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1 Talk 3: Six functor formalism of analytic stacks

1.1 Introduction to six functor formalisms

The first six functor formalism was constructed by Grothendieck et al. [SGA4] to handle
(relative) étale cohomology (with compact supports). Let’s briefly recall how it goes (with
coefficients in Λ = Z/nZ, Λ = Zℓ or Λ = Qℓ, where n resp. ℓ is tacitly assumed to be a unit on
all schemes):

1. To a scheme X, associate the étale site Xét consisting of étale maps f ∶ Y →X with covers
given by jointly surjective maps. Form the subcategory D(Xét) of the derived category1

of sheaves of Λ-modules on X whose cohomology sheaves are constructible;

2. ⊗L
Λ equips D(Xét) with the structure of a symmetric monoidal category, and we can form

RHom as its right-adjoint;

3. pulling back sheaves along a map f ∶ X → Y yields f∗ ∶ D(Yét) → D(Xét) with right
adjoint, the relative étale cohomology “push forward” functor Rf∗;

4. if j ∶ U → X is an open immersion, j∗ has a left adjoint, the extension by zero functor j!.
Factoring a separated map of finite type f ∶X → Y as

X
j↪ Y

fÐ→ Y

an open immersion followed by a proper morphism, we define the relative étale cohomology
with compact support “exceptional push forward” functor Rf! = Rf∗j!, which admits a right
adjoint Rf !. These are the six functors.

5. we have the projection formula: Given a separated map of finite type f ∶X → Y , there is
a “canonical” isomorphism Rf!(A⊗L

Λ f∗B) ≃ (Rf!A) ⊗L
Λ B functorial in A and B;

6. and proper base change: Given a fibre square

X ′ X

Y ′ Y,

f ′

g′ g

f

there is a “canonical” isomorphism g∗Rf!(A) ≃ Rf ′! g
′,∗(A) functorial in A.

1Starting here, we will treat all derived categories as ∞-categories.
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Remark 1. The meaning of the word canonical here is a bit subtle and all the compatibility
conditions between these natural isomorphisms are quite involved. This problem is worse yet for
analytic stacks. Yifeng Liu and Weizhe Zheng give a precise formulation of all this data, which
Lucas Mann nicely repackaged as a lax symmetric monoidal functor

Corr(Sch, E) → Cat∞,

where Corr(Sch, E) is a certain ∞-category, whose objects are schemes with maps given by
correspondences

Z

X Y

fg

with f separated of finite type, and composition given by taking fibre products. In general, the
class E comprises !-able maps i.e. those we for which we can form f!.

As notation like Rf ! is a bit of a red herring anyway, we will drop R’s and L’s from the
notation.

Everything can (almost) be translated to quasi-coherent sheaves on affine schemes:

1. To any ring R associate D(Spec(R)) ∶= DMod(R);

2. we have ⊗L
R and RHomR;

3. for f ∶ Spec(R) → Spec(S), we have f∗ ∶= − ⊗L
S R ∶ D(Spec(S)) → D(Spec(R)) with right

adjoint (−)S = f∗;

4. we set f! ∶= f∗, which admits a right adjoint f ! = RHomR(S,−);2

5. there is a canonical isomorphism f!(A⊗ f∗B) ≃ (f!A) ⊗B functorial in A and B;

6. given a fibre square

Spec(S′ ⊗S R) Spec(R)

Spec(S′) Spec(S),

f ′

g′ g

f

such that g is flat, there is a canonical isomorphism g∗f!(A) ≃ f ′! g
′,∗(A) functorial in

A ∈ D(Y ′).

Remark 2. One can eliminate the condition that g is flat by working with animated rings3

instead—this means we would be taking Spec(S′⊗L
S R) instead. Then we obtain a quasi-coherent

six functor formalism

D ∶ Corr(AniSchaff) → Cat∞.

In the following we will also secretly work with animated analytic rings/stacks.
2Not to be confused with the functor from Grothendieck duality.
3These can e.g. modelled via simplicial rings
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1.2 Six functors of affine analytic stacks

Definition 3. Any map f ∶ R → S of analytic rings can be factored into

1. a proper map (R▷, ModR) → (S▷,{M ∈ModS▷ ∣M ⊗S▷ R▷ ∈ModR}), the latter is called
the induced analytic ring structure;4

2. an open immersion ((S▷,{M ∈ModS▷ ∣M ⊗S▷ R▷ ∈ModR})) → (S▷, ModS).5

Remark 4. To understand what open immersions can look like, think back to the example of
étale sheaves. If j ∶ U ↪ X is an open immersion, j!Λ ∈ D(Xét) is an idempotent co-algebra:
There is a co-unit ϵ ∶ j!Λ → Λ and co-multiplication c ∶ j!Λ

≃→ j!Λ ⊗ j!Λ. D(Uét) is exactly
the category of co-modules over this co-algebra i.e. sheaves such that F ≃→ F ⊗ j!Λ. If the
complement6 is i ∶ Z →X, i∗Λ is similarly an idempotent algebra and we can recover j!Λ as the
fibre

j!Λ→ Λ→ i∗Λ.

The same is true for analytic rings: Open immersions of analytic stacks come from “com-
plementary” idempotent algebras A ∈ModR.

Remark 5. Warning: This means that any map of analytic rings with discrete analytic ring
structure is proper. In particular, these words do not match up with the nomenclature of alge-
braic geometry.

To combine what we have learnt from these two examples,

1. To an analtyic ring R = (R▷, ModR), associate D(AnSpec(R)) ∶= D(ModR);

2. we have ⊗ ∶= ⊗L
R with right adjoint RHomR;

3. for f ∶ AnSpec(R) → AnSpec(S), we have f∗ ∶= − ⊗L
S R ∶ D(Spec(S)) → D(Spec(R)) with

right adjoint (−)S = f∗;

4. factor a map f into a proper morphism f and open immersion j. If j∗ admits a left
adjoint satisfying the projection formula, we call f !-able.7 In that case set f! = f∗j!,
which admits a right adjoint f !. Explicitly f ! = RHomR(S,−) for proper maps and j∗ for
open immersions;

5. there is a canonical isomorphism f!(A⊗ f∗B) ≃ (f!A) ⊗B functorial in A and B;

6. given a fibre square

Spec(S′ ⊗L
S R) Spec(R)

Spec(S′) Spec(S),

f ′

g′ g

f

there is a canonical isomorphism g∗f!(A) ≃ f ′! g
′,∗(A) functorial in A ∈ D(Y ′).

4Of course, you have to complete S▷ w.r.t. this pre-analytic ring structure.
5This will only match the cohomological definition of “open immersion” if j∗ admits a left adjoint j! satisfying

the projection formula. Examples coming from complementary idempotent algebras as in the following remark
are of this form.

6With any scheme structure e.g. the reduced one.
7E.g. any proper map and any open immersion given by solidifying finitely many elements is !-able.
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1.3 Supplement: General notions in 6 functor formalisms

Definition 6. (Poincaré duality.) Let D ∶ Corr(C, E)⊗ → Cat∞ be a 6-functor formalism,
f ∶X → Y a map in E, then we call:

1. K ∈ D(X) f -smooth, if for the f -smooth dual Dsm
f (K) ∶= Hom(K, f !1Y ) the canonical

map
π∗1 K ⊗ π∗2D

sm
f (K) → Hom(π∗2 K, π!

1K)

is an isomorphism. In particular, if K = 1X is f -smooth, f ! ≃ f∗(− ⊗Dsm
f (1X));

2. f cohomologically smooth, if 1Y ∈ D(Y ) is f -smooth and the dualising sheaf Dsm
f (1Y ) is

⊗-invertible.

3. L ∈ D(Y ) f -proper, if for the f -proper dual Dprop
f (L) ∶= π2,∗Hom(π∗1 L, ∆!(1X)) the canon-

ical map
f!(L⊗Dprop

f (L)) → f∗Hom(L, L)
is an isomorphism.

Proposition 7. f -smooth resp. f -proper objects and f -smooth maps are stable under base
change and satisfy !-descent.

Moreover, f -proper resp. f -smooth objects are stable under cones and shifts. The f -proper
resp. f -duals can be computed by applying the exact functors Dsm

f resp. Dprop
f .

Further, we have a diagram

X Y Z
f

h

g

where f is cohomologically smooth with dualising sheaf L and K ∈ D(X) is h-proper with h-
proper dual K ′, then f!K is g-proper with g-proper dual f!(L⊗K ′).8

Proof. All of these but the last can be found in the Notes to Six functor formalisms. We sketch
the last:

g!(f!K ⊗ −) ≃ g!f!(K ⊗ f∗−) ≃ h!(K ⊗ f∗−)
≃ h∗Hom(K ′, f∗−) ≃ g∗f∗Hom(K ′ ⊗L, f !−)
≃ g∗Hom(f!(K ′ ⊗L),−)

Using the (∞, 2)-category LZD, it is not hard to make this into a formal argument.

1.4 Passing to stacks

“Stacks” might sound a bit scary at first, but as will treat them analogously to the natural
continuation of the tower of generalisations

affine schemes → separated qc schemes → schemes

given by the following: Separated (qc) schemes X are exactly those sheaves in the Zariski
topology9, that admit a (finite) Zariski cover X̃ → X by an affine scheme and such that the
map X → X ×X is affine10. Similarly, schemes are those Zariski sheaves admitting a Zariski
cover X̃ → X by a separated qc scheme and such that ∆ ∶ X → X ×X is quasi-compact and
separated.

8Of course, there is a dual statement as well.
9we are working with the big Zariski site on affine schemes here.

10For a general Zariski sheaf X, we say ∆ ∶X →X ×X is affine, if for any affine scheme Y and map Y →X ×X,
the fibre product Y ×Y ×Y X → Y is affine.
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Exchanging the Zariski for the étale topology, this would give us

affine schemes → qc algebraic spaces with affine diagonal
→ algebraic spaces → Deligne-Mumford stacks → ⋯

(the list now proceeds infinitely to the right if we allow sheaves of 2-groupoids, ..., anima
instead).

The technically most important fact about these topologies is that D(−) satisfies descent
for them.

In the world of analytic stacks, there is just no relevant distinguished class of “analytic
schemes”, because we will choose a far far finer topology called the !-topology, which roughly is
defined to be the finest manageable topology for which D(−) satisfies descent.

Definition 8. A proper map f ∶ A→ B of analytic rings is called descendable, if

A ∈ ⟨f∗M ∣M ∈ D(B)⟩fin. lim., retracts.

We further call a map descendable of index ≤ m, if for F = fib(A → B), F⊗Am → A is null-
homotopic.

Example 9. A split epimorphism is descendable of index ≤ 1.

Remark 10. Zariski covers for open immersions of analytic stacks and descendable proper
maps are examples of !-cover.

Example 11. Faithfully flat maps of countable presentation are an example of descendable
maps. Notably, not all faithfully flat maps will do, because we will later need to impose some
compatibility with f!, f !. More generally:

Proposition 12. Let gi<j ∶ Ai → Aj be a diagram of shape (N,≤) in the category of analytic
rings and let (fi ∶ A → Ai)i∈N be a cocone consisting of proper maps of analytic rings, that are
descendable of index ≤m, then

A→ limÐ→Ai

is descendable.

As an enlightening exercise, let us first run this programme for the Zariski topology and
restricting to analytic stacks with discrete analytic ring structure and let’s extend to quasi-
compact and separated schemes.

1. define D(X) = lim←Ði
D(Ui) for any open affine cover Ui of a quasi-compact separated scheme

X (such that ⊔i Ui →X is affine in our case);

2. this automatically becomes equipped with ⊗ and Hom;

3. given f ∶ Y → X, take a finite open cover {Ui} of X and a compatible one {Vij} on Y .
Then we can glue the maps D(Ui) → D(Vij). This is independent of the covers by Zariski
descent. We obtain f∗ as its right adjoint;

4. defining f! is a bit more subtle now. We want proper base-change to hold. If we ponder
this for fibre products along j ∶ U → X with fibre V → Y , a definition is forced on us if
f ∶ Y → X is affine: Take an open affine cover Ui of X, we obtain fi ∶ f−1(Ui) → Ui and
define f! via descent from fi,∗ = fi,!. This will automatically satisfy proper base change
and the projection formula.11

11∼[Man23, Proposition A.5.12]
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For any map f ∶ Y →X, there exists a open affine cover ji ∶ Vi → Y such that g ∶ ⊔i Vi → Y
and f○g ∶ ⊔i Vi →X are affine.12 Set n-fold self intersections gn ∶ ⊔(i1,...,in) Vi1∩⋅ ⋅ ⋅∩Vin → Y .
Define

f! ∶= limÐ→
n∈∆
(f ○ gn)!g!

n.13

Again, this admits a right adjoint.

The general mechanism, that we will apply to the six functor formalism of affine algebraic
stacks is:

Proposition 13 (Programme DESCENT). Denote by AnStack the category of !-sheaves14 a.k.a.
analytic stacks. Define

1. for any analytic stack X , set D(X) = lim←Ð(X→X)D(X), where the inverse limit is running
over X affine (think a quasi-coherent sheaf on X can be pulled back to X);

2. ⊗ and Hom are automatic;

3. f∗ and f∗ by descent;

4. we can define f! for a slightly mysterious class of !-able maps. For affine maps of analytic
stacks, we may define it via descent from f!’s for affine maps. Then we can induct.

Fur a full construction vis Scholze’s lecture notes:15

Remark 14. We genuinely need ModR to be R-modules on solid abelian groups, even if we only
care about discrete modules in the end, these are not preserved by f! for e.g. open immersions
of schemes, that are not quasi-compact.

2 Talk 5: Examples of analytic stacks

2.1 Betti stacks

Consider the functor
ProFinlight → AnStack

S ↦ AnSpec(Cont(S,Z)).

For a surjective map of light profinite sets, S → T , the induced map Cont(T,Z) → Cont(S,Z)
can be written as an N-indexed colimit of split surjective maps and is thus descendable. Hence
the functor takes hypercovers to !-hypercovers and extends to a unique colimit preserving functor

−Betti ∶ CondAnilight → AnStack.

This is controllable, if we plug in a finite dimensional locally compact Hausdorff space:

Proposition 15. Let S be a finite dimensional compact Hausdorff space and f ∶ S′ → S a
surjection from a light profinite set. Then f∗Z ∈ D(S,Z) is descendable.

12Indeed, find an open affine cover Ui →X such that ⊔i Ui →X is affine, pulling back yields that ⊔i f−1(Ui) → Y
is affine. Now we may find finite open affine covers Vij → f−1(Ui) of the quasi-compact spaces f−1(Ui).

14Often a slightly technical notion between sheaf and hypersheaf is assumed instead.
15https://people.mpim-bonn.mpg.de/scholze/SixFunctors.pdf
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Corollary 16. For any analytic stack X and any finite-dimensional compact Hausdorff space
S, one has a natural equivalence

D(X × SBetti) ≃ D(S,D(X)),

where the later denotes the ∞-category of sheaves on S with values in D(X).

Proof. If S is a light profinite set, the global sections functorD(S,D(X)) →ModCont(S,Z)D(X) ≃
D(X ×AnSpecCont(S,Z)) is an equivalence. In general, choose a surjection f0 ∶ S0 → S, with
Čech nerve f● ∶ S● → S. On each step, we get

D(X × Sn,Betti) ≃ D(Sn,D(X)) ≃Modfn,∗Z(D(S,D(X)))

with the second equivalence induced by fn,∗. This is functorial in n and we get equivalences

D(X × SBetti) ≃ lim←Ð
∆
D(X × S●,Betti) ≃ lim←Ð

∆
Modfn,∗Z(D(S,D(X)))

where the first equivalence comes from the fact that S●Betti → S is a !-hypercover. Finally, the
previous lemma, that Z→ f∗Z is descendable implies that

lim←Ð
∆

Modfn,∗Z(D(S,D(X))) ≃ D(S,D(X)).

Theorem 17. (Tannakian reconstruction.) Let S be a finite-dimensional compact Hausdorff
space. For any analytic stack X, maps X → SBetti are equivalent to D(Z)-linear colimit pre-
serving symmetric monoidal functors

D(S,Z) → D(X)

such that there exists some !-cover X ′i → X by affine analytic stacks, for which the composite
functor

D(S,Z) → D(X) → D(X ′i)

preserves connective objects.
Moreover, such functors are equivalently given by collections of idempotent algebras AZ ∈

D(X) for every closed subset Z ⊆ S, such that Z ↦ AZ sends limits to colimits and finite
colimits to limits 16, such that AZ ∣X′i ∈ D(X

′
i) are connective.

Remark 18. By abuse of notation, we will also write SBetti for the base change to AnSpec(Cgas).

Lemma 19. Let X be a complex analytic space, then X(C)Betti admits a !-cover consisting of
maps

AnSpec(Cont(S,Z) ⊗Z Cgas) →X(C)Betti

induced by maps S →X, where S = lim←Ðn∈N
Sn is a light profinite set such that for every sn ∈ Sn,

im(S ×Sn {sn} →X(C)) is compact Stein.

Proof. By covering X(C) with compact Stein subsets, we may assume X is compact Stein. Set
S0 = {0} and X0 = X. Now inductively cover Xi for i ∈ Sn with Stein subsets Xj indexed by
a finite set j ∈ Ii such that in each set Xj , there exists a point xj ∈ Xj that is not contained
in any other Xj′ for j′ ∈ Ii. Set Sn+1 = ⊔i∈SnIi → Sn. Under these conditions, we see that for

16I.e. is a morphism of locals between the locale opposite to the frame of closed subsets and the locale of
idempotent algebras.
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any s ∈ S ∶= lim←Ðn∈N
Sn, ⋂n∈N Xsn =∶ {f(s)} is a single point. One readily checks, that the map

f ∶ S →X(C) is surjective, continuous; and that for every sn ∈ Sn,

im(S ×Sn {sn} →X(C)) =Xsn .

As −Betti sends covers to !-covers, the associated map

SBetti = AnSpec(Cont(S,Z) ⊗Z Cgas) →X(C)Betti

is a !-cover.

Lemma 20. Let X be a complex-analytic space. Then O(Z)† are idempotent and satisfy the
conditions of the Tannakian reconstruction theorem for X(C). For any compact Stein subset
Z ⊆X, X ×X(C)Betti Z(C)Betti = AnSpec(O(Z)†).

Proof. That O(Z)† satisfy the appropriate conditions is proved in [complex.pdf].17 The second
part is a direct consequence of the proof of Tannakian reconstruction.

Theorem 21. Let X be a complex-analytic space, then X → X(C)Betti is an epimorphism of
analytic stacks.

Proof. We may check that X → X(C)Betti is an epimorphism of analytic stacks on a !-cover
consisting of

AnSpec(Cont(S,Z) ⊗Z Cgas) →X(C)Betti

of the form of the previous lemma. This means, we need to show

X ×X(C)Betti AnSpec(Cont(S,Z) ⊗Z Cgas)) → AnSpec(Cont(S,Z) ⊗Z Cgas))

is a !-cover. Setting,
Xn = ⊔

sn∈Sn

im(S ×Sn {sn} →X(C)),

we use the previous lemma to see that this fiber product is affine and can be computed as

AnSpec(limÐ→
n

O(Xn)†) → AnSpec(limÐ→
n

Cont(Sn,Z) ⊗Z Cgas)).

As a proper map of affine analytic stacks, it suffices that the corresponding map of analytic
rings is descendable. But for each n ∈ N,

Cgas
Sn = Cont(Sn,Z) ⊗Z Cgas → O(Xn)†

is split and thus descendable of index ≤ 1. Thus their colimit is descendable.

2.2 Algebraic model for Fourier analysis

Definition 22. For every closed subset I ⊆ S1, set KI ∶= {z ∈ C/{0}∣arg(z) ∈ I} ⊆ C/{0}.
Define

O†,alg(KI) = {f ∈ O†(KI)∣ ∃N ≥ 0 ∶ ∣f(z)∣ ≤ ∣z∣N as ∣z∣ → ∞, ∣f(z)∣ ≤ ∣z∣−N as ∣z∣ → 0}.

These are idempotent algebras compatible with intersections and finite unions and we have
O†,alg(S1) = C[z±1]. By Tannakian reconstruction, this yields a map

arg ∶ Galg
m,Cgas

→ (S1)Betti.

17This reference works with Cp-liq instead of Cgas but carefully inspecting all arguments involved
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Definition 23. Define G̃m as the fibre product (of abelian analytic group stacks) of

G̃m Gm

RBetti (S1)Betti

arg

We automatically have a short exact sequence:

0→ Z→ G̃m → Gm → 0

We have a map log ∶ G̃m → A1 obtained by glueing together log ∈ O†,alg(K) defined on sectors
(note it satisfies the growth condition). This is interesting as it is possible to define the Fourier
transform on RΓ(G̃m).

2.3 Analytic deRahm stacks

The classic Riemann-Hilbert correspondence is between vector bundles with a flat connection
and their associated local systems of flat sections. Such sections fulfil a special kind of partial
differential equation. This correspondence has been generalised to so called (regular holonomic)
D-modules, which are (sheaves of) modules over an (non-commutative sheaf of) algebra(s) of
differential operators, which in turn correspond to constructible sheaves.

If we impose stronger analytic properties on our D-modules, we will in fact get more than
a mere equivalence of certain subcategories of sheaves. We will get an equivalence of analytic
stacks!

Definition 24. Let X be a complex manifold, define ∆̂(X) ⊂ X ×X to be the union of all in-
finitesimal thickenings of the diagonal18. Define the algebraic deRahm stack as XdR =X/∆̂(X).

Define ∆(X)† = lim←ÐU⊂∆(X)
as union of all open subsets of X(C) the overconvergent neigh-

borhood of the diagonal. Define the analytic deRahm stack Xan
dR =X/∆(X)†.

Next we will see how these relate to the aforementioned D-modules.

2.4 Cartier duality

As is so often the case, one can reduce the discussion to the case that X is an affine line.
The algebraic deRahm stack becomes GdR

a,Cgas
= Ga,Cgas/Ĝa,Cgas and the analytic one Gan,dR

a,Cgas
=

Gan
a,Cgas

/G†
a,Cgas

, where G†
a,Cgas

∶= ({0} ⊂ Gan
a,Cgas

)†. We want to write D(GdR
a,Cgas

) and D(Gan,dR
a,Cgas

)
in terms of certain modules over the Weil algebra of differential operators, so called D-modules.

As a first step, we must then understand D(∗/Ĝa,Cgas) and D(∗/G†
a,Cgas

). From usual alge-
braic geometry, we know to expect QCoh(∗/G) = RepG for any algebraic group, this is true in
large generality:

Theorem 25. Let D ∶ Corr(C, E)⊗ → Cat be a 6-functor formalism and f ∶ G → 1C a group
object in C such that f is cohomologically proper19, then f∗1G has the structure of a coalgebra
and there is an equivalence of ∞-categories

D(1C/G) ≃ coModf∗1G
D(1C).

Dually, if f is cohomologically smooth with dualising sheaf, set f♮− = f!(L) ⊗ −. Then f♮1G has
the structure of an algebra and there exists an equivalence of ∞-categories

D(1C/G) ≃Modf♮1G
D(1C)

18This is the same as the (automatically open) !-image of the cohomologically smooth map ∆ ∶X →X ×X
19In the proof we will only require that 1G is f -proper and the proper dual is invertible.
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Proof. Using that 1C → 1C/G is split and thus a !-cover, we see that the morphism h ∶ 1C → 1C/G
is also cohomologically proper. One checks, by the Barr-Beck-Lurie theorem, that the adjunction
h∗ ⊣ h∗ is comonadic. Using, that h is cohomologically proper, we can use the projection formula
to see that

h∗h∗(K) ≃ f∗f
∗(K) ≃ f∗(f∗(K) ⊗ 1G) ≃K ⊗ f∗(1G).

A slightly more sophisticated computation shows, that this induces an isomorphism of comonads
between h∗h∗ and the comonad structure on −⊗ f∗1G given by an induced coalgebra structure
on f∗1G.

Next, we will understand what such a coalgebra structure amounts to using Cartier duality.

Lemma 26. There is an equivalence of ∞-categories

D(∗/Ĝa,Cgas) ≃ D(Cgas[U])

given by sending a representation M →M ⊗CC[[U]] to Cgas[U]-module M on which U acts by

M → M ⊗C C[[U]]
id⊗πU1→ M ; conversely send a Cgas[U]-module (M, f) to the representation

c ∶M →M ⊗C C[[U]] given by m↦ exp(Uf)(m) = ∑ U i

i! f i(m).
This equivalence intertwines convolution on D(∗/Ĝa,Cgas) with the tensor product on D(Cgas[U]).

The tensor product of D(∗/Ĝa,Cgas) is intertwined with the operation ⊗′ on D(Cgas[U]) sending
two Cgas[U]-modules M, N on which U acts via f and g respectively to the Cgas[U]-module
M ⊗Cgas N on which U acts via m⊗ n↦ f(m) ⊗ n +m⊗ g(n). 20

Proof. It is easy to check that the described functors are well-defined and that the second
composed with the first yields the identity functor. It remains to check that any representation
c ∶M →M ⊗Cgas Cgas[[U]] is determined by its projection to first coefficient of the power series.
Projecting on the n-th coefficient yields a map fn ∶M →M . The fact that c is a coaction map
translates on the corresponding power series in F ∶= ∑ fnUn ∈ End(M)[[U]] to the conditions
F (x + y) = F (x)F (y) and F (0) = 0. This implies n!fn ⋅m!fm = (n +m)!fn+m. In characteristics
0, this shows that F = exp(f1U).

Remark 27. As Ĝa,Cgas ⊂ Ga,Cgas is an open immersion and Ga,Cgas is cohomologically smooth
with dualising sheaf OGa,Cgas

[2]21, Ĝa,Cgas is also cohomologically smooth with dualising sheaf
OĜa,Cgas

[2]. So we could have also proved this statement purely abstractly. But this presentation

gives us a clear indication for what D(∗/G†
a,Cgas

) should look like in terms of Cgas[U]-modules:
Intuitively, we have to impose a growth condition on f ∶ M → M such that exp(fU) ∶ M →
M ⊗C[[U]] factors over the ring of germs of holomorphic functions, i.e. for each m ∈M

∑
n∈N

fn(m)
n!

Un

converges on a small open neighborhood.

Corollary 28. There is an equivalence of categories

D(GdR
a,Cgas) ≃ D(Cgas[∂, T ]ass/(∂T − T∂ − 1)).

20Using the fact that Ĝa,Cgas is also cohomologically smooth, one could in fact have used another purely
formal argument for this statement: Applying the theorem in the opposite 3-functor formalism, one obtains for
a cohomologically smooth group object G that D(1C/G) ≃Modf♮1GD(1C).

21If we further embedded into P1
Cgas , one could prove this using ordinary Grothendieck duality.
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Proof. π ∶ GdR
a,Cgas

→ ∗/Ĝa,Cgas is affine, whence

D(GdR
a,Cgas) ≃Modπ∗1GdR

a,Cgas
D(∗/Ĝa,Cgas).

π∗1GdR
a,Cgas

corresponds to the Cgas[[U]]-comodule Cgas[T ] → Cgas[T ] ⊗Cgas Cgas[[U]] sending
T n ↦ (T ⊗ 1 + 1 ⊗ U)n = nT n−1 ⊗ U + . . . . Under the previous equivalence, this corresponds
to the Cgas[U]-module structure on the Cgas-module Cgas[T ], where U acts by differentiation
i.e. T n ↦ nT n−1. This is an algebra for ⊗′ using the multiplication f ⊗ g ↦ fg 22. Now a
module for this algebra is a Cgas[U]-module M , say U acts via f , together with an action map
Cgas[T ]⊗′M →M , say T acts via g. Then by definition of ⊗′, this is equivalent endomorphisms
f and g such that fg = 1 + gf .23

Theorem 29. In general, let X be a complex analytic space, then

D(XdR) ≃ D(ModDX
)

for DX the sheaf of differential operators.

2.5 Comparisons between deRahm stacks

Our next goal is to more concretely understand D(Xan
dR) and especially D(Gan

a,Cgas,dR).

Proposition 30. Let g ∶ ∗/Ĝa,Cgas → ∗/G
†
a,Cgas

be the canonical map. The sheaf O
∗/Ĝa,Cgas

is
g-proper with g-proper dual O

∗/Ĝa,Cgas
[−2]. Further,

g∗ ∶ D(∗/G†
a,Cgas

) → D(∗/Ĝa,Cgas) ≃ D(Cgas[U])

is fully faithful with essential image given by those modules killed after tensoring with the idem-
potent Cgas[U]-algebra of those power series

∑
n∈Z

anUn ∈ C((U−1))

for which there exists some r > 0 such that ∣an∣ r
n

n! → 0.

Proof. Consider the maps

∗ ∗/Ĝa,Cgas ∗/G†
a,Cgas

.
h

q

g

By !-descent, as G†
a,Cgas

→ AnSpecCgas is proper, we know that O is q-proper with q-proper
dual O∗. Further, by !-descent, h is cohomologically smooth and surjective with dualising sheaf
O[2]. By the lemma in the beginning, it follows that h!O is g-proper.

There is an exact triangle

h!O[1] h!O[1] OU

this is true as h!O[1] corresponds to the Cgas[U]-module C[T ±]/C[T ] with U acting by differ-
entiation (which is injective), O corresponds Cgas and there is a short exact sequence

22This follows from the Leibniz rule.
23One could also have proven this entirely differently by using a similar comonadicity statement to show
D(GdR

a,Cgas) ≃ coModσ∗1D(Ga,Cgas), where σ ∶Ga,Cgas× ̂Ga,Cgas
→ Ga,Cgas is the action map and then arguing as

before.
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0 C[T±]/C[T ] C[T ±]/C[T ] C 0.U

Hence O is also g-proper. In particular, this implies that g∗ satisfies the projection formula.
Now we prove fully faithfulness of g, we need to check that id → g∗g

∗ is an isomorphism.
But as g∗g

∗ satisfies the projection formula, it suffices to check that g∗O ≃ O.
Applying g! to the previous triangle, we get a triangle

(g ○ h)!O[1] (g ○ h)!O[1] g!OU

but q = g ○ h is proper and thus q!O = q∗O is the regular representation of G†
a,Cgas

. U acts by
differentiation on it, which is surjective with the kernel given by constant functions, so we get
a triangle

O[1] (g ○ h)!O[1] (g ○ h)!O[1]U

Rotating the first triangle shows that g!O[−1] ≃ O[1]. Thus, g!O[2] ≃ O. In the same way
one calculates the g-proper dual24 using the formulas from the beginning to be O[2]. Hence
g∗O ≃ g!O[2] ≃ O, which proves that g is fully faithful.

The monoidal unit being g-proper with invertible g-proper dual implies that the adjunc-
tion g∗g∗ is comonadic. A calculation using the projection formula shows that we have an
isomorphism of comonads:

g∗g∗(−) ≃ g∗g∗(Cgas[U]) ⋆ −

where ⋆ is the convolution product. This implies

D(∗/G†
a,Cgas

) ≃ coModg∗g∗Cgas[U]D( ̂∗/Ga,Cgas).

As g∗ is fully-faithful, the coalgebra

g∗g∗(Cgas[U])

is automatically idempotent. Having the structure of a comodule over an idempotent coalgebra
is equivalent to killing fib(g∗g∗(Cgas[U]) → Cgas[U]). We know Cgas[U] = h!O[1] whence
g∗g∗h!O[1] ≃ g∗q∗O[−1] corresponds to the regular representation of G†

a,Cgas
viewed as a mere

Ĝa,Cgas-representation and shifted into cohomological degree 1.
The cone now becomes an extension between the module of germs of holomorphic functions

{f ∈ C[[T ]]∣f converges on a small disk}, where U acts by differentiation and C[T ±1]/C[T ],
where U also acts by differentiation. It is the module

{f ∈ C((T ))∣f converges on a small punctured disk}

U acts invertibly on this and we can write T n = n!U−n(1). A power series ∑anT n converges on
a small punctured disk if and only if there exists r > 0 such that ∣an∣rn → 0. Writing the module
in the natural basis Un, this gives

⎧⎪⎪⎨⎪⎪⎩
∑
n∈Z

anUn ∈ C((U−1)) ∃r > 0 such that ∣an∣
rn

n!
→ 0
⎫⎪⎪⎬⎪⎪⎭

.

24The proper dual of h!O[1] is itself, so we may apply the proper dual functor and compute.
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As mentioned last time, the map j ∶ Gan
a,Cgas

↪ Ga,Cgas is an open immersion i.e. we have a
fully faithful embedding

j! ∶ D(Gan
a,Cgas) → D(Cgas[T ])

whose image is given by those modules killed by the idempotent algebra of those power series

∑
n∈Z

bnT n ∈ C((T−1))

that converge on a small punctured disk around ∞. Together these results assemble to the fact
that the pullback functor

D(Gan
a,Cgas,dR) → D(GdR

a,Cgas) ≃ D(Cgas[∂, T ]ass/(∂T − T∂ − 1))

is fully faithful.
Ignoring the fact the Weil algebra is non-commutative, one can imagine this as the category

of quasi-coherent sheaves on an open subset of A2
Cgas

where in both directions T →∞ and ∂ →∞,
we get the growth condition that are explicitly described idempotent algebras of functions near
∞ must be killed.

Remark 31. For a general complex manifold, this theorem generalises. Denote by gX ∶XdR →
Xan

dR the canonical map. Them the sheaf OXdR is gX-proper with gX-proper dual OXdR[−2dX],
where dX is the complex dimension of X and the functor

g∗X ∶ D(Xan
dR) → D(XdR) ≃ D(ModDX

)

is fully faithful.

3 Analytic Riemann-Hilbert
Theorem 32. (Analytic Riemann-Hilbert) The morphism X → X(C)Betti factors over Xan

dR
and the induced map Xan

dR →X(C)Betti is an isomorphism.

Proof. This is essentially per definition. We need to compare the equivalence relation X×X(C)Betti

X →X ×X with ∆(X)†. This follows from the general fact, that for Z ⊂X,

(Z ×X)† =X ×XBetti ZBetti

which follows from definition as
ZBetti = lim←Ð

Z⊂U

UBetti.

3.1 Relation to usual Riemann-Hilbert

The classical Riemann-Hilbert correspondence can now be explained by exhibiting a partial
inverse functor to g∗:

Theorem 33. On the subcategory of regular holonomic D-modules

Drh(XdR) ⊂ D(ModDX
)

the funcotr g∗ is fully faithful and the induced functor

Drh(XdR) ↪ D(Xan
dR) ≃ D(X(C))

has image given by complexes with Zariski-constructible cohomology. Moreover, the functor
g∗[dX]25 is t-exact for the usual t-structure on the left and the perverse t-structure on the right.

25This is the middle degree between g∗ and g! = g∗[2dX].
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