text{Hom}_{\text{Coh}_X}(R^p, F', R^p, V' \otimes \mathcal{O}_X) & \to & \text{Hom}_{\text{Coh}_X}(R^p, F', R^p, G') & \to & \text{Ext}^1_{\text{Coh}_X}(F, V' \otimes \mathcal{O}_X) & \to & \text{Ext}^1_{\text{Coh}_X}(F, G')
\end{array}
\]

et

\[
\begin{array}{cccccc}
\text{Ext}^1_{\text{Coh}_X}(F', V' \otimes \mathcal{O}_X) & \to & \text{Ext}^1_{\text{Coh}_X}(F', G) & \to & \text{Ext}^1_{\text{Coh}_X}(V \otimes \mathcal{O}_X, G) & \to & \text{Ext}^1_{\text{Coh}_X}(F, G)
\end{array}
\]

On veut montrer que les flèches verticales du milieu \((*)_{0,F,G}\) et \((*)_{0,F,G}\) sont des isomorphismes ; grâce au lemme des cinq, il suffit de le vérifier pour les autres flèches verticales. Tous les fibrés qui apparaissent étant désormais à pente entre 0 et 1, c’est gagné. \(\square\)

\textbf{Remarque 2.7.4.} — Si \(F \) et \(G \) sont deux fibrés à pente entre 0 et 1, le fait que \((*)_{0,F,G}\) est un isomorphisme peut aussi se démontrer à l’aide de la théorie des groupes p-divisibles. En effet, on peut supposer \(F = \mathcal{O}_X(\lambda), G = \mathcal{O}_X(\mu) \) avec \(\lambda, \mu \in \mathbb{Q} \cap [0,1] \). Donnons-nous alors deux groupes p-divisibles \(G_\lambda, G_\mu \) sur \(\mathcal{O}_C \) de revêtements universels \(U_\lambda, U_\mu \) ; on note \(M(\lambda), M(\mu) \) les modules de Dieudonné sur \(\mathcal{O}_\mathbb{Q} \) correspondants. D’une part on sait (cf. [65], Th. 7.18 et paragraphe après 7.27) que le foncteur de \(\varphi - \text{Mod}_{B^{+}}^{\text{cris}} \) vers \(\text{Bun}_X \) est pleinement fidèle, c’est-à-dire que

\[
\text{Hom}_{\text{Coh}_X}(\mathcal{O}(\lambda), \mathcal{O}(\mu)) = \text{Hom}_{B^{+}_{\text{cris}}}(M(\lambda) \otimes_L B^{+}_{\text{cris}}, M(\mu) \otimes_L B^{+}_{\text{cris}}).
\]

D’autre part on a vu dans la remarque 2.2.21 que

\[
\text{Hom}_{\text{BC}}(U_\lambda, U_\mu) = \text{Hom}(\hat{G}^{\text{ad}}_\lambda, \hat{G}^{\text{ad}}_\mu) = \text{Hom}_{B^{+}_{\text{cris}}}(M(\lambda) \otimes_L B^{+}_{\text{cris}}, M(\mu) \otimes_L B^{+}_{\text{cris}}),
\]

ce qui conclut.

\textbf{Remarque 2.7.5.} — Les méthodes de cet article montrerait aussi que si \(E \) est un corps local de caractéristique \(p \), la catégorie des \(E \)-espaces de Banach-Colmez (cf. remarque 2.2.12) est équivalente à la catégorie \(\text{Coh}_X \), où \(X_E \) désigne la courbe de Fargues-Fontaine pour le corps local \(E \) (et \(F = C^1 \)). Le théorème 2.4.1 reste valable en remplaçant \(\text{Perf}_C \) par \(\text{Perf}_{C^0} \), et \(\mathbb{Q}_p \) par \(E \), à ceci près que \(\text{Ext}^1(G_a, G_a) = 0 \). En effet, le faisceau \(G_a \) est représenté par \(A^1_{C^0} \) et

\[
\forall i > 0, \quad H^i(A^1_{C^0} \otimes \mathbb{Q}_a, G_a) = 0,
\]

d’après [129, Lem. 4.10 (v)] (comparer avec le théorème 2.3.1).

Comme corollaire de la preuve du théorème, on obtient le résultat suivant.
Corollaire 2.7.6. — Les groupes Hom(F, G) et Ext(F, G) pour $F, G \in \{Q_p, G_a\}$ sont les mêmes dans la catégorie des faisceaux pro-étalés de groupes abéliens et dans celle des faisceaux pro-étalés de Q_p-espaces vectoriels.

Remarque 2.7.7. — On pourrait certainement le prouver par des méthodes semblables à celles de la section 2.4 ; cela demanderait d’expliciter en bas degré les complexes qui apparaissent dans [105] et [88].

2.7.2. Lien avec la définition originale de Colmez. — Rappelons la définition originale de Colmez des espaces de Banach-Colmez, appelés par lui *Espaces de Banach de dimension finie* ([35]).

Pour Colmez, un *Espace de Banach* est un foncteur covariant de la catégorie des C-algèbres sympathiques dans la catégorie des Q_p-espaces de Banach. Une suite d’espaces de Banach est dite *exacte* si elle l’est quand on l’évalue sur toute algèbre sympathique. Un *Espace de Banach de dimension finie* est alors par définition un Espaces de Banach obtenu par extension et quotient comme dans la définition des Banach-Colmez à partir des Q_p-espaces Vectoriels de dimension finie et des C-espaces Vectoriels de dimension finie (que l’on voit ici par restriction comme foncteurs covariants sur la catégorie des C-algèbres sympathiques).

Nous noterons BC' la catégorie des Espaces de Banach de dimension finie.

Commencons par une caractérisation des algèbres sympathiques.

Proposition 2.7.8. — Soit $S = \text{Spa}(R', R^\circ)$, avec R une C-algèbre perfectoïde. On a équivalence entre

- R est sympathique ;
- $H^1(S, Q_p) = 0$.

Démonstration. — Comme $H^1(S, \mathcal{O}_S) = 0$ pour tout affinoïde perfectoïde, l’équivalence des deux derniers points est immédiate. L’argument de la preuve de 2.6.8 montre que R est sympathique si et seulement si $H^1(X_S, \mathcal{O}_{X_S}) = 0$. Par ailleurs on a remarqué au cours de la preuve de la proposition 2.6.8 que $\tau_\ast \mathcal{O}_X = Q_p$ et $R^i \tau_\ast \mathcal{O}_X = 0$ pour $i > 0$ d’après la même proposition. Donc la suite spectrale de Leray pour τ donne pour tout $i \geq 0$ un isomorphisme

$$H^1(X_S, \mathcal{O}_{X_S}) = H^1(S, Q_p),$$

ce qui donne l’équivalence des deux premiers points.

Exemple 2.7.9. — Si K est un corps perfectoïde contenant C, K est sympathique si et seulement si $H^1(G_K, Q_p) = 0$ pour tout $i > 0$. La suite exacte de faisceaux

$$0 \to \mathbb{Z}_p \to W(\mathcal{G}_a) \overset{\psi=F^{-1}}{\to} W(\mathcal{G}_a) \to 0$$

montre que le corps perfectoïde K est sympathique si ψ est surjectif sur $W(K^\circ)$. On montre de plus ([98, Prop. 3.10]) que $W(K^\circ)/\psi W(K^\circ)$ est isomorphe comme groupe topologique au complété p-adique de $\bigoplus_B \mathbb{Z}_p$, où B est une base de $K^\circ/\psi K^\circ$ sur F_p. Le corps perfectoïde K est donc sympathique si ψ est surjectif sur K° (i.e. $H^1(G_K, \mathbb{Z}_p)$ est nul si $H^1(G_K, F_p)$ est nul). Par exemple, tout corps dont le basculement est un corps valué parfait sphériquement complet contenant C° convient (en effet, soit L un corps parfait sphériquement complet et $a \in L$. Si $|a| > 1$, la série $\sum_{n<0} a^n$ converge car L est sphériquement complet vers une racine x de l’équation $\psi(x) = a$. Si $|a| \leq 1$, remplacer a par $a+b^\circ-b$, avec $|b| > 1$. Il existe donc en particulier des corps sympathiques qui ne sont pas algériquement clos.

Corollaire 2.7.10. — Si R et R' sont deux C-algèbres perfectoïdes telles que $R^\circ \simeq R^\circ$, R est sympathique si et seulement si R' l’est.

Démonstration. — C’est un corollaire immédiat de la proposition 2.7.8.

Proposition 2.7.11. — Les catégories BC et BC' sont équivalentes.
Démonstration. — Notons tout d’abord que tout objet de BC s’écrit comme un quotient d’un espace de Banach-Colmez effectif, c’est-à-dire extension d’un C-Espace Vectoriel de dimension finie par un Q_p-Espace Vectoriel de dimension finie, par un Q_p-Espace Vectoriel de dimension finie. Cela se ramène en effet, grâce au théorème 2.7.1 à vérifier que tout faisceau cohérent sur la courbe s’écrit comme quotient d’un fibré à pentes entre 0 et 1 par un fibré semi-stable de pente 0. Or ceci est une conséquence immédiate de la classification et du lemme 2.7.3.

Montrons alors que le foncteur d’oubli qui à un objet de BC associe le foncteur sous-jacent sur la catégorie des C-algèbres sympathiques réalise une équivalence entre BC et BC'. Le paragraphe précédent et la proposition 2.7.8 montrent que l’image par ce foncteur d’un espace de Banach-Colmez est bien un objet de BC' (26). La pleine fidélité est un corollaire du fait que les algèbres sympathiques forment une base de la topologie pro-étale (proposition 2.6.3). Enfin l’essentielle surjectivité découle du fait qu’on a aussi dans BC' :

\[\text{Ext}^1_{BC'}(W \otimes O,V) = \text{Hom}_C(W,V \otimes C) \]

(26). et explique au passage pourquoi la définition de Colmez des suites exactes d’Espaces de Banach était « raisonnable ».

Corollaire 2.7.12. — La catégorie BC' est abélienne.

En bonus, on a le

Corollaire 2.7.13. — La catégorie abélienne BC ne dépend que de C^\flat.

Corollaire 2.7.14. — La catégorie BC permet de reconstruire la courbe de Fargues-Fontaine X_{sch}.

Démonstration. — En effet, le théorème 2.7.1 et la proposition 2.5.6 permettent de reconstruire $\text{Coh}_{X_{sch}}$ à partir de BC, puisqu’ils montrent que $\text{Coh}_{X_{sch}} \simeq BC^+$

(avec les notations du paragraphe 2.5.2). Or un théorème de Gabriel (77, Ch VI, §3) affirme qu’un schéma noethérien Z peut être reconstruit à partir de la catégorie abélienne Coh_Z de ses faisceaux cohérents, à équivalence près (Z s’identifie comme espace topologique à l’ensemble des sous-catégories de Serre irréductibles de Coh_Z avec pour ouverts les $D(I)$, ensemble des sous-catégories de Serre ne contenant pas une sous-catégorie de Serre I fixée : le faisceau structural évalué sur l’ouvert $D(I)$ est le centre de la catégorie abélienne Coh_Z/I).

Corollaire 2.7.15. — Les espaces de Banach-Colmez sont des diamants sur $\text{Spa}(C)$.

Démonstration. — On vient de voir que tout espace de Banach-Colmez était le quotient par un Q_p-Espace Vectoriel de dimension finie (donc par une relation d’équivalence pro-étale) du revêtement universel d’un groupe p-divisible, qui est un espace perfectoïde.

Question 2.7.16. — Est-il vrai que les seuls objets représentables de BC sont ceux de BC^{rep} ?

Remarque 2.7.17. — Dans la question précédente, on a laissé de côté les C-Espaces Vectoriels de dimension finie, qui ne sont pas représentables par un espace perfectoïde. Si toutefois on se demande quels espaces de Banach-Colmez sont représentables par des espaces adiques sur C, on peut s’attendre à obtenir exactement les sommes directes d’un objet de
Le foncteur fibre générique identifie le quotient formée des faisceaux de torsion, qui est la sous-catégorie de Serre des objets de rang $rg = 0$.

2.7.3. Le « drôle de corps » de Colmez. — Notons $\text{Coh}_X^{\text{tors}}$ la sous-catégorie de Coh_X formée des faisceaux de torsion, qui est la sous-catégorie de Serre des objets de rang $rg = 0$. Le foncteur fibre générique identifie le quotient $\text{Coh}_X / \text{Coh}_X^{\text{tors}}$ à la catégorie des $\text{Frac}(B_r)$-espaces vectoriels ($B_r = B_{\text{crys}}^{\text{rig}}[1/t]$ et $\text{Frac}(B_r)$ est le corps des fonctions de X). En particulier, cette catégorie est semi-simple avec un seul objet simple.

Si l'on fait la même manipulation avec Coh_X^{-}, i.e. si l'on quotiente par la sous-catégorie de Serre formée des objets de rang $rg^{-} = 0$, qui est la sous-catégorie des fibrés semi-stables de pente 0 placés en degré 0, on obtient aussi une catégorie semi-simple avec un seul objet simple S à isomorphisme près : cela se déduit immédiatement des suites exactes du lemme 2.7.3. Par conséquent,

$$\mathcal{C} = \text{End}_{\text{Coh}_X^{-}}((\text{Coh}_X^{-})^{\text{tors}} = 0)$$

est une algèbre à division.

Le théorème 2.7.1 identifie $\text{Coh}_X^{-} / (\text{Coh}_X^{-})^{\text{tors}} = 0$ à $\mathcal{B}/(\mathcal{Q}_p = \text{EV de d.f.})$. Comme on peut choisir pour S la classe $[i_{\infty}, C]$ de i_{∞}, C dans le quotient, \mathcal{C} est l’algèbre à division étudiée par Colmez dans [35, §5 et §9]. On a un morphisme d’algèbres

$$C = \text{End}_{\text{Coh}_X^{-}}([i_{\infty}, C]) \rightarrow \text{End}_{\text{Coh}_X^{-}}((\text{Coh}_X^{-})^{\text{tors}} = 0),$$

qui fait de C une sous-algèbre commutative de \mathcal{C}. On pourrait également choisir comme représentant de S la classe de $B_{\text{crys}}^{\text{rig}}[h]$, ou celle de i_{\times}, C_{\times}, x point fermé de x (C_{\times} est un corps perfectoïde de basculement C^+). On en déduit que \mathcal{C} contient également comme sous-algèbres toutes les algèbres à division d’invariant $1/h$, $h \geq 1$ et tous les débassemements de C^+ en caractéristique zéro !

Colmez prouve que C est une sous-algèbre commutative maximale de \mathcal{C} ([35, Prop. 5.30]) et que le centre de \mathcal{C} est réduit à \mathcal{Q}_p ([35, Prop. 9.22]) (27). La question suivante est due à Laurent Fargues.

Question 2.7.18. — La courbe X est-elle, en un sens à préciser, « la variété de Severi-Brauer attachée à l’algèbre à division \mathcal{C} » ?

Remarque 2.7.19. — Si \mathbf{H} est l’algèbre des quaternions de Hamilton, et $X_{\mathbb{R}}$ la variété de Severi-Brauer qui lui correspond (une conique sans point réel), on vérifie que la catégorie $\text{Coh}_{X_{\mathbb{R}}}^{-} / (\text{Coh}_{X_{\mathbb{R}}}^{-})^{\text{tors}} = 0$ a un unique objet simple, dont l’algèbre des endomorphismes est isomorphe à \mathbf{H}. La question précédente va donc dans le sens de l’analogie, mentionnée dans [63] et évoquée dans l’introduction, entre la courbe de Fargues-Fontaine et la forme tordue $X_{\mathbb{R}}$ de la droite projective.

2.8. Cohomologie syntomique et espaces de Banach-Colmez

Jusqu’à la fin du paragraphe 2.8.4, \mathfrak{T} sera un schéma formel propre et lisse sur l’anneau des entiers \mathcal{O}_K d’une extension finie K de \mathbb{Q}_p, de fibre générique rigide T. On notera $\mathfrak{Z} = \mathfrak{T} \otimes_{\mathcal{O}_K} \mathcal{O}_C$ et Z la fibre générique rigide de \mathfrak{Z} (28). **Contrairement à la notation en vigueur dans le reste du texte,** dans les paragraphes 2.8.1 à 2.8.4, ν désignera le morphisme du topos pro-étale de Z vers le topos Zariski de \mathfrak{Z} (en conformité avec [14]). Le morphisme du topos pro-étale de Z vers le topos étale de Z sera quant à lui noté ν', comme dans le reste de ce texte. Si $K^{\bullet}, K'^{\bullet}$ sont des complexes, on notera :

$$[K^{\bullet} \rightarrow K'^{\bullet}] = \text{Cone}(K^{\bullet} \rightarrow K^{\bullet})[-1].$$

27. Peut-on le démontrer plus facilement avec la définition de \mathcal{C} adoptée ci-dessus ?

28. Nous notons \mathfrak{Z} et Z au lieu de X et X comme dans [14], car nous réservons la lettre X à la courbe de Fargues-Fontaine.
2.8.1. Cohomologie syntomique. — Soit A un anneau et $f \in A$, non diviseur de zéro. Les foncteurs décalage ont été introduits pour la première fois dans [13], sur une suggestion de Deligne.

Définition 2.8.1. — Soit $\delta : \mathbb{Z} \to \mathbb{N}$. Si K^\bullet est un complexe de A-modules, on définit un nouveau complexe $\eta_{\delta,f} K^\bullet$ par

$$(\eta_{\delta,f} K^\bullet)^i = \{ x \in f^{\delta(i)} K^j, dx \in f^{\delta(j+1)} K^{j+1} \}.$$

Si $\delta = \text{Id}$, $\eta_{\text{Id},f} K^\bullet$ est simplement $\eta_f K^\bullet$.

Proposition 2.8.2. — Si δ est croissante, $\eta_{\delta,f}$ transforme les quasi-isomorphismes en des quasi-isomorphismes, donc s'étend en un foncteur noté $L\eta_{\delta,f}$ entre catégories dérivées.

Démontstration. — Voir [13, Prop. 8.19].

Nous allons utiliser ces constructions pour fabriquer un complexe calculant la cohomologie syntomique géométrique de \mathcal{T} (pour la définition de laquelle on renvoie à [110] ou [46]). Notons tout d’abord :

$$C_{3,\text{syn}}^* = R\Gamma(\mathcal{T}_{\text{zar}}, L\eta_\mu R\nu_\ast \mathbb{A}_{\text{inf},Z}) \otimes_{\mathbb{A}_{\text{inf}}} B_{\text{cris}}^+.$$

Le Frobenius de $L\eta_\mu R\nu_\ast \mathbb{A}_{\text{inf},Z}$ induit un Frobenius φ sur $C_{3,\text{syn}}^*$. Soit $r \geq 0$. Posons $\delta_r(j) = r - j$ si $0 \leq j \leq r$ et $\delta_r(j) = 0$ sinon. On pose :

$$F^r K_{3,\text{syn}}^* = R\Gamma(Z_{\text{ét}}, L\eta_{\text{rd}+\delta_r,\xi} R\nu_\ast B_{\text{dr}}^+).$$

Il est démontré dans [14, p. 110] que

$$C_{3,\text{syn}}^* \otimes_{B_{\text{cris}}^+} B_{\text{dr}}^+ \simeq R\Gamma(Z_{\text{ét}}, L\eta_\xi R\nu_\ast B_{\text{dr}}^+).$$

D'où une flèche naturelle :

$$F^r K_{3,\text{syn}}^* \to C_{3,\text{syn}}^* \otimes_{B_{\text{cris}}^+} B_{\text{dr}}^+.$$

Définition 2.8.3. — Pour $r \geq 0$, on note $\mathcal{D}_{3,\text{syn}}^*[r]$ le complexe

$$[[C_{3,\text{syn}}^* \xrightarrow{1-F^{-r}\varphi} C_{3,\text{syn}}^*]] \xrightarrow{\alpha} \text{Cone}(F^r K_{3,\text{syn}}^* \to C_{3,\text{syn}}^* \otimes_{B_{\text{cris}}^+} B_{\text{dr}}^+),$$

la flèche α étant définie comme composée des flèches évidentes :

$$[C_{3,\text{syn}}^* \xrightarrow{1-F^{-r}\varphi} C_{3,\text{syn}}^*] \to C_{3,\text{syn}}^* \to C_{3,\text{syn}}^* \otimes_{B_{\text{cris}}^+} B_{\text{dr}}^+ \to \text{Cone}(F^r K_{3,\text{syn}}^* \to C_{3,\text{syn}}^* \otimes_{B_{\text{cris}}^+} B_{\text{dr}}^+).$$

Remarques 2.8.4. — a) On notera que le complexe $\mathcal{D}_{3,\text{syn}}^*[r]$ a un sens sans supposer que \mathcal{Z} provient par extension des scalaires d’un schéma formel sur l’anneau des entiers d’un corps p-adique. En fait nous n’aurons besoin de cette hypothèse que pour la proposition 2.8.6 ci-après (et il est possible que cette hypothèse soit superflue).

b) Il est probable que le complexe $\mathcal{D}_{3,\text{syn}}^*[r]$ puisse se réécrire sous la forme plus simple :

$$[R\Gamma(\mathcal{T}_{\text{zar}}, L\eta_{\delta_r,\xi} R\nu_\ast \mathbb{B}_Z^+) \xrightarrow{1-F^{-r}\varphi} R\Gamma(\mathcal{T}_{\text{zar}}, L\eta_\xi R\nu_\ast \mathbb{B}_Z^+)][-1].$$

Nous espérons revenir sur ce point dans un travail futur.

Pour identifier les groupes de cohomologie $\mathcal{D}_{3,\text{syn}}^*[r]$, nous allons faire appel aux résultats de [14, Ch. 12, Ch. 13]. Notons $\mathcal{Z} = \mathcal{Z} \times \text{Spec}(\mathcal{O}_C/\mathcal{P})$. On note u la projection du site cristallin $(\mathcal{Z}/\mathbb{Z})_{\text{cris}}$ sur le site Zariski \mathcal{Z}_{zar}, qui s’identifie au site Zariski de \mathcal{Z}. On considère le complexe de faisceaux $\mathcal{A}_{\text{cris},Z} := R\nu_\ast \mathcal{O}_{\mathcal{Z}_{\text{cris}}}^\text{cris}(\mathcal{Z}/\mathcal{Z}_{\text{zar}})$ (cf. [46, §12]).

On a le résultat remarquable suivant.
Théorème 2.8.5. — On a un quasi-isomorphisme compatible au Frobenius

\[R\Gamma(\mathfrak{X}_{\text{Zar}}, L\eta_{\mu} R\nu_* \mathcal{A}_{\text{inf},Z}) \otimes_{\mathcal{A}_{\text{inf}}} \mathcal{A}_{\text{cris}} \simeq R\Gamma(\mathfrak{X}_{\text{Zar}}, \mathcal{A}_{\text{cris},Z}). \]

En particulier,

\[H^i(C_{\text{3,syn}}^\bullet) = H^i_{\text{cris}}(\mathcal{X} \times \text{Spec}(\mathcal{O}_c) \mathcal{S} \mathcal{P}(\mathcal{F}_p)) \otimes_{\mathcal{Q}_p} B_{\text{cris}}^+. \]

Démonstration. — Le quasi-isomorphisme est un corollaire de [14, Th. 12.1], qui affirme que

\[L\eta_{\mu} R\nu_* \mathcal{A}_{\text{inf},Z} \otimes L\mathcal{A}_{\text{inf}} \simeq \mathcal{A}_{\text{cris},Z}, \]

et du fait que les groupes de cohomologie sur \(\mathfrak{X} \) de \(L\eta_{\mu} R\nu_* \mathcal{A}_{\text{inf},Z} \) sont des \(\mathcal{A}_{\text{inf}} \)-modules projectifs de rang fini. Il est immédiat en suivant le preuve de [14] que ce quasi-isomorphisme est compatible à l’action de Frobenius.

La deuxième phrase est [14, Prop. 13.9] (et le fait que \(\mathfrak{X} \) est quasi-compact).

Dans l’énoncé suivant, on note encore \(F \) pour \(\lambda^{-1}F \) si \(F \) est un faisceau étale sur \(T \) et \(\lambda \) le morphisme du site étale de \(Z \) vers le site étale de \(X \).

Proposition 2.8.6. — On a pour tout \(r \geq 0 \) un diagramme commutatif :

\[
\begin{array}{ccc}
\mathcal{O}_T \otimes K \xi^s B_{\text{dr}}^+ & \to & \Omega^1_T \otimes K \xi^{-1} B_{\text{dr}}^+ \\
\downarrow & & \downarrow \\
L\eta_{\text{id}} + s, \xi & \to & L\eta_R R\nu_* B_{\text{dr},Z}^+,
\end{array}
\]

les flèches verticales étant des quasi-isomorphismes. En particulier, pour tout \(r \geq 0 \) et tout \(i \geq 0 \),

\[H^i(\text{Cone}(F^r K_{3,\text{syn}}^\bullet \to C_{3,\text{syn}}^\bullet \otimes B_{\text{cris}}^+ B_{\text{dr}}^+)) = (H^i_{\text{dr}}(T) \otimes K B_{\text{dr}}^+)/\text{Fil}^r. \]

Démonstration. — Le lemme de Poincaré 2.3.15 et la proposition 2.3.16 donnent comme on l’a vu dans la section 2.3 un quasi-isomorphisme

\[R\nu_* B_{\text{dr}}^+ = \mathcal{O}_T \otimes K B_{\text{dr}}^+ \to \Omega^1_T \otimes K \xi^{-1} B_{\text{dr}}^+ \to \cdots \to \Omega^n_T \otimes K \xi^{-n} B_{\text{dr}}^+ \]

(obtenue en appliquant \(R\nu_* \) à la résolution fournie par le lemme de Poincaré), la différentielle en degré \(i \) du membre de droite étant la différentielle usuelle du complexe de de Rham de \(T \) en degré \(i \). On a donc

\[L\eta_R R\nu_* B_{\text{dr}}^+ \simeq \Omega^1_T \otimes K B_{\text{dr}}^+. \]

Le raisonnement est analogue pour \(L\eta_{\text{id}} + s, \xi \).

L’énoncé suivant dit que le complexe \(\mathcal{D}_{3,\text{syn}}^\bullet \{r\} \) a effectivement pour groupes de cohomologie les groupes de cohomologie syntomique géométrique de \(\mathfrak{X} \).

Théorème 2.8.7. — On reprend les notations de la proposition précédente. Pour tout \(i \geq 0 \),

\[H^i(\mathcal{D}_{3,\text{syn}}^\bullet \{r\}) = H^i_{\text{syn}}(\mathfrak{X}, r[1/p]). \]

Démonstration. — C’est une conséquence directe de la définition de \(\mathcal{D}_{3,\text{syn}}^\bullet \{r\} \), de ce qui précède et de [110, Eq. (45)].

Remarque 2.8.8. — Plutôt que d’utiliser cette définition indirecte de la cohomologie syntomique, i.e. les résultats de [110], on pourrait essayer de comparer directement \(\mathcal{D}_{3,\text{syn}}^\bullet \{r\} \) et le complexe syntomique de Fontaine-Messing. Cela demanderait de comparer \(R\Gamma(\mathfrak{X}_{\text{Zar}}, L\eta_{\mu}, \xi \eta_{\mu} R\nu_* \mathcal{A}_{\text{inf},Z}) \otimes_{\mathcal{A}_{\text{inf}}} \mathcal{A}_{\text{cris}} \) avec le poussé en avant sur le site Zariski \(R\nu_* \mathcal{F}_{Z/\mathcal{A}_{\text{cris}}} \) (où \(\mathcal{F}_{Z/\mathcal{A}_{\text{cris}}} \) est le faisceau introduit dans [74]). C’est peut-être possible en reprenant les techniques du chapitre 8 de [13].
2.8.2. Cohomologie étale. — Posons cette fois-ci
\[\mathcal{K}_{3, \text{ét}}^r = R\Gamma(\mathcal{Z}_{\text{Zar}}, R\nu_\xi^* \mathcal{A}_{\text{inf}, \mathbb{Z}}) \otimes_{\mathcal{A}_{\text{inf}}} B = R\Gamma(Z, \mathcal{A}_{\text{inf}, \mathbb{Z}}) \otimes_{\mathcal{A}_{\text{inf}}} B. \]
Il s’agit d’un complexe de \(B \)-modules. Le Frobenius est le Frobenius induit par celui de \(\mathcal{A}_{\text{inf}, \mathbb{Z}} \). Pour \(r \geq 0 \), on pose
\[F^r \mathcal{K}_{3, \text{ét}}^r = R\Gamma(\mathcal{Z}_{\text{Zar}}, R\nu_\xi^* \mathcal{A}_{\text{inf}, \mathbb{Z}}) \otimes_{\mathcal{A}_{\text{inf}}} B_{\text{dR}}^+ = R\Gamma(Z, \xi^* \mathcal{A}_{\text{inf}, \mathbb{Z}}) \otimes_{\mathcal{A}_{\text{inf}}} B_{\text{dR}}^+. \]

Définition 2.8.9. — Pour \(r \geq 0 \), on note :
\[D_{3, \text{ét}}^r \{ r \} = [\mathcal{K}_{3, \text{ét}}^r \leftarrow 1^{-p} \mathcal{K}_{3, \text{ét}}^r] \to \text{Cone}(F^r \mathcal{K}_{3, \text{ét}}^r \to \mathcal{K}_{3, \text{ét}}^r \otimes_{\mathcal{A}} B_{\text{dR}}^+). \]
D’après [14, Th. 5.6] (conséquence du théorème de comparaison de Scholze de [129]), l’inclusion \(\mathcal{A}_{\text{inf}} \to \mathcal{A}_{\text{inf}, \mathbb{Z}} \) induit un presque quasi-isomorphisme :
\[R\Gamma(Z, \mathbb{Z}_p) \otimes_{\mathbb{Z}_p} A_{\text{inf}} \to R\Gamma(Z, \mathcal{A}_{\text{inf}, \mathbb{Z}}) \]
dont le cône est annulé par \(W(\mathfrak{m}_{\mathbb{C}^\times}) \). Par conséquent, on a un quasi-isomorphisme
\[\mathcal{K}_{3, \text{ét}}^r \simeq R\Gamma(Z, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} B. \]
De même, on obtient
\[F^r \mathcal{K}_{3, \text{ét}}^r \simeq R\Gamma(Z, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} \text{Fil}^r B_{\text{dR}}^+. \]
Ceci et la suite exacte
\[0 \to \mathbb{Q}_p \to B_{\mathfrak{p}}^r = B_{\text{dR}}^r / \text{Fil}^r \to 0, \]
montrent la

Proposition 2.8.10. — Pour tout \(r \geq 0 \) et \(i \geq 0 \),
\[H^i(D_{3, \text{ét}}^r \{ r \}) = H^i_{\text{ét}}(Z, \mathbb{Q}_p). \]

2.8.3. Interprétation en termes de la courbe de Fargues-Fontaine. — Nizioł montre dans [111] que les groupes de cohomologie syntomique sont les \(C \)-points d’espaces de Banach-Colmez. On peut essayer d’interpréter ce résultat à l’aide de la courbe de Fargues-Fontaine ; nous proposons dans ce paragraphe une construction simple, mais qui ne convient qu’en petits degrés.

Construction 2.8.11. — Soit \((\mathcal{K}^*, \varphi) \) un complexe de \(\varphi \)-modules projectifs de rang fini sur \(B \). Soit \(\mathcal{K}^* \) un complexe de \(B_{\text{dR}}^+ \)-modules libres de rang fini et \(f : \mathcal{K}^* \to \mathcal{K}^* \otimes_{B_{\text{cris}}} B_{\text{dR}}^+ \) un morphisme de complexes de \(B_{\text{dR}}^+ \)-modules, qui soit un isomorphisme après inversion de \(\xi \). La donnée \((\mathcal{K}^*, \varphi, \mathcal{K}^*) \) détermine un complexe de faisceaux cohérents \(\mathcal{F}(\mathcal{K}^*, \varphi, \mathcal{K}^*) \) sur \(X \).

Démonstration. — Le complexes \((\mathcal{K}^*, \varphi) \) de \(\varphi \)-modules projectifs de rang fini sur \(B \) détermine un complexe \(\mathcal{E}(\mathcal{K}^*, \varphi) \) de fibrés vectoriels sur \(X \). Le cône du morphisme \(f \) correspond quant à lui à un complexe de faisceaux cohérents de torsion supportés au point à l’infini et on a un morphisme du complexe \(\mathcal{E}(\mathcal{K}^*, \varphi) \) vers ce complexe de faisceaux de torsion, correspondant à la composée
\[[\mathcal{K}^* \leftarrow 1^{-\varphi} \mathcal{K}^*] \to \mathcal{K}^* \to \mathcal{K}^* \otimes_{B} B_{\text{dR}}^+ \to \text{Cone}(\mathcal{K}^* \leftarrow \mathcal{K}^* \otimes_{B} B_{\text{dR}}^+). \]
On définit alors \(\mathcal{F}(\mathcal{K}^*, \varphi, \text{Fil}) \) comme le cône de ce morphisme, décalé de \(-1\).

Remarque 2.8.12. — Soit \((\mathcal{K}^*, \varphi) \) un complexe de \(\varphi \)-modules projectifs de rang fini sur \(B \). A ce complexe correspond un complexe de fibrés vectoriels \(\mathcal{E}(\mathcal{K}^*, \varphi) \) sur la courbe de Fargues-Fontaine. Soit \((\mathcal{C}^*, \varphi) \) le complexe de \(\varphi \)-modules projectifs de rang fini sur \(B_{\text{cris}}^+ \) correspondant à \((\mathcal{K}^*, \varphi) \) par l’équivalence entre \(\varphi \)-modules projectifs de rang fini sur \(B \) et sur \(B_{\text{cris}}^+ \). En particulier, \(\mathcal{K}^* \otimes_{B} B_{\text{dR}}^+ \simeq \mathcal{C}^* \otimes_{B_{\text{cris}}} B_{\text{dR}}^+ \). Soit \(\mathcal{K}^* \) un complexe de \(B_{\text{dR}}^+ \)-modules libres de rang fini et \(f : \mathcal{K}^* \to \mathcal{K}^* \otimes_{B_{\text{cris}}} B_{\text{dR}}^+ \) un morphisme de complexes de \(B_{\text{dR}}^+ \)-modules, qui soit
un isomorphisme après inversion de ξ. Le cône du morphisme f correspond à un complexe de faisceaux de torsion supportés au point à l’infini. On a un morphisme de $\mathcal{E}(\mathbb{K}^\bullet, \varphi)$ vers ce complexe, correspondant à la composée :

$$\mathbb{K}^\bullet \rightarrow \mathbb{K}^\bullet \otimes_{B_{\text{cris}}} B_{\text{dR}}^+ \rightarrow \text{Cone}(\mathbb{K}^\bullet \xrightarrow{f} \mathbb{K}^\bullet \otimes_{B_{\text{cris}}} B_{\text{dR}}^+).$$

On note $\mathcal{F}(\mathbb{K}^\bullet, \varphi, \text{Fil})$ le cône de ce morphisme, décalé de -1. Ce complexe de faisceaux cohérents $\mathcal{F}(\mathbb{K}^\bullet, \varphi, \mathbb{K}^\bullet)$ a pour i-ème groupe d’hypercohomologie sur X le i-ème groupe de cohomologie du cône :

$$\mathcal{D}^i := [\{\mathbb{C}^{i-\xi} \rightarrow \text{Cone}(\mathbb{K}^\bullet \rightarrow \mathbb{C}^\bullet \otimes_{B_{\text{cris}}} B_{\text{dR}}^+)\}],$$

si l’on suppose que le faisceau $H_{i-1}^-(\mathcal{E}(\mathbb{K}^\bullet, \varphi))$ est à pentes ≥ 0. Notons γ_i la flèche :

$$\gamma_i : H^i([\mathbb{C}^{i-\xi} \rightarrow \mathbb{C}^\bullet]) \rightarrow H^i(\text{Cone}(\mathbb{K}^\bullet \rightarrow \mathbb{C}^\bullet \otimes_{B_{\text{cris}}} B_{\text{dR}}^+)).$$

Alors $H^i(\mathcal{D}^s)$ est une extension

$$0 \rightarrow \text{Coker}(\gamma_{i-1}) \rightarrow H^i(\mathcal{D}^s) \rightarrow \text{Ker}(\gamma_i) \rightarrow 0.$$

Or pour tout i,

$$H^i([\mathbb{C}^{i-\xi} \rightarrow \mathbb{C}^\bullet]) = H^i(\mathbb{C}^\bullet)^{\varphi=1} = H^0(X, H^i(\mathcal{E}(\mathbb{K}^\bullet, \varphi))).$$

La première égalité vient du fait que si D est un isocristal, le conoyau de $1 - \varphi$ sur $D \otimes_{\mathbb{Q}_p} B_{\text{cris}}$ est nul; la seconde du fait que les φ-invariants d’un φ-module sur B et du φ-module sur B_{cris} qui lui correspond sont les mêmes. On en déduit que

$$\text{Ker}(\gamma_i) = \text{Ker}(H^0(X, H^i(\mathcal{E}(\mathbb{K}^\bullet, \varphi)))) \rightarrow H^0(X, H^i(\text{Cone}(\mathbb{K}^\bullet \rightarrow \mathbb{C}^\bullet \otimes_{B_{\text{cris}}} B_{\text{dR}}^+))))$$

$$= H^0(X, H^i(\mathcal{F}(\mathbb{K}^\bullet, \varphi, \mathbb{K}^\bullet)))$$

et que

$$\text{Coker}(\gamma_{i-1}) = \text{Coker}(H^0(X, H_{i-1}^-(\text{Cone}(\mathbb{K}^\bullet \rightarrow \mathbb{C}^\bullet \otimes_{B_{\text{cris}}} B_{\text{dR}}^+)))) \rightarrow H^0(X, H_{i-1}^-(\mathcal{E}(\mathbb{C}^\bullet, \varphi))))$$

$$= H^1(X, H_{i-1}^-(\mathcal{F}(\mathbb{K}^\bullet, \varphi, \mathbb{K}^\bullet))),$$

puisque par hypothèse $H_{i-1}^-(\mathcal{E}(\mathbb{K}^\bullet, \varphi))$ est à pentes ≥ 0, donc n’a pas de H^1 sur la courbe.

Proposition 2.8.13. — Le complexe $\mathcal{C}^\bullet_{3, \text{syn}}$ est quasi-isomorphe, avec son Frobenius, à un complexe de φ-modules projectifs de rang fini sur B_{dR}^+. Pour chaque $r \geq 0$, $F^r\mathcal{K}^\bullet_{3, \text{syn}}$ est quasi-isomorphe à un complexe de B_{dR}^+-modules libres de rang fini.

Démonstration. — En effet, le théorème 2.8.5 montre que le complexe $\mathcal{C}^\bullet_{3, \text{syn}}$ est quasi-isomorphe au complexe $R\Gamma(3 \times \text{Spf}(\mathcal{O}_C) \text{Spec}(\mathbb{F}_p)) \otimes_{\mathbb{Q}_p} B_{\text{cris}}$, et le complexe $R\Gamma(3 \times \text{Spf}(\mathcal{O}_C) \text{Spec}(\mathbb{F}_p))$ est isomorphe à la somme de ses groupes de cohomologie (car la catégorie des isocristaux φ – Mod$_{\mathbb{Q}_p}$ est semi-simple), qui sont de dimension finie. On raisonne de même pour $F^r\mathcal{K}^\bullet_{3, \text{syn}}$ à l’aide de la proposition 2.8.6 (en utilisant cette fois-ci qu’un complexe d’espaces vectoriels sur un corps est automatiquement scindé).

Le complexe $\mathcal{C}^\bullet_{3, \text{syn}}$ correspond par l’équivalence entre φ-modules projectifs de rang fini sur B et sur B_{cris} à un complexe $\mathcal{K}^\bullet_{3, \text{syn}}$ de φ-modules projectifs de rang fini sur B, qui est simplement $R\Gamma(3 \times \text{Spf}(\mathcal{O}_C) \text{Spec}(\mathbb{F}_p)) \otimes_{\mathbb{Q}_p} B$.

Remarque 2.8.14. — Cette remarque fait suite à la remarque 2.8.4. On peut se demander comment décrire directement le complexe $(\mathcal{K}^\bullet_{3, \text{syn}}, \varphi)$. Le candidat évident est :

$$R\Gamma(\mathbb{Z}_{\text{zar}}, L\eta_R \mu_r \mathbb{B}_Z).$$

Pour vérifier que ce choix convient, il faudrait montrer que

$$R\Gamma(\mathbb{Z}_{\text{zar}}, L\eta_R \mu_r \mathbb{B}_Z^+) \otimes_{B_{\text{cris}}} B_{\text{cris}} \simeq R\Gamma(\mathbb{Z}_{\text{zar}}, L\eta_R \mu_r \mathbb{A}_{\text{inf}, Z}) \otimes_{\mathbb{A}_{\text{inf}}} B_{\text{cris}}^+.$$
C’est probablement possible en adaptant les méthodes de [14, Ch. 12], mais nous ne l’avons pas fait. Une telle formulation serait plus naturelle et éviterait quelques contorsions.

Noter que c’est t et non μ qu’il faut mettre quand on est au-dessus de B (ou B^+) au lieu de B^\dagger_{cris} si l’on veut que le Frobenius soit un quasi-isomorphisme (puisque $\varphi(t) = pt$ et que p est inversé). Bien sûr sur B^\dagger_{cris}, on peut utiliser t ou μ indifféremment puisqu’ils diffèrent par une unité (et même une unité de A_{cris}).

Définition 2.8.15. — Pour $r \geq 0$, on note $F_3^r\{r\}$ le complexe de faisceaux cohérents sur la courbe obtenu en appliquant la construction 2.8.11 au triplet $(K_{3, syn}^r, p^{-r}\varphi, F^rK_{3, syn}^r)$.

Remarque 2.8.16. — De p à Z est finalement à pentes positives. On peut donc appliquer la remarque 2.8.12.

Corollaire 2.8.18. — Existe-t-il un complexe de faisceaux étales naturels sur $H_{cris}^i(X, F_3^r\{r\}) = H^i(D^\bullet_{3, syn}^r\{r\}) = H^i_{syn}(\mathcal{O}_X, r)[1/p]$.

Démonstration. — Notons que $H^i(\mathcal{E}(K_{3, syn}^r, p^{-r}\varphi))$ est le fibré $\mathcal{E}(H_{cris}^i,(\mathcal{O}_X \times\text{Spec}(\mathcal{O}_C) \text{ Spec}(\mathcal{F}_p))) \otimes \mathcal{O}(r)$, d’après le théorème 2.8.5 et [14, Prop. 13.9], déjà cité plus haut. On sait que l’isocréal $H_{cris}^i(\mathcal{O}_X \times\text{Spec}(\mathcal{O}_C) \text{ Spec}(\mathcal{F}_p))$ est à pentes entre 0 et i (cf. [31, Th. 3.1.2]), i.e. que le fibré correspondant sur la courbe est à pentes entre $-i$ et 0. Comme $i \leq r$, $H^i(\mathcal{E}(K_{3, syn}^r, p^{-r}\varphi))$ est finiment à pentes positives. On peut donc appliquer la remarque 2.8.12.

Corollaire 2.8.18. — Pour tout $r \geq 0$ et tout $i \geq 0$, le groupe de cohomologie syntomique $H_{cris}^i(\mathcal{O}_X, r)[1/p]$ est naturellement l’espace des C-points d’un espace de Banach-Colmez^{29}.

Malheureusement, cette construction ne dit rien sur ce qui se passe en degré plus grand que r et elle ne convient certainement plus en ces degrés, cf. [111, Rem. 3.2]. Le problème vient exactement du contenu de la remarque 2.8.12, c’est-à-dire du fait que l’équivalence entre φ-modules sur B et sur B^\dagger_{cris} n’est pas exacte.

Question 2.8.19. — Existe-t-il une façon naturelle d’associer à \mathfrak{F} un complexe de faisceaux cohérents sur la courbe de Fargues-Fontaine dont les groupes de cohomologie sur X soient les $H_{syn}^i(\mathcal{O}_X, r)[1/p]$?

Dans ce sens, et étant plus optimiste encore, on peut se poser la question suivante.

Question 2.8.20. — Notons X_Z le diamant :

$$X_Z := (Z^\circ \times \text{Spa}(\mathcal{O}_p)^\circ)/\varphi^Z.$$

On a un morphisme de projection $p : X_Z \to Z^\circ$ ainsi qu’un morphisme $p' : X_Z \to X$. Existe-t-il un complexe de faisceaux étales naturels sur X_Z dont le poussé en avant le long de $sp \circ p$ (sp désignant le morphisme de spécialisation du site étale de Z vers le site Zariski de \mathfrak{F}) soit le complexe de faisceaux syntomiques $S(r)$ sur \mathfrak{F} et dont le poussé en avant le long de p' soit le complexe de faisceaux cohérents de la question précédente ?

Remarque 2.8.21. — Au lieu de se restreindre à l’espace $Y = \text{Spa}(A_{inf}, A_{inf})\backslash V(p[p^\infty])$, comme on vient de le faire dans ce paragraphe, on peut regarder ce qui se passe « au bord »

29. Comme on le verra plus bas, c’est un \mathcal{Q}_p-espace vectoriel de dimension finie sous l’hypothèse $i \leq r$: ce n’est donc pas un Banach-Colmez très intéressant !
de \(\text{Spa}(A_{\inf}, A_{\inf}) \), c’est-à-dire au voisinage des diviseurs \([p^j] = 0\) et \(p = 0\). En d’autres termes, on peut considérer le complexe

\[
[\mathcal{R}^i(\mathcal{F}, L\eta_{\text{id}+\delta, \xi} \cdot \mathcal{L} \cdot L\bar{n}_{\eta^{-1}(\mu)} \cdot R\nu_{\ast} \cdot A_{\inf}, Z) \otimes A_{\inf} \cdot A_{\text{crys}}]^{1-\xi^r \phi} \xrightarrow{\mathcal{R}^i(\mathcal{F}, L\eta_{\mu} \cdot R\nu_{\ast} \cdot A_{\inf}, Z) \otimes A_{\inf} \cdot A_{\text{crys}}}]
\]

avec \(\xi = \varphi(\xi) \). Sa cohomologie devrait être la cohomologie syntomique géométrique de \(\Sigma \) (sans inversion de \(p\)). On peut penser, vu [14, Th. 14.1] et [16, Prop. 2.8, Cor. 4.6], que quand on fait le changement de base \(A_{\text{crys}} \rightarrow W(k) \), le complexe obtenu est quasi-isomorphe au faisceau \(\delta_{\text{inf}, 4}(r) \) des formes différentielles logarithmiques de Milne [107]. À quoi s’attendre quand on fait le changement de base \(A_{\inf} \rightarrow \mathcal{O}_{\mathcal{C}_0} \)?

2.8.4. Comparaison étale-syntomique. — Définissons tout d’abord l’analogue étale de \(\mathcal{F}_3 \).

Définition 2.8.22. — On définit \(\mathcal{G}_3 \{r\} \) comme le complexe de faisceaux sur \(X \) obtenu en appliquant la construction 2.8.11 à \((\mathcal{K}_{3, \text{et}}, B_{\text{crys}} \cdot \varphi, F^r \mathcal{K}_{3, \text{et}}^+)\).

L’avantage des constructions des paragraphes précédents est qu’elles permettent de donner une preuve économique du théorème de comparaison syntomique-étale, dans le cas de bonne réduction (30).

Théorème 2.8.23. — Pour tout \(r \geq 0 \) et tout \(i \leq r \), la flèche naturelle \(\mathcal{F}_3 \{r\} \rightarrow \mathcal{G}_3 \{r\} \) induit une flèche en degré cohomologique \(i \)

\[
H_{\text{syn}}^i(\Sigma_{\mathcal{O}_k}, r) \{[1/p]\} \rightarrow H_{\text{et}}^i(Z, Q_p),
\]

qui est un isomorphisme.

Démonstration. — Observons tout d’abord que les deux complexes \(\mathcal{F}_3 \{r\} \) et \(\mathcal{G}_3 \{r\} \) sont quasi-isomorphes sur \(X \{\infty\} \) par construction. En effet,

\[
\mathcal{K}_{3, \text{et}}^+ \otimes_B B[1/t] \simeq \mathcal{K}_{3, \text{syn}}^+ \otimes_B B[1/t].
\]

Pour le voir, notons que comme \(t \) et \(\mu \) diffèrent par une unité de \(B_{\text{crys}}^+ \), on a

\[
\mathcal{R}^i(\mathcal{F}_{\text{Zar}}, L\eta_{\mu} \cdot R\nu_{\ast} \cdot A_{\inf}, Z) \otimes A_{\inf} \cdot B_{\text{crys}} = \mathcal{R}^i(\mathcal{F}_{\text{Zar}}, L\eta_{\mu} \cdot R\nu_{\ast} \cdot A_{\inf}, Z[1/\mu]) \otimes A_{\inf} \cdot B_{\text{crys}}
\]

\[
\simeq \mathcal{R}^i(\mathcal{F}_{\text{Zar}}, R\nu_{\ast} \cdot A_{\inf}, Z) \otimes A_{\inf} \cdot B_{\text{crys}}[1/t],
\]

(on a utilisé la quasi-compacité de \(\mathcal{F} \) pour la première égalité). On reconnaît à gauche le changement de base à \(B_{\text{crys}} \) du complexe de \(\varphi \)-modules sur \(B_{\text{crys}}^+ \), correspondant à \(\mathcal{K}_{3, \text{syn}}^+ \), à droite celui correspondant à \(\mathcal{K}_{3, \text{et}}^+ \).

Il suffit donc de montrer que la flèche induite entre les tronqués \(\tau_{\leq r} \cdot \mathcal{F}_3 \{r\} \otimes B_{\text{dr}}^+ \) et \(\tau_{\leq r} \cdot \mathcal{G}_3 \{r\} \otimes B_{\text{dr}}^+ \) est un quasi-isomorphisme, c’est-à-dire par définition de ces complexes de montrer que la flèche naturelle de \(\tau_{\leq r} \cdot F^r \mathcal{K}_{3, \text{syn}}^+ \) vers \(\tau_{\leq r} \cdot F^r \mathcal{K}_{3, \text{et}}^+ \) est un quasi-isomorphisme.

D’une part, on a vu (cf. la preuve de la proposition 2.8.6) que :

\[
R\nu_{\ast} \cdot \mathcal{L} \cdot L\bar{n}_{\eta^{-1}(\mu)} \cdot R\nu_{\ast} \cdot B_{\text{dr}}^+ = \mathcal{O}_{\mathcal{T}} \otimes_{\mathcal{K}} \mathcal{L} \cdot B_{\text{dr}}^+ \rightarrow \mathcal{O}_{\mathcal{T}} \otimes_{\mathcal{K}} \mathcal{L} \cdot \mathcal{L} \cdot B_{\text{dr}}^+ \rightarrow \cdots \rightarrow \mathcal{O}_{\mathcal{T}} \otimes_{\mathcal{K}} \mathcal{L} \cdot \mathcal{L} \cdot \mathcal{L} \cdot B_{\text{dr}}^+,
\]

avec pour différentielle en degré \(i \) la différentielle du complexe de de Rham.

D’autre part, d’après la proposition 2.8.6, on a un quasi-isomorphisme

\[
L\eta_{\text{id}+\delta, \xi} \cdot R\nu_{\ast} \cdot B_{\text{dr}}^+ = \mathcal{O}_{\mathcal{T}} \otimes_{\mathcal{K}} \mathcal{L} \cdot \mathcal{L} \cdot \mathcal{L} \cdot \mathcal{L} \cdot B_{\text{dr}}^+ \rightarrow \cdots \rightarrow \mathcal{O}_{\mathcal{T}} \otimes_{\mathcal{K}} \mathcal{L} \cdot \mathcal{L} \cdot \mathcal{L} \cdot B_{\text{dr}}^+ \rightarrow \cdots \rightarrow \mathcal{O}_{\mathcal{T}} \otimes_{\mathcal{K}} \mathcal{L} \cdot \mathcal{L} \cdot \mathcal{L} \cdot B_{\text{dr}}^+.
\]

D’où le résultat.

Remarque 2.8.24. — On pourrait vérifier comme dans [46, §4.7] que la flèche considérée est la même que l’application des périodes de Fontaine-Messing.

30. Preuve qui est en substance la même que celle de [46], mais formulée dans le langage de [14].
2.8.5. Remarques finales : cohomologie étale et symtomique des affinoïdes surconvergents. — Terminons ce texte en revenant sur les résultats de la section 2.3 et le lien avec [44].

Soit $Z = \operatorname{Spa}(R, R^+)$ un espace affinoïde défini sur un corps K. Dans ce qui suit, I désigne un sous-intervalle compact de $[0,1]$ à extrémités rationnelles.

Définition 2.8.25. — On appelle *présentation surconvergente* de R un morphisme d'algèbres continu et surjectif $\lambda : K(T) \to R$ dont le noyau soit engendré par des éléments surconvergents$^{(31)}$.

L’existence d’une présentation surconvergente lorsque Z est lisse est garantie par [56, Th. 7]. Lorsque Z est de plus de dimension 1 et que l’on s’autorise à étendre les scalaires, on peut être plus précis.

Proposition 2.8.26. — Tout affinoïde lisse de dimension 1 sur C peut être obtenu en retirant un nombre fini de disques ouverts à une courbe propre et lisse. En particulier, tout affinoïde lisse de dimension 1 sur C admet une présentation surconvergente.

Démonstration. — Voir [147, Th. 2.1]. Si Z' est une courbe propre et lisse, telle que $D = Z' \setminus Z$ soit une union finie de disques ouverts $D_i(r_i)$, $i = 1,..., m$, de rayons r_i, on obtient une présentation surconvergente de Z en écrivant Z comme l’intersection des $Z_n = Z \setminus \bigcup_{i=1}^{m} D_i(r_i - 1/n)$, pour n assez grand, d’où la deuxième phrase.

Soit Z un affinoïde lisse de dimension 1 sur C, que l’on écrit comme complémentaire d’un nombre fini de disques ouverts dans une courbe propre et lisse. Soit λ la présentation surconvergente qui s’en déduit. On pose :

$$\Gamma(Z, \mathcal{B}_{I}[1/t])^\dagger = \lim_{r \to 0} \Gamma(\operatorname{Spa}(C[p' T]/\operatorname{Ker}(\lambda) \cap C[p' T]), \mathcal{B}_{I}[1/t]).$$

Remarque 2.8.27. — Il faut prendre garde au fait que, contrairement à ce que suggère la notation (que l’on a voulu garder raisonnable), les complexes ainsi définis dépendent a priori de la présentation surconvergente choisie. Il serait intéressant de montrer qu’ils n’en dépendent pas. Nous ne savons le faire que localement, en imitant les méthodes de [147].

Théorème 2.8.28. — Soit Z un espace affinoïde lisse de dimension 1 sur une extension finie K de \mathbb{Q}_p ; on suppose fixée une présentation surconvergente de Z_C comme ci-dessus. Pour tout $i \geq 0$, $H^i(Z_C, \mathcal{B}_{I}[1/t])^\dagger$ est un $B[1/t]$-module libre de rang fini, nul si $i > 2$.

Démonstration. — Il faut montrer que pour chaque i, $H^i(Z_C, \mathcal{B}_{I}[1/t])^\dagger$ est un $B[1/t]$-module projectif de rang fini, c’est-à-dire de type fini et sans torsion, puisque $B[1/t]$ est principal ([66, Th. 2.5.1]), et nul si $i > 2$.

Supposons que l’on sache que $H^i(Z_C, \mathcal{B}_{I}[1/t])^\dagger$ est un $B[1/t]$-module projectif de type fini pour tout I. Alors le système projectif des $H^i(Z_C, \mathcal{B}_{I}[1/t])^\dagger$, pour i variant, avec son Frobenius correspond à un faisceau cohérent sur $X \setminus \{\infty\}$, dont la partie de torsion est supportée par un ensemble fini de points de $X \setminus \{\infty\}$, stable par \mathcal{G}_K, donc vide, d’après [66, Prop. 10.1.1]. Il suffit donc de montrer que pour tout i et tout I, $H^i(Z_C, \mathcal{B}_{I}[1/t])^\dagger$ est un $B[1/t]$-module de type fini, nul pour $i > 2$.

Par hypothèse, on s’est donné une courbe propre et lisse Z' sur C, des disques ouverts $D_i(r_i)$, $i = 1,..., m$, de rayons r_i, dans Z', telle que Z_C s’identifie à $Z' \setminus D$, avec $D = \bigcup_{i=1}^{m} D_i(r_i)$ et ce choix a déterminé la présentation surconvergente de Z_C. Pour chaque n assez grand, la

$^{(31)}$ On a noté comme d’habitude T pour T_1,\ldots, T_n, $n = \dim R$.

suite exacte d’incision-excision pour le recouvrement \((\cup_{i=1}^m D_i(r_i - 1/n), Z_n)\) de \(Z'\) (où l’on a noté \(Z_n = Z' \setminus \cup_{i=1}^m D_i(r_i - 1/n)\)) s’écrit

\[
R\Gamma_{Z_n}(Z', \mathcal{B}_I[1/t]) \to R\Gamma(Z', \mathcal{B}_I[1/t]) \to \bigoplus_{i=1}^m R\Gamma(D_i(r_i - 1/n), \mathcal{B}_I[1/t])^\perp,
\]
d’où en prenant la limite sur \(n\) :

\[
\lim_{n \to \infty} R\Gamma_{Z_n}(Z', \mathcal{B}_I[1/t]) \to R\Gamma(Z', \mathcal{B}_I[1/t]) \to \bigoplus_{i=1}^m R\Gamma(D_i(r_i), \mathcal{B}_I[1/t])^\perp.
\]

Or, on a

\[
R\Gamma_{Z_n}(Z', \mathcal{B}_I[1/t]) \simeq R\Gamma_{Z_k}(Z_k, \mathcal{B}_I[1/t]),
\]
si \(n > k\). Fixons \(k\). On a donc aussi un triangle distingué

\[
R\Gamma_{Z_k}(Z', \mathcal{B}_I[1/t]) \to R\Gamma(Z_k, \mathcal{B}_I[1/t]) \to \bigoplus_{i=1}^m R\Gamma(C_i(r_i - 1/k, r_i - 1/n), \mathcal{B}_I[1/t])^\perp,
\]
ci désignant la couronne de rayons \(r_i - 1/k\) et \(r_i - 1/n\), ouverte en \(r_i - 1/n\) et fermée en \(r_i - 1/k\). Ce triangle donne en passant à la limite sur \(n\) un triangle distingué :

\[
\lim_{n \to \infty} R\Gamma_{Z_k}(Z', \mathcal{B}_I[1/t]) \to R\Gamma(Z_k, \mathcal{B}_I[1/t]) \to \bigoplus_{i=1}^m R\Gamma(C_i(r_i - 1/k, r_i), \mathcal{B}_I[1/t])^\perp,
\]
puis en passant à la limite sur \(k\) :

\[
\lim_{k \to 0} \lim_{n \to \infty} R\Gamma_{Z_k}(Z', \mathcal{B}_I[1/t]) \to R\Gamma(Z_k, \mathcal{B}_I[1/t])^\perp \to \bigoplus_{i=1}^m \lim_{k \to 0} \lim_{n \to \infty} R\Gamma(C_i(r_i - 1/k, r_i), \mathcal{B}_I[1/t])^\perp,
\]
par définition de \(R\Gamma(Z_k, \mathcal{B}_I[1/t])^\perp\). On peut bien sûr réécrire ce triangle sous la forme :

\[
\lim_{n \to \infty} R\Gamma_{Z_k}(Z', \mathcal{B}_I[1/t]) \to R\Gamma(Z_k, \mathcal{B}_I[1/t])^\perp \to \bigoplus_{i=1}^m \lim_{k \to 0} \lim_{n \to \infty} R\Gamma(C_i(r_i - 1/k, r_i), \mathcal{B}_I[1/t])^\perp,
\]

\(C_i(r_i - 1/k, r_i)\) désignant la couronne ouverte de rayons \(r_i - 1/k\) et \(r_i\).

De cette discussion, l’on déduit que pour montrer que si \(Z\) est affinoïde, les groupes de cohomologie \(H^i(Z_C, \mathcal{B}_I[1/t])^\perp\) sont des \(B_I[1/t]\)-modules de type fini, il suffit de calculer les groupes de cohomologie surconvergents de \(\mathcal{B}_I[1/t]\) pour un disque ouvert et une couronne ouverte et de montrer qu’ils sont de type fini pour une courbe propre et lisse. Le fait que les \(H^i(Z_C, \mathcal{B}_I[1/t])^\perp\) soient nuls pour \(i > 2\) se déduit via les triangles distingués ci-dessus, du résultat analogue pour les variétés propres et lisses et les couronnes ouvertes et de l’annulation de la cohomologie des disques ouverts en degré > 1.

Pour les disques et les couronnes, c’est un conséquence des corollaires 2.3.29 et 2.3.30. Il reste à traiter le cas d’une courbe propre et lisse.

Proposition 2.8.29. — Soit \(Z'\) une variété propre et lisse sur \(C\) de dimension \(n\). Pour tout \(i\), \(H^i(Z', \mathcal{B}_I[1/t])\) est un \(B_I[1/t]\)-module de type fini, nul si \(i > 2n\).

Démonstration. — Il suffit bien sûr de montrer que les \(H^i(Z', \mathcal{B}_I)\) sont des \(B_I\)-modules de type fini. On le fait « à la Cartan-Serre » : c’est [92, Th. 8.1] (dans les notations de loc. cit., \(\mathcal{B}_I\) corespond à \(C^{[k]}\)...).

Ceci conclut la preuve du théorème 2.8.28.

Remarque 2.8.30. — Il serait évidemment bien plus intéressant de montrer que, sous les hypothèses du théorème 2.8.28, pour chaque \(i = 0, 1, 2\), le groupe \(H^i(Z_{C, ét}, L\eta')\) est indépendant du choix d’une présentation surconvergente et est un \(B\)-module projectif de rang fini. Cela permettrait d’associer canoniquement à tout affinoïde lisse \(Z\) de dimension 1 sur un corps \(p\)-adique et à chaque \(i = 0, 1, 2\), un isocristal \(D_{i, Z}\) : en effet, \(H^i(Z_{C, ét}, L\eta' R\nu' \mathcal{B})^\perp\) correspond alors un fibré vectoriel \(ϕ\)-équivalent sur \(Y\) et donne donc naissance à un fibré...
vectoriel sur X, qui est de la forme $\mathcal{E}(D_{i,Z})$ pour un certain isocréal $D_{i,Z}$, en vertu du théorème 2.5.2.

Sous l'hypothèse qu'un modèle formel sympathique de Z existe, on peut préciser ce que devraient être les groupes $H^i(Z_C, \mathbb{B}[1/t])$ (et même les isocréaux $D_{i,Z}$ de la remarque précédente).

Conjecture 2.8.31. — Soit I un sous-intervalle compact de $]0,1[$ et soit 3^I un schéma formel « faible » ([99]) semi-stable sur l'anneau des entiers \mathcal{O}_K d'un corps p-adique K, de fibre générique rigide un affinoïde suconvergent lisse Z^\dagger de dimension 1, de fibre spéciale 3_s. On note Z l'affinoïde lisse sous-jacent à Z^\dagger. Alors pour tout i,

$$H^i(Z_C, \mathbb{B}[1/t])^\dagger = H^i_{HK}(3_s) \otimes_{K_0} B[1/t],$$

les $H^i_{HK}(3_s)$ étant les groupes de cohomologie de Hyodo-Kato (ou log-rigide) de $[80]$ et K_0 l'extension maximale non ramifiée de Q_p dans K. En particulier,

$$H^i(Z_C, \mathbb{B}[1/t])^{\varphi=1} = (H^i_{HK}(3_s) \otimes_{K_0} B[1/t])^{\varphi=1}.$$

Ces isomorphismes sont compatibles à l'action de Frobenius.

De ceci on pourrait par exemple déduire l'énoncé suivant, démontré dans [44] par des méthodes différentes.

Corollaire 2.8.32 (de la conjecture 2.8.31). — Soit 3 un schéma formel semi-stable sur l'anneau des entiers \mathcal{O}_K d'un corps p-adique, de fibre générique rigide un espace Stein connexe et lisse Z de dimension 1, de fibre spéciale 3_s. Alors, si la conjecture 2.8.31 est vraie, $H^i(Z, Q_p) = 0$ si $i > 1$ et $H^1(Z, Q_p)$ est une extension :

$$0 \to \mathcal{O}(Z)/C \to H^1(Z, Q_p) \to (H^1_{HK}(3_s) \otimes_{K_0} B)^{\varphi=p} \to 0.$$

Démonstration. — Les groupes de cohomologie de Hyodo-Kato de 3_s s'écrivent naturellement comme limite projective de groupes de cohomologie de Hyodo-Kato des fibres spéciales $(3_k)_s$ de schémas formels faibles semi-stables 3_k. De ceci et de la conjecture on déduit que pour tout $i \geq 0$,

$$H^i(Z, \mathbb{B}[1/t])^{\varphi=1} = (H^i_{HK}(3_s) \otimes_{K_0} B[1/t])^{\varphi=1}.$$

Cette égalité, jointe à la remarque 2.3.21 et à la suite exacte de faisceaux (17), donnent que $H^i(Z, Q_p) = 0$ si $i > 2$ et

$$0 \to \mathcal{O}(Z)/C \to H^1(Z, Q_p) \to \text{Ker}((H^1_{HK}(3_s) \otimes_{K_0} B[1/t])^{\varphi=1} \to H^1_{dR}(Z) \otimes_{K_0} B_{dR}/t^{-1}B_{dR}^+$$

et

$$H^2(Z, Q_p) = \text{Coker}((H^1_{HK}(3_s) \otimes_{K_0} B[1/t])^{\varphi=1} \to H^1_{dR}(Z) \otimes_{K_0} B_{dR}/t^{-1}B_{dR}^+).$$

Ecrivons encore une fois $H^1_{HK}(3_s)$ comme limite projective des groupes $H^1_{HK}(3_k,s)$. A k fixé, on reconnaît dans le noyau et le conoyau ci-dessus le H^0 et le H^1 du fibré $\mathcal{E}(H^1_{HK}(3_k,s)) \otimes \mathcal{O}(1)$ sur la courbe de Fargues-Fontaine. Ce fibré est à pentes positives : en effet, les pentes de Frobenius sur $H^1_{HK}(3_k,s)$ sont ≤ 1, comme on le voit en utilisant la suite spectrale des poids en cohomologie de Hyodo-Kato ([108, 3.23]) et [31, Th. 3.1.2] 32. On en déduit la suite exacte

$$0 \to \mathcal{O}(Z)/C \to H^1(Z, Q_p) \to (H^1_{HK}(3_s) \otimes_{K_0} B)^{\varphi=p} \to 0,$$

et la nullité de $H^2(Z, Q_p)$.

32. Cet argument nous a été expliqué par Wieslawa Nizioł.
2.9. Appendice : faisceaux de périodes

Soit X un espace adique sur $\text{Spa}(Q_p, Z_p)$.

Définition 2.9.1. — On considère les faisceaux pro-étales suivants.

- Le faisceau $\mathcal{A}_{\text{inf}} = W(O^+_X)$. On a un morphisme de faisceaux $\theta : \mathcal{A}_{\text{inf}} \to \widehat{O}_X^+$, qui s'étend en $\theta : \mathcal{A}_{\text{inf}}[1/p] \to \widehat{O}_X$.

- Le faisceau $\mathbb{B}_{\text{dr}} = \lim_{\to k} \mathcal{A}_{\text{inf}}[1/p]/(\ker(\theta))^k$. Il est muni d'une filtration définie par $\text{Fil}^j \mathbb{B}_{\text{dr}} = \ker(\theta)^j$.

- Soit t un générateur de $\text{Fil}^1 \mathbb{B}_{\text{dr}}$ (un tel élément existe localement pour la topologie pro-étale, est unique à une unité près et n'est pas un diviseur de zéro). On pose $\mathbb{B}_{\text{dr}} = \mathbb{B}_{\text{dr}}[1/t]$.

- On définit $\mathcal{O}_{\text{B}_{\text{dr}}}^+$ comme la base associée au préfaisceau défini sur les ouverts pro-étales de X de la forme $\text{Spa}(R, R^+)$ (ces ouverts forment une base de la topologie) comme la limite inductive sur i du complété $\ker(\theta)$-adique de

$$
(R_i^+ \widehat{\otimes}_{Z_p} \mathcal{A}_{\text{inf}}(R,R^+))[1/p],
$$

le produit tensoriel complété dans la parenthèse étant p-adique. Ici

$$
\theta : (R_i^+ \widehat{\otimes}_{Z_p} \mathcal{A}_{\text{inf}}(R,R^+))[1/p] \to R
$$

est le produit tensoriel de $R_i^+ \to R$ et de $\theta : \mathcal{A}_{\text{inf}}(R,R^+) \to R$. On a encore un morphisme de faisceaux $\theta : \mathcal{O}_{\text{B}_{\text{dr}}}^+ \to \widehat{O}_X$. On définit une filtration sur $\mathcal{O}_{\text{B}_{\text{dr}}}^+$ par $\text{Fil}^j \mathcal{O}_{\text{B}_{\text{dr}}}^+ = \ker(\theta)^j$.

- On pose $\mathcal{O}_{\text{B}_{\text{dr}}} = \mathcal{O}_{\text{B}_{\text{dr}}}[1/t]$ et $\text{Fil}^j \mathcal{O}_{\text{B}_{\text{dr}}} = \sum_{j \in Z} t^{-j} \text{Fil}^{i+j} \mathcal{B}_{\text{dr}}^+$.

Soit X un espace adique sur C.

Définition 2.9.2. — Soit $I = [a, b] \subset [0, 1]$ un sous-intervalle compact, avec $a, b \in pQ$. Si $\alpha, \beta \in O_C$, sont tels que $|\alpha| = a$, $|\beta| = b$, on définit :

$$
\mathbb{B}_I = \left(\lim_{\to n} \left(\mathcal{A}_{\text{inf}}[[\alpha]/p, [\beta]/p^n]/p^n \right) \right)[1/p].
$$

On pose :

$$
\mathbb{B} = \lim_{I \in [0, 1]} \mathbb{B}_I.
$$

Si $a \in pO_C\cap [0, 1]$, et α est comme précédemment, on définit :

$$
\mathbb{B}_a^+ = \left(\lim_{\to n} \left(\mathcal{A}_{\text{inf}}[[\alpha]/p]/p^n \right) \right)[1/p].
$$

On pose :

$$
\mathbb{B}^+ = \lim_{\to a} \mathbb{B}_a^+.
$$

Proposition 2.9.3. — Soit $S = \text{Spa}(R,R^+)$ un espace affinoïde perfectoïde sur C. On a

$$H^0(S, \mathbb{B}_I) = B_I(R, R^+)$$

car

$$H^i(S, \mathbb{B}_I) = 0$$

si $i > 0$.

Démonstration. — Comme le faisceau \mathbb{B}_I est obtenu en complétant p-adiquement $\mathcal{A}_{\text{inf}}[[\alpha]/p, [\beta]/p^n]$ puis en inversant p, on voit qu'il suffit par récurrence sur m de décrire les sections de \mathcal{A}_{inf} et de montrer que sa cohomologie s'annule. C’est ce qui est fait dans [129, Th. 6.5], modulo les éléments tués par toutes les puissances $[p^j]^{1/n}$ dans \mathcal{A}_{inf}. Comme $[p^j]^{1/n}$ est inversible dans B_I pour n assez grand, cela suffit. □
Proposition 2.9.4. — Soit G un groupe profini. Soit $\tilde{X} \to X$ un recouvrement pro-étale galoisien de groupe G, avec $\tilde{X} = \text{Spa}(R, R^+)$ affinoïde perfectoïde sur C. Si $k \geq 1$, notons \tilde{X}_k le produit fibré de \tilde{X} k-fois avec lui-même au-dessus de X.

$$\mathcal{B}_I(\tilde{X}_k) = C^0(G^{k-1}, B_I(R, R^+)).$$

Démonstration. — On sait que $\tilde{X}_k \simeq \tilde{X} \times G^{k-1}$, puisque $\tilde{X} \to X$ est un revêtement pro-étale de groupe G. Ecrivons G comme limite inverse de groupes finis G_i. Comme dans la preuve de la proposition 2.9.3, il suffit de décrire les sections de A_{\inf} sur \tilde{X}_k et pour cela on montre par récurrence sur m que

$$W(\mathcal{O}^+^\oplus)/p^m(\tilde{X}_k) = \lim_{\to} \text{LC}(G_i, W(R^+))$$

et que la cohomologie de $W(\mathcal{O}^+^\oplus)/p^m$ sur \tilde{X}_k en degré positif est nulle. Le deuxième point a déjà été vu dans la preuve précédente, puisque \tilde{X}_k est affinoïde perfectoïde. Pour le premier, il suffit de le faire pour $m = 1$, i.e. pour \mathcal{O}^+^\oplus/p. C’est alors une conséquence de [129, Lem. 3.16].

Soit X un espace adique localement noethérien sur $\text{Spa}(\mathbb{Q}_p, \mathbb{Z}_p)$.

Proposition 2.9.5. — On a une suite exacte de faisceaux sur $X_{C, \text{proét}}$:

$$0 \to \mathbb{Q}_p \to \mathbb{B}[1/t]^{\varphi=1} \to \mathbb{B}_\text{dR}/\mathbb{B}_\text{dR}^+ \to 0.$$

Démonstration. — Comme les algèbres affinoïdes sympathiques forment une base de $X_{C, \text{proét}}$, l’exactitude se déduit de la suite exacte (SEF 3E) de [35, Prop. 8.25] et du fait que $\mathbb{B}[1/t]^{\varphi=1} = \mathbb{B}^+[1/t]^{\varphi=1}$ (car pour tout entier k, $\mathbb{B}^{\varphi=p^k} = (\mathbb{B}^+)^{\varphi=p^k}$, cf. par exemple [91, Cor. 5.2.12]).

[42] P. Colmez, G. Dospinescu-Complétés universels de représentations de $GL_2(Q_p)$, Algebra and Number Theory, 8 (2014), 1447-1519.

[96] M. Kisin-Deformations of \(G_{\mathbb{Q}_p}\) and \(\text{GL}_2(\mathbb{Q}_p)\)-representations, Astérisque 330 (2010), 511-528.

[103] L. Pan-First covering of Drinfel’d upper half plane and Banach representations of \(\text{GL}_2(\mathbb{Q}_p)\), à paraître dans Algebra and Number Theory.

[114] D. Patel, M. Strauch, T. Schmidt-Locally analytic representations of $GL(2, L)$ via semistable models of \mathbf{P}^1, à paraître dans le Journal de l’IMJ.

[140] Stacks Project.

