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Foreword.
These are notes for the workshop “Arakelov Geometry and Condensed Math-

ematics” which took place in Strasbourg, May 19-23 2025. See:
https://irma.math.unistra.fr/~lfu/Activities/Conference-Arakelov-and-Condensed.

html
The notes were taken by Thomas Agugliaro, Marco Artusa, Ludovic Felder,

Kenza Memlouk and Christopher Nicol.
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1 Introduction to Arakelov geometry, Part 1 - by
Jean-Benoît Bost

There are 4 slogans:

(1) Arakelov geomometry is a higher dimensional version of the classical anal-
ogy between number fields and function fields

(2) It is a hybrid theory that combines algebraic geometry (Grothendieck
style) over SpecZ, and complex Hermitian geometry (of smooth complex
projective varieties). Its main object of studies are Hermitian vector bun-
dles and related “mixtures” of algebraic and Hermitian differential geo-
metric objects (e.g. Arakelov divisors)

(3) Arakelov geometry attaches to these objects real valued invariants that
play the role of the integer valued invariants of classical algebraic geometry
(plurigenera, intersection numbers).

(4) Arakelov geometry may be used to establish theorems of Diophantine ge-
ometry admitting “elementary” formulations. For example on rational
points of algebraic varieties over number fields (Falting, Vojta), or to ob-
tain transcendance results.

Here is an example of real valued invariant which is important in Arakelov
geometry.

Definition 1.1 (Height). Let P ∈ PN(Q), the height of P is the arithmetic
complexity of P . Denote

P = [x0 ∶ x1 ∶ . . . ∶ xN ]

with xi ∈ Z and gcd(x0, . . . , xN) = 1. Then

h(P ) = log(max
0⩽i⩽N

∣xi∣)

= log(∑x2i )1/2 +O(1)
H(P ) = exp(h(P )).

Remark 1.2. When one want to store an integer, a rational number, or a point
of the projective space in a computer, one would like to know how much space to
allocate. That is, how much bits would it take to store the data in the memory
of the machine ? The notion of height h defined above give a good order of
magnitude for such quantities.

1.1 Analogy between number fields and function fields
Let us first set up notations for both sides of the analogy
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1) Given a base field k, a function field is a finite extension K of k(T ), we
will denote d its degree.

2) A number field is a finite extension K of Q, we will denote d its degree.

Assume that k is algebraically closed in K, then K = k(C) where C is a
smooth projective curve, geometrically connected over k. Moreover, as K is an
extension of k(T ), we get a map C → P1

k. We will define C̊ and ∆ as fiber
products

C̊ C ∆

A1
k P1

k Spec(k)

The construction of C̊ is analogous to the construction of OK as the integral
closure of Z in K in the number field case.

Remark 1.3. Gauss discovered and studied extensively the class group of a
number field. Over quadratic fields, the class group can be phrased in terms
of quadratic forms. So for many years, people were mislead to find a good
generalization of class group of higher degree fields.

Remark 1.4. For a long time, the theory of complex curves developped by
Riemann was analytic in nature. In particular the construction of curve was
done analytical locally.

We will only consider k = C from now on.

Remark 1.5. Often in this analogy, the function field side is seen as easy,
whereas the number field side is considered complicated. But somehow, the
results where sometimes first discovered in the number field case, to then be
developped in the theory of function fields.

LetK be a number field, the next step of the analogy is to consider Spec(OK)
to be an affine curve C̊.

Remark 1.6. Assume k = C. Given x ∈ C(C), we have vx ∶ K → Z ∪ {+∞}
mapping a rational function to its order of vanishing at x. It satisfies vx(C⋆) = 0.
This gives a correspondance

{points of C} ←→ {valuations on K}

Consider C(T ), one has the valuation v∞ (PQ) = −deg(P )+deg(Q), correspond-
ing to the point "at infinity" in the projective line.

This allows to spell out more precisely the analogy

C(T ) Q
vx ∶ x ∈ C ←→ vp ∶ p prime number
v∞ ∣ ⋅ ∣
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Or more generally for a number field K and the function field of a smooth
projective curve C = C̊ ∪∆,

C(C) K

vx ∶ x ∈ C̊ ←→ vp ∶ p prime ideal
v∞ ∶ ∞ ∈∆ Archimedean valuations on K

Let K be a number field, and σ ∶K ↪ C be a complex embedding. One has
an associated valuation ∣x∣σ = ∣σ(x)∣. This construction gives rise to a bijection
between the set of archimedean valuations on K and

{Spec(C) → Spec(OK)}/complex conjugation

Weil, Artin and Hasse discovered a Rosetta stone, allowing one to translate
and discover meaningful results in the context of the analogy:

1) In the function field case with k = C, the theory has been well developped
by Riemann. One has the notion of genus of a curve, which is topological
in nature, and appears in Riemann-Roch theorem

2) In the function field case with k = Fq, one still has a Riemann-Roch the-
orem, hence a notion of genus for curves. One also has a notion of ζ
functions and L-functions.

3) In the case of a number field K, one can also defined ζ functions and L
functions. They are in fact defined for any scheme of finite type over Z.

The quantity analogous to 2g − 2 in this case is log ∣∆K ∣.
The analytic continuation of ζ function was first obtained for number
fields, which is the “difficult case”, and it was then adapted to curves.

Remark 1.7. Other more recent research domain are also in the spirit of the
analogy described here. This is notably the case for Iwasawa theory, which is
inspired by the work of Weil. It would be a worth long time goal to spill out
more precisely the dictionary between geometry and number theory in this case.

1.2 Hybrid between Spec(Z) and Hermitian geometry over
C

We first set up the notations. Let K be a number field and X be a closed
reduced and geometrically integral subvariety of PN

K , defined by an homogenous
ideal I(X) ⊂K[X0, . . .XN ]. We will consider

X ∶= Zariski closure of X in PN
OK

.

Then X is defined by the ideal

I(X) ∶= I(X) ∩ OK[X0, . . . ,XN ].
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Given a nonzero prime ideal p in OK , we denote Fp. Then we consider

XFp
= X ⊗OK

Fp.

The corresponding homogenous ideal is

I(XFp
) = I(X)/pI(X) ⊂ Fp[X0, . . . ,XN ].

We can do the same with p replaced by σ ∶K → C, in which case

I(Xσ) = σ(I(X)) ⊂ C[X0, . . . ,XN ].

Denote by A the set of complex embeddings of K:

A = Hom(K,C) = (SpecK)(C).

We have the equalities ∣A∣ = d = r1+2r2, where d is the degree of K, r1 is the
number of real embeddings, and r2 is the number of complex embeddings up to
complex conjugation. An improvement of the previous equality is the following
isomorphism

K ⊗Q C→ CA

x⊗ λ↦ (σ(x)λ)σ∈A

which yields K ⊗Q R ≅ (CA)c.c., where c.c. denotes complex conjugation.
Moreover, we have the identifications

XC =X ⊗Q C =X ⊗K (K ⊗Q C).

As K ⊗Q C = CA, XC decomposes as

XC ≅ ⊎
σ∈A

Xσ.

Let X be a separeted scheme of finite type over Spec(Z).

Definition 1.8. An Hermitian vector bundles over X is a pair E = (E, ∣∣.∣∣)
where

• E is a vector bundle over X

• ∣∣.∣∣ is an Hermitian norm on the C∞ vector bundle Ean on X(C), compat-
ible with complex conjugation.

Basic operations on Hermitian vector bundles:

1) Given f ∶ X ′ → X , one has an Hermitian vector bundle f⋆E over X ′,

2) One has the usual tensor operations: given E and F , we can build E ⊕F ,
⋀iE, SymiE, E ⊗ F .
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1.3 Arakelov divisors

Assume that X is integral, with generic point η. Let L = (L, ∣∣⋅∣∣) be an Hermitian
line bundle on X . Given s ∈ Γ(Xη, Lη) ∖ {0} a non-zero meromorphic section,
one gets a pair

(divs, log(∣∣s∣∣−1))

where D = divs is a Cartier divisor and log(∣∣s∣∣−1) is a C∞ function on X(C) ∖
D(C) which has logarithmic singularities along DC. We will call such a function
a Green function for DC in X(C).

Definition 1.9 (Arakelov divisors).

1) A pair (D,g) where g is a Green function for DC is called an Arakelov
divisor.

2) Given f ∈ K(X)⋆, we have d̂ivf = (divf, log ∣fC∣). We call such an
Arakelov divisor a principal Arakelov divisor.

We will consider
OX ∶= (OX , ∣∣ ⋅ ∣∣ = 1),

and for any Arakelov divisor (D,g)

OX (D,g) ∶= (OX (D), ∣∣ ⋅ ∣∣ = e−g)

This induces bijections

{(L, s)}/isom ≅ {Arakelov divisors (D,g) in X}

{L Hermitian line bundle}/isom ≅ {Arakelov divisors (D,g) in X}/principal divisors.

Definition 1.10. We will denote by P̂ic(X) the group

{L Hermitian line bundle}/isom.

Example 1.11. For X = SpecZ, we have E = (E, ∣∣.∣∣) where E ≅ ZN and ∣∣ ⋅ ∣∣
is a Euclidean norm on ER ≅ RN . Hence the analogy gives more concretely in
this setting:

Euclidean lattices←→ vector bundles over projective curves.

Let K be a function field, and X = SpecOK . In this case

E = (E, (∣∣ ⋅ ∣∣σ)σ∶K↪C),

where ∣∣ ⋅ ∣∣σ is a norm on Eσ. One gets Pic(X) = Cl(K) and P̂ic(X) has a
surjective map to Cl(K) whose kernel is

Rr1+r2/ log(∣O⋆K ∣) ≅ R ×Tr1+r2−1.
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2 Analytic rings I - by Arthur-César Le Bras

2.1 What is analytic geometry?
The word is overused, here we mean it in the sense of Clausen-Scholze.

The first kind of geometry one encounters is differential geometry, but then
one encounters complex analytic geometry. Then we learn algebraic geometry,
but also the p-adic analog of complex analytic geometry.

All these theories are similar but slightly different, making it unclear that
they go in a common framework. The goal of analytic geometry here is to give
such a framework.

Goal : We want to do analytic geometry like we do algebraic geometry.
In algebraic geometry, the functions are polynomials, hence we have many

tools to study them, such as homological algebra, which are not readily available
for rings of continuous or analytic functions.

Recall the way one classically builds the theory of schemes. It proceeds in
two steps.

Step 1 (Affine schemes): We want to associate to any ring R a topological space
Spec(R) endowed with a sheaf of ring.

Step 2 (Glueing): A scheme is a locally ringed space which is locally of the form
Spec(R).

Alternative point of view:

AffSch = Ringop + Zariski topology

A scheme is then a sheaf for the Zariski topology which is locally affine. This
perspective is useful for generalizations: we can consider sheaves of groupoids,
spaces and so on.

One can also replace Zariski topology by étale topology, fppf topology ...
One of the requests is to choose a Grothendieck topology τ such that the

abelian categories Mod(R), or at least the derived categoriesD(R) =D(Mod(R)),
glue. This glueing condition is also called descent.

This leads to a notion of D(X) for X a scheme or the appropriate general-
ization. This is by definition the derived category of quasi-coherent sheaves on
X, and it satisfies D(Spec(R)) =D(R).

Plan for the lectures:

1. Analogue of Step 1 → Analytic affine stack

2. Analogue of Step 1, continued

3. Analogue of Step 2, choice of topology → Analytic stacks

4. The last 3 talks will be about examples of analytic stacks
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Reference: Main course of Clausen-Scholze “Analytic Stacks” (2023-24) on
Youtube [3].

Today: Condensed mathematics on Scholze’s webpage (careful, there are
some differences) Topoi and condensed sets (Anschütz).

2.2 Light condensed sets
Reference: [3, Lectures 2 and 3]

Naive attempt: use topological rings, and consider topological modules over
your topological ring. But all techniques of homological algebra, derived cate-
gories, derived functors, are difficult to use in presence of a topology...

Basic example: take Z as a discrete ring. The category of topological abelian
groups is not abelian ! The standard example is that id ∶ Rdisc → Rnat has trivial
kernel and no cokernel but it is not an isomorphism.

Idea: we need to change the notion of topological space. This is why Clausen-
Scholze defined (light) condensed sets.

Definition 2.1. A profinite set is a compact Hausdorff space which is totally
disconnected. They are also equivalently described as cofiltered limits of finite
sets.

Pro(Fin) ≅ Prof ⊂ Top is the category of profinite sets. It is stable under
limits.

Definition 2.2. A profinite set S is light if it is metrizable. Light profinite
sets are characterized as the sequential limits of finite sets, or as profinite sets
such that Cont(S,Z) is countable. We denote by Prof light the category of light
profinite sets.

Example 2.3. • finite sets

• N ∪ {∞} = lim
←Ð
{0,1 . . . , n,∞} where the transition maps

{0,1, . . . , n, n + 1,∞} → {0,1, . . . , n,∞}

are identities on the initial segment and sends n + 1 to ∞.

• the Cantor set C = {0,1}N

Remark 2.4. Any (metrizable) compact Hausdorff space receives a surjection
from a (light) profinite set.

Proof. Let K be a compact Hausdorff, and I be a cofiltered poset of finite open
covers {Ui,j →K}j∈Ji with i ∈ I and Ji is finite. For any i ∈ I, Ki = ⊎j∈Ji

Ui,j is
compact Hausdorff. This yields a surjection

S = lim
←Ð
i∈I

Ki →K.

And S is totally disconnected (exercise). Moreover one can restrict to only
considering the Ui,j in a fixed basis of the topology. This gives that S can be
taken light if K is metrizable, hence has a countable basis for its topology.
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Definition 2.5. One gets a Grothendieck topology on Prof light by declaring
that a family

{Si → S}i∈I
is a covering if I is finite and ⊎i∈I Si → S is surjective.

Definition 2.6. A light condensed set is a sheaf on Prof light endowed with the
topology defined above. In other words, it is a functor

X ∶ Prof light,op → Set

such that

(i) X(∅) = ⋆

(ii) X(S1⋃S2) =X(S1) ×X(S2)

(iii) for any surjection S′ → S, the following map is bijective

X(S) → {x ∈X(S′), p⋆x = q⋆x},

where p, q ∶ S′ ×S S′ → S′ are the projections.

The category of light condensed is denoted Cond(Set), it is a topos, and has
all limits and colimits. From now on, we will drop the word “light” from the
terminology, and everything is assumed to be light.

Let us see the link with usual topological spaces.

(−) ∶ Top→ Cond(Set)

T ↦ (S ↦ Cont(S,T ))

Using that surjective maps of compact Hausdorff spaces are quotient maps,
it is an exercise to verify the sheaf property.

Moreover, this functor has a right adjoint.

Cond(Set) → Top

X ↦X(⋆)⊺
Explicitely, the underlying set of the topological space associated to X is X(⋆)
and the topology is the quotient topology

⊎
S,x∈X(S)

S →X(⋆).

Proposition 2.7. (−) is fully faithful on sequential spaces (quotients of metriz-
able spaces).

Intuition: Let X ∈ Cond(Set)
• One should think of X(⋆) as the underlying set of X.

• One should think of X(N∪{∞}) as the set of convergent sequences in X.

Johnstone already tried to axiomatize these two things, but it has not enough
nice categorical properties (if one only uses the profinite set N ∪ {∞}, quasi-
compact objects will be countable).
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2.3 Condensed abelian groups
Reference: [3, Lecture 5]

By considering sheaves of groups, rings, modules, ... one gets the notion of
condensed group, ring, module ...

Definition 2.8. Cond(Ab) is the category of sheaves of abelian groups on
Prof light.

It is a Grothendieck abelian category, i.e. it is abelian, has limits and col-
imits, filtered colimits commute with finite limits.

Example 2.9. In this context we still have the map Rdisc → Rnat induced by
identity. It has 0 kernel, but it is not an isomorphism. This can be seen at the
level of its cokernel Q:

Q ∶ S ↦ Cont(S,R)/LocConst(S,R)

Further properties:

• Forgetful functor Cond(Ab) → Cond(Set) has a left adjoint X ↦ Z[X].
More precisely, Z[X] is the sheaf associated to the presheaf S ↦ Z[X(S)].

• There is a unique closed symmetric monoidal structure on Cond(Ab),
denoted − ⊗ −, commuting with colimits in each variable and such that
X ↦ Z[X] is symmetric monoidal.

Remark 2.10. One can interpret Z[X] as the datum of a topology on Z[X(⋆)].
Let us make it explicit in one important case:

Given S ∈ Prof light, written as S = lim
←Ð
i

Si with Si finite,

Z[S] = ⋃
n

lim
←Ð
i

Z[Si]ℓ1⩽n ⊊ lim←Ð
i

Z[Si]

Here Z[Si]ℓ1⩽n = {f ∶ Si → Z ∣ ∑s∈Si
∣f(s)∣ ≤ n}

Proposition 2.11. Z[N ∪ {∞}] is internally projective in Cond(Ab), i.e.

HomCond(Ab)(Z[N ∪ {∞}],−)

is exact.

Remark 2.12. • N ∪ {∞} is not a projective object in Cond(Set). For
example

(2N ∪ {∞}) ∪ (2N + 1 ∪ {∞}) → N ∪ {∞}

is a surjection which has no splitting.

• In the “Old” formalism, one replaces Prof light by Prof. Cond(Ab)old has a
family of compact projective generators, Z[S] with S extremally discon-
nected, but they are not internally projective.
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• The previous Proposition is not true in the old formalism, and there are
no internal projective objects.

More generally, one can defined Cond(Ring) and the category of condensed
modules over a condensed ring.

Remark 2.13 (Disclaimer). It seems that we already achieved the goal, that
we fixed ourselves. Indeed, we can now replace topological rings and topological
modules by their condensed enhancements. But here is the basic problem: let
A be a condensed ring, M , N two condensed A-modules

(M ⊗A N)(⋆) =M(⋆) ⊗A(⋆) N(⋆).

This is the algebraic tensor product which appears as the underlying module.
But to perform geometric constructions such as product of analytical spaces, or
for other purposes in functional analysis, one need a completed tensor product
!

2.4 Analytic rings
Reference: [3, Lectures 8 and 9]

Definition 2.14. An analytic ring A is a pair (A▷,D(A)), where A▷ is a
condensed ring, D(A) ⊂D(A▷) is a full triangulated subcategory such that

1. D(A) is stable under limits and colimits

2. ∀M ∈D(A▷),N ∈D(A) we have RHomA▷(M,N) ∈D(A)

3. Let − ⊗A▷ A be the left adjoint to D(A) ⊂ D(A▷). Then − ⊗A▷ A sends
D(A▷)⩾0 to D(A)⩾0.

Remark 2.15. One should think of D(A▷) as the category of all topological
modules on the topological ring A▷, and of D(A) as the category of complete
modules for the analytic structure. But this analogy isn’t perfect and can be
slightly misleading: e.g. complete objects are stable under colimits.

We denote by AnRing the category of analytic rings. A morphism (A▷,D(A)) →
(B▷,D(B)) is a morphism A▷ → B▷ such that any M ∈D(B) seen as an A▷-
module is in D(A).

Example 2.16. Given a condensed ring A▷, one has the trivial analytic struc-
ture A▷triv = (A

▷,D(A▷)).
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3 Introduction to Arakelov geometry, Part 2 - by
Jean-Benoît Bost

We have already seen the definition of Hermitian bundles. There are two real-
valued invariants in Arakelov geometry. One of them is the Arakelov degree,
which we aim to introduce in a first place.
Let us fix the setting until the end of this section. Let K be a number field, id
est [K ∶ Q] < ∞. Let us denote Spec(OK) by X .

3.1 Real-valued invariants produced by Arakelov geome-
try

3.1.1 Arakelov degree

Notation. We denote by Z0(X) the space of 0-cycles on X , id est cycles of
dimension 0. An element of Z0(X) can be written as a formal sum of points
∑i∈I niPi where the Pi’s are closed points, the ni’s are integers and I is finite.

Notation. By convention, we write p for a prime number and p for a non-zero
prime ideal of OK .

Definition 3.1. We introduce:

Ẑ0(X) = (Z0(X) ⊕RX(C))
c.c.
= Z0(X) ⊕ (RX(C))

c.c.

The exponent c.c. means that we consider the invariant part under complex
conjugation.

Definition 3.2. We define the map

d̂iv ∶ { K× → Ẑ0(X)
q ↦ (∑p≠0 prime inOK

vp(q)[p], (− log(∣σ(q)∣)σ∶K↪C)) .

Definition 3.3. Let p ⊂ OK be a prime ideal. We set Fp to be OK/p and Np

to be the cardinal of Fp.

Definition 3.4. We define the map

d̂eg ∶ { Ẑ0(X) → R
(∑p≠0 prime inOK

np[p], (λσ)σ∶K↪C) ↦ ∑p≠0 prime inOK
np log(Np)

where by definition λσ = λσ.

Proposition 3.5. The following composition

K×
d̂ivÐÐ→ Ẑ0(X)

d̂egÐÐ→ R

is zero.
In other words, we have the following formula:

∀q ∈K×, d̂eg ○ d̂iv(q) = 0

which is named the product formula.
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Proof. First, let us remark that the following composition

Q× d̂ivÐÐ→ Ẑ0(Spec(Z))
d̂egÐÐ→ R

is zero. Indeed, let us take some q in Q× and let us compute d̂eg ○ d̂iv(q). We
have:

d̂eg ○ d̂iv(q) = d̂eg
⎛
⎝ ∑pprime

vp(q)[p] − log(∣q∣)
⎞
⎠
= ∑

pprime

vp(q) log(p) − log(∣q∣) = 0.

Now, let us denote by π ∶ Spec(OK) → Spec(Z) the structure morphism. Then,
we consider its pushforward as follows:

π∗ ∶ {
Ẑ0(Spec(OK)) → Ẑ0(Spec(Z))
(∑p≠0 prime inOK

np[p], (λσ)σ∶K↪C) ↦ (∑pprime (∑p∣p npfp) [p],∑σ∶K↪C λσ)

where the fp’s can be computed as some residues.

Hence, we obtain a commutative diagram:

Q× Ẑ0(Spec(Z)) R

K× Ẑ0(X) R.

d̂iv d̂eg

NK/Q

d̂iv

π∗

d̂eg

It concludes the proof.

Corollary 3.6. We can factorize the Arakelov degree map as follows:

d̂eg ∶ Ẑ0(X)/divK× → R

where we have
Ẑ0(X)/divK× ≅ P̂ic(X).

Example 3.7. Let L ∶= OX (D,g) be a Hermitian line bundle over Spec(OK).
We have

d̂eg(D,g) = d̂eg(L) ∈ R.

Example 3.8. Let E be a Hermitian vector bundle of rank N over Spec(OK).
Then, we have

d̂eg(E) = d̂eg(
N

⋀E).

Example 3.9. Let E = (E, ∣∣⋅∣∣) a Hermitian vector bundle over Spec(Z). Then,
we have

d̂eg(E) = − log(covol(E)).
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Example 3.10. We consider the line bundle O(1) over PN
Z . We want to define

a norm on O(1)C to obtain a Hermitian bundle. To do so, we consider the exact
sequence

O⊕(N+1)PN+1
Z

→ O(1) → 0.

After tensorizing by C, we obtain

O⊕(N+1)PN
C

→ O(1)C → 0.

We consider the standard metric on O⊕(N+1)PN
C

which is given by ∑N
i=0∣ti∣2 on each

fiber. We set ∣∣⋅∣∣ to be the quotient metric of this standard metric. We obtain
a Hermitian bundle O(1) = (O(1), ∣∣⋅∣∣).

Let P ∈ PN
Z (Q). Knowing that PN

Z (Q) ≅ PN
Z (Z), we can see P as a morphism

P ∶ Spec(Z) → PN
Z . Then, we have

d̂eg(P ∗O(1)) ∶= log(
N

∑
i=0
x2i)

where P = (x0 ∶ . . . ∶ xN).

Remark 3.11. Let us generalize the statement of Example 3.10. Let us suppose
X → Spec(Z) to be separated and of finite type. Let us recall that we have
introduced the set of 0-cycles Z0(X) in the beginning of Section 3.1.1. Then we
have

d̂eg ∶ { Z0(X) → R
∑i∈I ni Pi ↦ ∑i∈I ni log(∣K(Pi)∣).

Fact 3.12. Let C be a closed integral subscheme of X of dimension 1 which is
proper over Spec(Z). Let f ∈ K(C)× be a non-zero meromorphic function on
C. If x ∈ C(C) is a complex point of C, let us denote by fx ∈ C× the value of f
at x. Then, we have

d̂eg ○ divf + ∑
x∈C(C)

log(∣fx∣−1) = 0.

When C → Spec(Z) is dominant, it can be compared with the product formula
(Proposition 3.5). Otherwise, there is also an archimedean contribution with
the sum over complex points of C.

Definition/Proposition 3.13. We keep notation of Fact 3.12. Let L be a
Hermitian bundle over X and let us fix a section s ∈ Γ(Cη, Lη) ∖ {0}, where η
is the generic point. The number

d̂eg(L∣C) = htL ∶= (d̂eg ○ div)(s) + ∑
x∈C(C)

log(∣∣s(x)∣∣−1) ∈ R

is a well-defined real number. It is named the degree of L along C.
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3.1.2 Arakelov intersection number on arithmetic surfaces

Definition 3.14. An arithmetic surface is an integral scheme X of finite type
over Spec(Z) which we suppose to be flat, regular and of absolute dimension 2.

Remark 3.15. In this situation, X(C) is a Riemann surface which is compact
if and only if X is projective over Q.

Definition 3.16. Let X be an arithmetic surface and let L = (L, ∣∣⋅∣∣) be a
Hermitian bundle over X where ∣∣⋅∣∣ is a C∞-metric. Then we define

c1(LC) =
1

2πi
∂∂ log(∣∣s∣∣2)

where s is a locally C-analytic section of LC over the Riemann surface X(C).

Remark 3.17. We keep notation of Definition 3.16. The number c1(LC) is a
well-defined (1,1)-form on X(C).

Remark 3.18. Let X be an arithmetic surface and let L be OX (D,g) where
D is divs for s a non-zero meromorphic section of L and g is − log(∣∣s∣∣). Then
we have

c1(LC) =
i

π
∂∂g + δDC ∶= ω(g).

Definition 3.19 (Arakelov intersection number). Let X be an arithmetic sur-
face and let L be as in Definition 3.16. Let (D,g) be an Arakelov divisor in
X . We suppose that the support ∣D∣ of D is proper over Spec(Z) and that the
support of g is compact. We define

L ⋅ (D,g) ∶= d̂eg(L∣C) + ∫X(C)
g c1(LC) ∈ R.

Remark 3.20. In Definition 3.19, the integral takes into account archimedean
places of (D,g) which are forgotten in d̂eg(L∣C).

Definition 3.21. Let (D,g) be an Arakelov divisor as in Definition 3.19 and
(D′, g′) be an element of Ẑ0(X) (defined in Definition 3.1). We define

(D′, g′) ⋅ (D,g) ∶= OX (D′, g′) ⋅ (D,g).

3.1.3 Analysis on Riemann surfaces

In this subsection, let M be the Riemann surface X(C).

Definition 3.22 (Dirichlet product). Let f1, f2 be functions in C∞(M,R). We
define the Dirichlet product as follow

< f1, f2 >Dir= i∫
M
∂f1 ∧ ∂f2 =

1

2
∫
M

∂f1
∂x

∂f2
∂x
+ ∂f1
∂y

∂f2
∂y

dxdy = −1
2
∫
M
f1∆f2

where we write z = x + iy.
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Remark 3.23. This product is symmetric when M is compact, id est when
X is projective over Spec(Z). The positivity of the product is straightforward.
For simplicity, let us suppose that M is compact from now on.

Definition 3.24 (Star product). Let g1 and g2 be Green functions respectively
associated to some divisors D1 and D2. For α ∈ {1,2}, let us recall that we have
defined a C∞ (1,1)-form ω(gα) on M as follows

ω(gα) =
i

π
∂∂gα + δDα

in Remark 3.18. Let us suppose that supports of D1 and D2 are disjoint. We
define

g1 ∗ g2 ∶= g2 δD1 + g1 ω(g2).

Remark 3.25. We keep notation of Definition 3.24. We remark that ∫M g1 ∗g2
is a real number.

Proposition 3.26. We keep notation of Definition 3.24.

1. We have the equality

∫
M
g1 ∗ g2 = ∫

M
g2 ∗ g1.

2. If the supports of g1 and g2 are disjoint, then

∫
M
g1 ∗ g2 = 0.

3. Let f1, f2 ∈ C∞(M,R). We have the equality

∫
M
(g1+f1)∗(g2+f2) = ∫

M
g1∗g2+∫

M
(f1 ω(g2)+f2 ω(g1))−

1

π
< f1, f2 >Dir

where ω(gi) and < ⋅, ⋅ >Dir are defined respectively in Remark 3.18 and in
Definition 3.22.

Remark 3.27. To prove Proposition 3.26(1), one has to apply the Green for-
mula.

Let us give a few basic facts.

Properties 3.28. We keep notation of Definition 3.24 and of Proposition 3.26.

1. We have the equality

(D1, g1+f1)⋅(D2, g2+f2) = (D1, g1)⋅(D2, g2)+∫
M
((f1)ω(g2)+f2 ω(g1))−

1

π
< f1, f2 >Dir .
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2. Let us suppose that supports of (D1)Q and (D2)Q are disjoint. Let us
write D1 ⋅D2 the set of 0-cycles on the intersection of the supports of the
divisors ∣D1∣ ∩ ∣D2∣. We suppose D1 ⋅D2 to be proper over Z. Then, we
have the equality

(D1, g1) ⋅ (D2, g2) = d̂eg(D1 ⋅D2) + ∫
M
g1 ∗ g2.

3. The equality
(D1, g1) ⋅ (D2, g2) = (D2, g2) ⋅ (D1, g1)

holds.

Remark 3.29. This setting is interesting when the fiber X∆ over ∆ is a little
complicated, for example singular.

3.2 What is Arakelov geometry good for ?

3.2.1 Diophantine results (not surprising)

Arakelov geometry can be very useful to understand classical transcendence
results, even though it is not necessary to do the proofs. Let us explain some
links with arithmetic geometry.

Proposition 3.30. Let us consider formal series f(X) = ∑n∈N anX
n where we

suppose the an’s to be integers (or more generally we can suppose that n!an is
an integer) for all n in N. Let us suppose that f is meromorphic on C (or more
generally that we have a growth estimate at ∞). If f is non-algebraic, then
(almost all) special values f(α) for α in Q ∖ {i} are in C ∖Q.

We can state the contrapositive of Proposition 3.30 as follows.

Corollary 3.31. Let us consider the same setting as in Proposition 3.30 but
without assuming that f is non-algebraic. If many values f(α) are in Q, then
f is algebraic.

Remark 3.32. A proof of Proposition 3.30 mimics proofs of algebraic geometry,
see GAGA, Grothendieck, Hartshorne...

Remark 3.33. Arakelov geometry also allows to do some mixes between alge-
braic geometry and arithmetic geometry. It can seem strange that we manage
to obtain results which do not depend on the chosen model. For example, let us
consider X a variety over Q and we consider a model X and a Hermitian line
bundle L over X . Then the results depend on the asymptotic L

⊗n
for n very

big. This asymptotic does not depend on the choice of the model.
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3.2.2 Ineffective proof of finiteness of rational points (very surpris-
ing)

Theorem 3.34 (Mordell). Let C be a projective curve over Q. Then C(Q) is
finite. If K is a number field, C(K) is finite.

Remark 3.35. Let us consider C ↪ PN
Q . Instead of considering points in C(Q),

the proof considers pairs (P,Q) ∈ C(Q)2. Hence, it does not say anything if
∣C(Q)∣ = 1. Otherwise, there is some control over ht(P )/ht(Q).
For p, q, n integers, we define the line bundle

M(p, q, n) ∶= (O(p) ⊗O(q))(n∆)

where we twist n times by the diagonal. Then

htM(p,q,n)(P,Q) = pht(P ) + q ht(Q) + n d̂eg(P ⋅Q) + n log(d∞(P,Q)−1).
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4 Analytic rings II - by Arthur-César Le Bras

We denote by AnRing the category of analytic rings. Yesterday we formulated
the definition of analytic rings in a way which is the right one when dealing
with general animated (“derived”) condensed rings. It is important to build the
theory correctly to work in the derived framework, but for today at least we
will only consider static (underived) condensed rings. In this case, let us now
give a different point of view on the notion of analytic ring structure.

Definition 4.1. Let A▷ be a condensed ring. An analytic ring structure A on
A▷ is the datum of a full abelian subcategory ModA ⊂ModA▷ such that

1. it is stable under limits, colimits and extensions.

2. it contains A▷ (i.e. the ring itself is "complete").

3. for all M ∈ ModA▷ and N ∈ ModA and for all i we have Exti(M,N) ∈
ModA.

This is a slightly different definition from the one we gave yesterday, see
[3, Lecture 13/24] for the precise relation between the two definitions. If we
have ModA as in Definition 4.1, then D(A) ∶= {M ∈ D(A▷) s.t. Hq(M) ∈
ModA for all q} defines an analytic ring structure on A▷ in the sense of Defi-
nition 2.14. Conversely, if we have such a category D(A), the abelian category
ModA ∶= D(A) ∩ModA▷ defines an analytic ring structure in the sense of Defi-
nition 4.1. For today, we stick with this abelian definition.

Notation 4.2. If A = (A▷,ModA) is an analytic ring and S ∈ Prof light, we set
A[S] ∶= A▷[S] ⊗L

A▷ A.

Definition 4.3. Let A = (A▷,ModA) and B = (B▷,ModB) be analytic rings.
A morphism of analytic rings A→ B is a morphism of condensed rings A▷ → B▷

such that for all M ∈ModB , we have M ∈ModA.

The goal of today’s talk is to give concrete interesting examples of analytic
rings. Before doing that, we state the following result

Proposition 4.4. The category ModA has a unique symmetric monoidal struc-
ture commuting with colimits in each variable and making − ⊗A▷ A symmetric
monoidal. Moreover, the functor

ModA▷
−⊗

A▷B▷

Ð→ ModB▷
−⊗

B▷B
Ð→ ModB

factors uniquely over

ModA▷
−⊗

A▷A
Ð→ ModA Ð→ModB .

The same statement holds on the derived level.
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Notation 4.5. We denote −⊗AB ∶ModA →ModB , resp. −⊗L
AB ∶ D(A) → D(B)

this unique factorisation.

Proof. Exercise. The key point is that the kernel K of −⊗A▷A is a tensor ideal,
meaning that if M ∈ ModA is killed by − ⊗A▷ A, the same holds for M ⊗A▷ N
for all N ∈ModA▷ .

Example 4.6 (Trivial analytic ring structure). Let A▷ be a condensed ring.
Then (A▷,ModA▷) is an analytic ring. This trivial example is already inter-
esting, even when A▷ is discrete: indeed, ModA▷ is the category of condensed
A▷-modules and extends the usual category of discrete A▷-modules. This will
allow us to define a six functor formalism on quasicoherent sheaves of schemes.

Example 4.7 (The induced analytic ring structure). Let A = (A▷,ModA) be an
analytic ring and let B▷ be an A▷-algebra. Assume moreover that B▷ ∈ModA.
We define

Mod
B▷/A
∶= {M ∈ModB▷ s.t. M ∈ModA when seen as A▷-module}.

Then B▷/A ∶= (B
▷,Mod

B▷/A
) defines an analytic ring structure on B▷, called

the induced analytic ring structure. This example is useful because if we build
interesting analytic ring structures on Z, it allows us to obtain analytic ring
structures on bigger rings without further work.

4.1 The solid analytic ring structure
We introduce a non-trivial analytic ring structure Z◻ on Z which is relevant to
non-archimedean analysis, a place where a sequence is summable if and only if
it goes to 0. To define this analytic ring structure, the idea is to translate this
condition on null-sequences in condensed terms thanks to the light profinite set
N∪{∞}. We set P ∶= Z[N∪{∞}]/Z[∞] ∈ Cond(Ab). Then for allX ∈ Cond(Ab),
the abelian group Hom(P,X) can be intuitively thought as the abelian group
of null-sequences in X.

Remark 4.8 (Warning). This is just an intuition. Even when X comes from a
topological abelian group, Hom(P,X) does not always coincide with convergent
null-sequences. Indeed, if X is not separated a sequence can have different
limits: in other words, the morphism Hom(P,X) → Hom(Z[N],X) may not be
injective.

Notation 4.9. P actually has an algebra structure: when we see it as an
algebra, we denote it by Z[X̂]. This notation is justified by the fact that Z[N]
seen as an algebra naturally identifies with the ring of polynomials Z[X], via
the morphism [n] ↦Xn.

Let shift ∶ P → P be the endomorphism of P induced by [n] ↦ [n + 1].
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Definition 4.10. LetM ∈ Cond(Ab). We say thatM is solid if Hom(P,M) id−shiftÐ→
Hom(P,M) is an isomorphism. We call Solid the correspondent subcategory of
ModZ = Cond(Ab).

What is the intuition behind this definition? The morphism id − shift ∶
Hom(P,M) → Hom(P,M) can be thought in terms of null-sequences as

{null-sequences in M} → {null-sequences in M}, (xn)n∈N ↦ (xn −xn+1)n∈N.

The inverse of this map, if it exists, should be

{null-sequences in M} → {null-sequences in M}, (xn)n∈N ↦ (
∞
∑
i=0
xi,

∞
∑
i=1
xi,

∞
∑
i=2
xi, . . . ).

Consequently, saying that this inverse exists (i.e. saying that id−shift ∶ Hom(P,M) →
Hom(P,M) is an isomorphism) amounts to say that every null-sequence is
summable.

Theorem 4.11. Z◻ ∶= (Z,Solid) is an analytic ring structure on Z.

Proof. Stability by limits, colimits and extensions follows from internal projec-
tivity and compactness of P as an object of Cond(Ab).

Let us prove the stability under Exti. Let M be a condensed abelian group
and N be a solid abelian group. By internal projectivity of P , we have

Hom(P,Exti(M,N)) = Exti(P ⊗M,N),

which canonically identifies with Exti(M,Hom(P,N)). SinceN is solid, id−shift
is an automorphism of Hom(P,N). Thus the same holds for Hom(P,Exti(M,N)) =
Exti(M,Hom(P,N)).

The only thing left to show is that Z is solid. We have an identification
Hom(P,Z) ≃ ⊕n∈NZ, under which the morphism id − shift becomes

⊕
n∈N

ZÐ→ ⊕
n∈N

Z, (xn)n∈N ↦ (xn − xn+1)n∈N.

This is an isomorphism with inverse (xn)n∈N ↦ (∑∞i=n xi)n∈N. (This is not
surprising: Z is discrete, so every null-sequence is eventually constant, hence
summable).

Notation. We set (−)◻ ∶= − ⊗Z Z◻ and we call it solidification.

With the light formalism, the proof has become easy because of the internal
projectivity of P in Cond(Ab). What is less clear from this formalism is how
to compute Z[S]◻ for S ∈ Prof light. We have the following (with no proof)

Fact 4.12. Let S = limi Si be an infinite light profinite set. Then we have

Z◻[S] ∶= Z[S]L◻ = lim
i
Z[Si] ≃ ∏

N
Z.

In particular, ∏NZ is a compact projective generator of Solid.
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To see the last isomorphism, observe that since Z is discrete, every con-
tinuous map S → Z factors through a finite quotient, thus we have C(S,Z) =
colimi C(Si,Z) and thus

lim
i
Z[Si] = Hom(C(S,Z),Z).

Moreover, one can prove that C(S,Z) is a free abelian group. The choice of a
basis gives isomorphisms C(S,Z) ≃ ⊕NZ and limiZ[Si] ≃ ∏NZ.

Beware that in general (−)L◻ is really derived, as the following remark shows

Remark 4.13. Let X be a CW complex. Then we have

Z[X]L◻ ≃ C●(X,Z),

where C●(X,Z) denotes the complex of singular chains. This result (which is a
bit surprising) implies that (−)L◻ can have a contribution in arbitrary negative
cohomological degree. To prove this, one observes that we have

RΓsing(X,Z) = RHom(Z[X],Z) = RHom(Z[X]L◻,Z),

where the last equality uses the fact that Z is solid. On the other hand,
RΓsing(X,Z) has C●(X,Z) as Z-linear dual. Thus we get an induced map

Z[X]L◻ → C●(X,Z)

and we need to check it is an isomorphism, which can be done by descent from
the case where X is a profinite set.

Notation 4.14. We set − ⊗L◻
Z − ∶= − ⊗

L
Z◻ −.

Remark 4.15 (Solid tensor product computations). We have the following
solid tensor product computations

1) ∏
N
Z⊗L◻

Z ∏
N
Z ≃ ∏

N×N
Z.

Proof. Using the isomorphism N ×N ∼→ N and the fact that Z[−] is symmetric
monoidal, we have P ⊗Z P ≃ P . If we combine this with the isomorphism
PL◻ ≃ ∏NZ we get the desired computation.

From this we get many other computations:

2) ZJtK⊗L◻
Z ZJuK ≃ ZJt, uK.

Proof. As a condensed abelian group, we have ZJtK ≃ ∏NZ. Hence this compu-
tation is a direct consequence of 1), where we also take care of the ring structure
of ZJtK, ZJuK and ZJt, uK.
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3) Zp ⊗L◻
Z Zℓ ≃

⎧⎪⎪⎨⎪⎪⎩

Zp if p = ℓ,
0 if p ≠ ℓ.

Proof. The trick is to write Zp = ZJtK/(t − p) and similarly for Zℓ and to use
2).

This computation tells us that the solid tensor product has better properties
than ⊗L

Z : indeed, the underlying abelian group of Zp ⊗L
Z Zℓ would just be the

algebraic tensor product, which is huge.

4) (⊕
N
Zp)∧p[

1

p
] ⊗L◻

Z (⊕
N
Zp)∧p[

1

p
] = (⊕

N×N
Zp)∧p[

1

p
].

Proof. To compute solid tensor products we have two tools: the basic compu-
tations 1), 2), 3) and the commutation with colimits in both variables. Thus
inverting p is not a problem. The difficult part is to deal with the p-adic com-
pletion, since it is not a colimit but a limit. The trick is to write the p-adic
completion of ⊕NZp as a colimit as follows (see [1, Lemma 5.33])

(⊕
N
Zp)∧p = ⋃

f ∶N→N
f(n)→∞
if n→∞

∏
N
pf(n)Zp.

Thus we have

(⊕
N
Zp)∧p[

1

p
] ⊗L◻

Z (⊕
N
Zp)∧p[

1

p
] = ((⊕

N
Zp)∧p ⊗L◻

Z (⊕
N
Zp)∧p)[

1

p
] =

= colim
f,g∶N→N

going to ∞

∏
N×N

pf(n)+g(n)Zp ≃ colim
h∶N×N→N

going to ∞
∏

(n,m)∈N×N
ph(n,m)Zp.

The last equality here comes from cofinality between the two filtered systems.

This applies in particular to p-adic Banach spaces, i.e. Qp-vector spaces
which are complete with respect to a non-archimedean norm. The choice of an
orthonormal basis I gives an identification V ≃ (⊕I Zp)∧p[ 1p ], where (⊕I Zp)∧p

is the unit ball for the norm (see [1, Lemma 5.33]). Moreover, we can assume
I countable (in general, V can be written as filtered colimit of p-adic Banach
spaces where I can be assumed to be countable). Thus, if we have two p-adic
Banach spaces V and W , we can present them as

V ≃ (⊕
N
Zp)∧p[

1

p
], W ≃ (⊕

N
Zp)∧p[

1

p
]

and the computation V ⊗L◻W is given by 4). As a particular case, we get the
following computation

Qp⟨t⟩ ⊗L◻
Z Qp⟨u⟩ ≃ Qp⟨t, u⟩,
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where Qp⟨x1, . . . , xn⟩ denotes the Tate algebra in n variables. This is an im-
portant computation, since it matches with the one we use when doing p-adic
analytic geometry.

4.2 Relative solid analytic ring structure
Let R be a discrete ring. Since R is solid, by Example 4.7 we can define the
analytic ring

R/Z◻ = (R,{M ∈ModR ∣M is solid}).

For every light profinite set S, we have the free objects

R/Z◻[S] ∶= R[S]⊗
L
RR/Z◻ = (Z[S]⊗

L
Z R)⊗L

RR/Z◻ = (Z[S]
L◻)⊗ZR = (∏

N
Z)⊗ZR.

(observe that computing − ⊗L R/Z◻ is the same thing as solidifying and then
base-changing to R). In general, there is no reason why these free objects should
coincide with ∏NR. We are now going to see another analytic ring structure
on R such that the free objects are ∏NR.

Definition 4.16. Let f ∈ R. We say that M ∈ModR/Z◻ is f -solid if id− fshift ∶
Hom(R⊗Z P,M) → Hom(R⊗Z P,M) is an isomorphism.

Remark 4.17. Since R is solid, I could also have taken R⊗◻ZP instead of R⊗ZP
in the definition: it would have changed nothing.

Again, the intuition is that a solid R-module M is f -solid if every null-
sequence (xn)n∈N is such that the sequence (fnxn)n∈N is summable. Note that
if f = 1, the condition is exactly the one of being solid, which is always satisfied
by M by hypothesis.

We set ModR◻ ∶= {M ∈ModR/Z◻ ∣M is f -solid for all f ∈ R}.

Proposition 4.18. R◻ ∶= (R,ModR◻) is an analytic ring structure on R. More-
over, for S = limi Si light profinite, we have

R◻[S] = colim
R′⊆R

finite type
Z-algebra

lim
i
R′[Si].

In particular, if R is a finite-type Z-algebra we have R◻[S] = limiR[Si] ≃ ∏NR.

We consider the case of the polynomial algebra R = Z[T ]: we explicit the
Z[T ]-solidification functor and we show how to compute Z[T ]◻[S] in this case.
We have

Z[T ] ⊗◻Z P ≃ Z[T ]/Z◻ ⊗Z Z[X̂] ≃ ZJXK[T ],

where the last isomorphism is given by the fact that computing −⊗Z Z[T ]/Z◻ is
the same as solidifying and base-changing to Z[T ], plus the fact that we have
P◻ = ZJXK. Under this identification, the shift morphism on P◻ corresponds to
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the multiplication by X in ZJXK. Thus M ∈ModZ[T ]/Z◻ is T -solid if and only if
we have

id−X ⋅ T ∶ Hom(ZJXK[T ],M) → Hom(ZJXK[T ],M)

is an isomorphism.

Remark 4.19. One can show that M lies in ModZ[T ]◻ if and only if it is T -
solid. More generally, if R is a finite type Z-algebra with generators r1, . . . , rn,
M lies in ModR◻ if and only if it is ri-solid for i = 1, . . . , n.

We have a short exact sequence

0Ð→ ZJXK[T ] id−XTÐ→ ZJXK[T ] Ð→ Z((T −1)) Ð→ 0. (1)

Consequently, for M ∈ D(Z[T ]/Z◻) (note that we are switching to the derived
definition), M is T -solid if and only if we have RHomZ[T ](Z((T −1)),M) = 0.

We can describe the functor − ⊗Z[T ]/Z◻ Z[T ]◻ ∶ D(Z[T ]/Z◻) → D(Z[T ]◻) as
follows. For M ∈ D(Z[T ]/Z◻), we have

M ⊗Z[T ]/Z◻ Z[T ]◻ ≃ RHomZ[T ](fib (Z[T ] → Z((T −1))),M).

The key observation to deduce this is that Z((T −1)) is an idempotent algebra
in D(Z[T ]/Z◻) (i.e. the canonical map Z((T −1)) → Z((T −1)) ⊗Z[T ]/Z◻ Z((T −1))
is an isomorphism). One can show that we have fib (Z[T ] → Z((T −1))) =
T −1ZJT −1K[−1] (easy at the level of modules, but one needs to be careful about
the algebra structure). We get an explicit description of the functor

−⊗Z[T ]/Z◻Z[T ]◻ ∶ D(Z[T ]/Z◻) → D(Z[T ]◻), M ↦ RHomZ[T ](T
−1ZJT −1K[−1],M).

We can do even better if M = N[T ] for some N ∈ D(Z◻). Indeed we can
rewrite it as

M ⊗Z[T ]/Z◻ Z[T ]◻ ≃ RHomZ[T ](T
−1ZJT −1K[−1],N[T ]) ≃ RHomZ(uZJuK,N),

where the Z[T ]-module structure on uZJuK is given by T ⋅u = 0, T ⋅u2 = u, T ⋅u3 =
u2, . . . This formula tells us that we have

−[T ] ⊗Z[T ]/Z◻ Z[T ]◻ = RHomZ(uZJuK,−) ∶ D(Z◻) → D(Z[T ]◻).

Consequently, this functor commutes not only with colimits (which we already
know, since it a left adjoint) but also with limits (since it is expressed as a
covariant Hom). This property is useful to check that we have

Z[T ]◻[S] = lim
i
Z[T ][Si] = ∏

N
Z[T ].

Indeed, it allows us to reduce this to the case where S is finite.
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Example 4.20. A consequence of the fact that the the functor −[T ] ⊗Z[T ]/Z◻
Z[T ]◻ ∶ D(Z◻) → D(Z[T ]◻) commutes with limits is that we have

Qp[T ] ⊗Z[T ]/Z◻ Z[T ]◻ = Qp⟨T ⟩.

Remark 4.21. More geometrically, the functor D(Z◻) → D(Z[T ]◻) is the pull-
back functor from the affine line. The fact that it commutes with limits means
that the corresponding morphism between geometric objects is smooth.

4.3 Gaseous analytic ring structure
The solid theory is not able to include archimedean objects: for example, we
have RL◻ = 0. This is not surprising, since being solid means that null-sequences
are summable, which is false in R. Nevertheless, if (xn)n∈N is a null-sequence in
R, the sequence (rnxn)n∈N is summable if r ∈ R and r < 1.

Definition 4.22. We define ModRgas as the full subcategory of ModR of those
condensed R-modules M for which id− 1

2
shift ∶ HomR(R⊗ZP,M) → HomR(R⊗Z

P,M) is an isomorphism.

Remark 4.23. r = 1
2

is just a choice.

This defines an analytic ring structure Rgas ∶= (R,ModRgas) on R. The proof
of this fact is not difficult because of internal projectivity of P .

Notation 4.24. We set (−)gas ∶= − ⊗R Rgas ∶ModR →ModRgas .

What is really non-trivial is the computation of the free objects Rgas[S]
for a light profinite set S and of the object (R ⊗Z P )gas. Clausen and Scholze
managed to carry out this computation for all S. We only give the result for
(R⊗Z P )gas.

Proposition 4.25. We set Rgas[X̂] ∶= (R⊗Z P )gas. Then we have

Rgas[X̂] = {
∞
∑
n=0

anX
n ∣ (an)n∈N has quasi-exponential decay, i.e. ∃ε, c > 0,0 < a < 1 s.t. ∣an∣ ≤ can

ε

}

Idea of proof. We write a short exact sequence like (1), and get a condensed R-
module R∞ taking the role of Z((T −1)). We obtain a characterisation of gaseous
modules as those M ∈ ModR such that RHomR(R∞,M) = 0. This allows us to
obtain an abstract formula for

(−)gas ∶ D(ModR) → D(ModRgas), M ↦ RHomR(fib(R→ R∞),M).

We then need to explicit it for M = R⊗Z P to get the desired result.

This is a bit mysterious. The definition of Rgas is quite natural but Rgas[S]
have a very difficult description.
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The gaseous theory is particularly useful when one wants to do complex geom-
etry. Indeed, in this case one should be allowed to do tensor products between
rings of holomorphic functions, and it turns out that the gaseous tensor prod-
uct gives the expected computations. Let D be a closed disk in C and let
O(D)† ∶= {overconvergent holomorphic functions in D}. We can naturally see
them as modules over Cgas ∶= C/Rgas

.

Proposition 4.26. We have

O(D)† ⊗Cgas O(D)† ≃ O(D ×D)†.

This is the geometric expected property.

Idea of proof. Again, the only tools we have are the commutation with colimits
in both variables and the basic computation (which here is Proposition 4.25).
We can write

O(D)† = colim
D⊂U

U open disk

O(U).

Now we can rewrite this as a colimit of modules of the form Rgas[X̂] ⊗R C. As
in Remark 4.15, we use the fact that P ⊗Z P = P to deduce the result.

4.4 Towards the gaseous base stack
This is an anticipation of an object we will see in more detail in Ferdinand’s last
talk. Let us replace R in Definition 4.22 by the ring Z[q̂][q−1]. Here Z[q̂] is an
algebra isomorphic to P : we formally changed X with q to distinguish it from
the copy of P that will appear in the definition of gaseous Z[q̂][q−1]-modules.

Definition 4.27. A condensed Z[q̂][q−1]-module M ∈ ModZ[q̂][q−1] is gaseous
if

id−q ⋅ shift ∶ HomZ[q̂][q−1](Z[q̂][q
−1]⊗ZP,M) → HomZ[q̂][q−1](Z[q̂][q

−1]⊗ZP,M)

is an isomorphism.

Since Z[q̂][q−1] is not itself gaseous, this does not define an analytic ring yet
(but only a pre-analytic ring). However, thanks to a completion procedure (in
the sense of analytic rings, which is the left adjoint of the inclusion of analytic
rings in pre-analytic rings), we can form an analytic ring, say Z[q̂±1]gas. Sending
q to 1

2
then gives a map of analytic rings Z[q̂±1]gas → Rgas, while sending q to

p gives a map Z[q̂±1]gas → Qp,gas (which is different from Qp,◻ but it is good
enough to do non-archimedean geometry).

Thus Z[q̂±1]gas is an analytic ring that specialises to both Qp,gas and Rgas:
this object plays an important role in the description of the gaseous base stack.
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5 Six-functor formalism for Analytic Stacks - by
Adam Dauser

The first step is to talk about the 6-functor formalism. The second step is to talk
about analytic stacks: here the term analytic means that these objects are mod-
elled on analytic rings, while the term stacks can be thought as a generalisation
of the notion of schemes.

5.1 Introduction to six-functor formalisms
The first six functor formalism was constructed by Grothendieck et al. [2] to
handle (relative) étale cohomology (with compact supports). Let’s briefly recall
how it goes (with coefficients in Λ = Z/nZ, Λ = Zℓ or Λ = Qℓ, where n resp. ℓ is
tacitly assumed to be a unit on all schemes):

1. To a scheme X, associate the étale site Xét consisting of étale maps f ∶
Y →X with covers given by jointly surjective maps. Form the subcategory
D(Xét) of the derived category1 of sheaves of Λ-modules on X whose
cohomology sheaves are constructible;

2. ⊗L
Λ equips D(Xét) with the structure of a symmetric monoidal category,

and we can form RHomΛ as its right-adjoint;

3. pulling back sheaves along a map f ∶ X → Y yields f∗ ∶ D(Yét) → D(Xét)
with right adjoint, the relative étale cohomology “push forward” functor
Rf∗;

4. if j ∶ U → X is an open immersion, j∗ has a left adjoint, the extension by
zero functor j!. Factoring a separated map of finite type f ∶X → Y as

X
j↪ Y

fÐ→ Y

an open immersion followed by a proper morphism, we define the relative
étale cohomology with compact support “exceptional push forward” functor
Rf! ∶= Rf∗j!, which admits a right adjoint Rf !. These are the six functors.

5. We have the projection formula: given a separated map of finite type f ∶
X → Y , there is a "canonical" isomorphism Rf!(A⊗L

Λ f
∗B) ≃ (Rf!A)⊗L

ΛB
functorial in A and B;

6. and proper base change: Given a fibre square

X ′ X

Y ′ Y,

f ′

g′ g

f

1Starting here, we will treat all derived categories as ∞-categories.
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there is a "canonical" isomorphism g∗Rf!(A) ≃ Rf ′! g′∗(A) functorial in A.

Remark 5.1 (First Caveat). The meaning of the word canonical here is a bit
subtle. These isomorphisms are additional data and they have to satisfy some
compatibility conditions which are quite involved. This problem is worse yet for
analytic stacks. Yifeng Liu and Weizhe Zheng [4] give a precise formulation of
all this data, which has been nicely repackaged by Lucas Mann [5].

As notation like Rf ! is a bit of a red herring anyway, we will drop R’s and
L’s from the notation.

5.2 Six-functors for quasi-coherent sheaves on affine schemes
Everything can (almost) be translated to quasi-coherent sheaves on affine schemes:

1. To any ring R associate D(Spec(R)) ∶= D(ModR), i.e. the derived category
of quasicoherent sheaves on X = Spec(R) (here ModR can denote either
discrete R-modules or condensed ones);

2. we have ⊗L
R and RHomR;

3. for f ∶ Spec(R) → Spec(S), we have f∗ ∶= − ⊗L
S R ∶ D(Spec(S)) →

D(Spec(R)) with right adjoint (−)S =∶ f∗ (which is the restriction to S);

4. we set f! ∶= f∗, which admits a right adjoint f ! ∶= RHomR(S,−);2

5. there is a canonical isomorphism f!(A⊗ f∗B) ≃ (f!A) ⊗B functorial in A
and B;

6. given a fibre square

Spec(S′ ⊗S R) Spec(R)

Spec(S′) Spec(S),

f ′

g′ g

f

such that g is flat, there is a canonical isomorphism g∗f!(A) ≃ f ′! g′∗(A)
functorial in A ∈ D(Y ′).

Remark 5.2 (Second Caveat). One can eliminate the condition that g is
flat by working with animated rings3 instead—this means we would be taking
Spec(S′ ⊗L

S R) instead. Then we obtain a quasi-coherent six functor formalism
on quasi-coherent sheaves for affine schemes.

In the following we will also secretly work with animated analytic rings/stacks.

It would be nice to glue these functors together to all schemes, to obtain a
six-functor formalism. This is tricky: we do this by passing to stacks.

2Not to be confused with the functor from Grothendieck duality.
3These can e.g. modelled via simplicial rings
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5.3 Passing to stacks
“Stacks” might sound a bit scary at first, but we will treat them analogously to
the natural continuation of the tower of generalisations

affine schemes → separated qc schemes → schemes

given by the following:

• separated (qc) schemes X are exactly those sheaves in the Zariski topology
that admit a (finite) Zariski cover X̃ → X by an affine scheme and such
that the map ∆ ∶X →X ×X is affine (i.e. for every morphism Spec(S) →
X ×X, the fiber product Spec(S) ×X×X X along ∆ is an affine scheme).

• Similarly, schemes are those Zariski sheaves admitting a Zariski cover
∐i∈I X̃i → X where each X̃i is a separated qc scheme and such that
∆ ∶ X → X ×X is quasi-compact and separated (i.e. for every morphism
Y →X ×X with Y qc separated, the fiber product Y ×X×X X along ∆ is
qc separated).

Exchanging the Zariski for the étale topology, this would give us

affine schemes → qc algebraic spaces with affine diagonal
→ algebraic spaces → Deligne-Mumford stacks → ⋯

(the list now proceeds infinitely to the right if we allow sheaves of 2-groupoids,
..., anima instead).

The technically most important fact about these topologies is that D(−)
satisfies descent for them. This fact allows us to extend the six-functor formalism
for quasi-coherent sheaves from affine schemes to schemes. We will see later how.

For us, affine schemes are replaced by analytic rings (i.e. affine analytic
stacks) and the Zariski (or étale) topology is replaced by the !-topology. This
topology is roughly defined to be the finest manageable topology for which D(−)
satisfies descent.

In the world of analytic stacks, there is just no relevant distinguished class
of “analytic schemes”, because the !-toplogy is a super fine topology (for usual
schemes, it is way stronger than the fppf topology).

Before studying this topology, we start by building a six-functor formalism
on quasi-coherent sheaves of affine analytic stacks.

5.4 Six functors on affine analytic stacks
Let AnRing be the category of analytic rings. We define the category of affine
analytic stacks as

AffAnStack ∶= AnRingop,

where the affine analytic stack corresponding to R is denoted by AnSpec(R).
The first three elements necessary for a six-functor formalism can be easily

defined as follows:
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1. To an analytic ring R = (R▷,D(R)), we associate D(AnSpec(R)) ∶=
D(R), which can be thought as the category of quasi-coherent sheaves
on AnSpec(R).

2. By Proposition 4.4 we have a functor −⊗L
R− with right adjoint RHomR(−,−).

3. For f ∶ AnSpec(R) → AnSpec(S) (corresponding to a morphism of ana-
lytic rings S → R), by Proposition 4.4 we have a functor f∗ ∶= − ⊗L

S R ∶
D(S) → D(R) with right adjoint f∗ ∶= (−)S ∶ D(R) → D(S).

The non-trivial part is now to define the functors f ! and f! for a suitable class
of maps.

Let f ∶ AnSpec(R) → AnSpec(S) be a map of affine analytic stacks. Here we
have R ∶= (R▷,D(R)) and S ∶= (S▷,D(S)). We observe that f can be factored
into

AnSpec(R) j↪ AnSpec(R▷/S)
f→ AnSpec(S), (2)

where R▷/S = (R
▷,D(R▷/S)) is the induced analytic ring structure of Example

4.7. (Note that if R▷ ∉ D(S) this only defines a pre-analytic ring. In this case,
one would need to complete R▷ with respect to this pre-analytic ring structure.)

Definition 5.3. Let f ∶ AnSpec(R) → AnSpec(S) be a map of affine analytic
stacks.

1. We say that f is proper if we have f = f .

2. We say that f is an open immersion if we have f = j and moreover j∗

admits a fully faithful left adjoint j! satisfying the projection formula.

3. We say that f is !-able if in the factorisation (2) j is an open immersion.

Remark 5.4. Warning: By definition, any map of discrete rings with the
trivial analytic ring structure is proper. In particular, these words do not match
up with the nomenclature of algebraic geometry. This may seem strange but
actually it is not. For example, this fact explains why in algebraic geometry we
don’t need the properness assumption for the qcqs proper base change.

We now have a six-functor formalism on affine analytic stacks:

1. if X = AnSpec(R), we set D(X) ∶= D(R).

2. We have functors − ⊗L
R − and RHomR(−,−).

3. If f ∶ AnSpec(R) → AnSpec(S), we have f∗ ∶= −⊗L
SR ∶ D(S) → D(R) with

right adjoint f∗ ∶ D(R) → D(S) (the restriction functor).

4. If f is !-able and j and f are as in (2), we set f! ∶= f∗ ○ j!. This functor
admits a right adjoint f !. Explicitly we have f ! = RHomR(S,−) for proper
maps and f ! = j∗ for open immersions;
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5. if f is !-able, there is a canonical isomorphism f!(A ⊗ f∗B) ≃ (f!A) ⊗ B
functorial in A ∈ D(R) and B ∈ D(S);

6. given a fibre square

Spec(S′ ⊗L
S R) Spec(R)

Spec(S′) Spec(S)

f ′

g′ g

f

where f is !-able, there is a canonical isomorphism g∗f!(A) ≃ f ′! g′∗(A)
functorial in A ∈ D(S′).

5.5 Passing to analytic stacks
As we anticipated, to glue analytic rings we use the !-topology, a super fine
topology roughly defined to be the finest manageable topology for which D(−)
satisfies descent. Here is a useful criterion to determined whether a proper map
is a !-cover

Proposition 5.5. Let f ∶ AnSpec(B) → AnSpec(A) be a !-able map. Suppose
that f is proper. Then f is a !-cover if and only if it is descendable, i.e. we
have

A ∈ ⟨f∗M ∣M ∈ D(B)⟩fin. limits, retracts, ⊗.

Remark 5.6. If A→ B is a map between discrete rings, writing

A→ B → B ⊗A B → B ⊗A B ⊗A B → . . . ,

we observe that this descendability condition is almost satisfied for faithfully
flat maps.

Example 5.7. Countably presented faithfully flat maps between discrete rings
are !-covers.

We are now ready to glue affine analytic stacks using the !-topology, to define
analytic stacks.

Definition 5.8. An analytic stack is a sheaf4 of anima AnRing → Ani, where
AnRing is endowed with the !-topology.

We denote AnStack the category of analytic stacks: our goal is to extend
the 6-functor formalism from AnRingop to AnStack.

As an enlightening exercise, let us first see how to extend the six-functor
formalism of Section 5.2 from affine schemes to quasi-compact separated schemes
using the Zariski topology, following the discussion started in Section 5.3.

4Often a slightly technical notion between sheaf and hypersheaf is assumed instead.
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1. If X is a quasicompact separated scheme and U ∶= ⊔iUi → X is a Zariski
cover where U and Ui are all affine, define D(X) ∶= lim←Ði

D(Ui);

2. D(X) automatically becomes equipped with −⊗L
OX
− and RHomOX

(−,−);

3. for each map f ∶X → Y between quasi-compact separated schemes, take a
finite open affine cover {Ui} of Y and a compatible one {Vij} on X. Then
we can glue the pullback maps D(Ui) → D(Vij) to obtain f∗ ∶ D(Y ) →
D(X). This is independent of the covers by Zariski descent. We obtain
f∗ as its right adjoint;

4. Defining f! is a bit more subtle now.

• If f ∶ X → Y is an affine map between quasi-compact separated
schemes, the definition of f! is forced by the fact that we want proper-
base change to hold. Indeed, if we have U ↪ Y with U affine, then
f−1(U) is affine as well and we consider the fibre square

f−1(U) U

X Y.

f ′

i′ i

f

Since proper base change must hold, we get

i∗f! = f ′! i′∗ = f ′∗i′∗,

where the last equality comes from the fact that we defined f ′! ∶= f ′∗
for all morphisms of affine schemes. Thus if we take an open cover
{Ui} of Y , we obtain fi ∶ f−1(Ui) → Ui and we can define f! ∶ D(X) →
D(Y ) via descent from fi,! ∶= fi,∗. This admits a right adjoint f ! and
automatically satisfies proper base change and projection formula
(see [5, Proposition A.5.12]).

• If f ∶ X → Y is any map between quasi-compact separated schemes,
there exists a open affine cover ji ∶ Vi → X such that the morphisms
g ∶ ⊔i Vi → X and f ○ g ∶ ⊔i Vi → Y are both affine. 5 We set n-fold
self intersections

gn ∶ ⊔
(i1,...,in)∈In

Vi1 ∩ ⋅ ⋅ ⋅ ∩ Vin → Y.

One can show that the canonical morphism limÐ→n∈∆
gn,!g

!
n → id is an

equivalence. This leads us to define by descent

f! ∶= limÐ→
n∈∆
(f ○ gn)!g!n. (3)

Again, this admits a right adjoint f !.
5Indeed, find an open affine cover Ui → Y such that ⊔i Ui → Y is affine, pulling back yields

that ⊔i f
−1(Ui) → X is affine. Now we may find finite open affine covers Vij → f−1(Ui) of

the quasi-compact spaces f−1(Ui).
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5. Proper base change and projection formula are automatically satisfied, see
[5, Proposition A.5.12].

We now run this program for analytic stacks, obtaining the following:

1. For any analytic stack X , we set

D(X) ∶= lim
(X→X)
X affine

D(X),

(a quasi-coherent sheaf on X can be pulled back to X);

2. − ⊗ − and Hom(−,−) are automatic;

3. For a map f ∶ X → Y between analytic stacks, we define f∗ ∶ D(Y) → D(X)
and its right adjoint f∗ by descent;

4. For a mysterious class of maps of analytic stacks that are called !-able (this
class contains !-able maps between affine analytic stacks as in Definition
5.3), we define f! as in the previous example. More precisely:

• we first define f! for affine maps between analytic stacks: this can
be done by descent from the definition of f! for !-able maps between
analytic rings;

• then we define f! inductively as in (3).

This map has a right adjoint that we call f !.

5. These maps satisfy proper base change and projection formula.

Remark 5.9. Note that if we have an g ∶ U → Y open cover between schemes
which is not quasi-compact, the functor j∗ ∶ QCoh(Y ) → QCoh(U) between
the categories of discrete (i.e. non-condensed) quasi-coherent sheaves does not
admit a left-adjoint j! as it does not preserve arbitrary products. This problem
is fixed when passing to condensed quasi-coherent sheaves and we can again
utilize our trusty formula

f! ∶= lim←Ð
n∈∆
(f ○ gn)!g!n.

Note that this functor does not preserve discrete quasi-coherent sheaves in gen-
eral.

5.6 More from the discussion session
During the discussion session, some topics from this talk have been addressed
in more detail. We present the most relevant comments in this section.
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5.6.1 !-covers, definition and properties

Definition 5.10. A map f ∶X → Y between analytic stacks is a !-cover if

• f is !-able;

• f satisfies the universal ∗-descent, i.e. if we set X/
n
Y ∶= X ×Y ⋅ ⋅ ⋅ ×Y X we

have
D(Y ) ∼→ lim←

n∈∆
D(X/

n
Y ),

where the morphisms in the limit diagram are pullbacks π∗i . Moreover, if
we have a fibre square

X ′ X

Y ′ Y,

g′

f ′ f

g

the same property is satisfied by f ′ ∶X ′ → Y ′ (this is universality).

• f satisfies the universal !-descent, i.e. we have

D(Y ) ∼→ lim !

←
n∈∆

D(X/
n
Y ),

where lim! denotes the fact that the morphisms in the limit diagram are
not simple pullbacks π∗i but exceptional pullbacks π!

i. Moreover, the same
holds for all pullbacks f ′ ∶X ′ → Y ′ as before (universality).

Remark 5.11. A !-able map is a !-cover if and only if it satisfies !-descent.
Indeed, in the context of analytic stacks, if f satisfies the !-descent, then it sat-
isfies ∗-descent and universal !-descent (hence universal ∗-descent is automatic
as well).

Here is a condition to check that a map is a !-cover.

Proposition 5.12. Let f ∶X → Y be a !-able map of analytic stacks.

1. If f is a !-cover, then we have 1D(Y ) ∈ ⟨im(f!)⟩.

2. The converse is true if, e.g.

• f is proper;
• f ! is "nice enough" (e.g. if f is cohomologically smooth, i.e. f ! ≃
f∗ ⊗ id, or if f is given by a finite family of open immersions).

To convince ourselves why 1 holds, we should observe that !-descent implies
that setting fn ∶X/

n
Y → Y we have

1D(Y ) = lim→
n∈∆

fn,!f
!
n1D(Y ),

(i.e. id is the filtered colimit of partial truncations of f!).
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5.6.2 Open immersions and complementary idempotent algebras

Open immersions j ∶ AnSpec(R) → AnSpec(S) are closely related to idempotent
algebras in D(S), as it is justified by the following

Remark 5.13. If j ∶ U ↪X is an open immersion of schemes, then j!Λ ∈ D(Xét)
is an idempotent co-algebra: There is a co-unit ϵ ∶ j!Λ→ Λ and co-multiplication
c ∶ j!Λ

≃→ j!Λ ⊗ j!Λ. D(Uét) is exactly the category of co-modules over this co-
algebra i.e. sheaves such that F ≃→ F ⊗ j!Λ. If the complement6 is i ∶ Z → X,
i∗Λ is similarly an idempotent algebra and we can recover j!Λ as the fibre

j!Λ→ Λ→ i∗Λ.

The same is true for analytic rings: Open immersions of analytic stacks
come from “complementary” idempotent algebras A ∈ D(S). Indeed, we have
the following

Proposition 5.14. Let j ∶ AnSpec(R) → AnSpec(S) be a morphism of affine
analytic stacks. Then j is an open immersion if and only if there exists an
idempotent algebra A ∈ D(S) such that Ker(j∗) =ModA(D(S)).

Remark 5.15. In general, it is not true that all idempotent algebras A in D(S)
are complementary to open immersions of affine analytic stacks. To ensure this,
one needs that the functor RHomD(S)(A,−)[1] preserves colimits and D≥0(S).
Otherwise, the derived category D(S)/ModA(S) would not be the derived cat-
egory of an analytic ring. This situation corresponds to an open immersion
j ∶X → AnSpec(S) of analytic stacks where the source is not affine.

5.6.3 Example of !-able map

Example 5.16 (Example of !-able map). Let us consider f ∶ AnSpec(Z[T ]◻) →
AnSpec(Z◻). The decomposition (2) here is

AnSpec(Z[T ]◻)
j→ AnSpec(Z[T ]/Z◻)

f→ AnSpec(Z◻).

In order to conclude that f is !-able, we just need to show that j is an open
immersion. This can be deduced by Proposition 5.14. Indeed, at the end of
Section 4.2 we observed that we have

j∗ = − ⊗Z[T ]/Z◻ Z[T ]◻ = RHomZ[T ](fib(Z[T ] → Z((T −1))),−)

so that A = Z((T −1)) ∈ D(Z[T ]/Z◻) is an idempotent algebra and Ker(j∗) =
ModA(D(Z[T ]/Z◻)). Hence j is an open immersion which has, as a complement
idempotent algebra, Z((T −1)), the formal open disk at ∞.

More generally, if R and S are finite-type Z-algebras together with a mor-
phism S → R, then the morphism AnSpec(R◻) → AnSpec(S◻) is !-able.

6With any scheme structure e.g. the reduced one.
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Example 5.17 (Example of closed immersion). Let R be a discrete ring and
f ∈ R which is not a zero-divisor. Then the morphism

AnSpec(R[1/f]triv) → AnSpec(Rtriv)

is a closed immersion (even if it is a Zariski open!). Indeed, we have

D(R[1/f]triv) =ModR[1/f](D(Rtriv)),

where R[1/f] is an idempotent algebra in D(Rtriv). The open complement is
the ind-completion at f = 0, which is not affine (it is an example of the situation
described in Remark 5.15).
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6 An introduction to Higher dimensional Arakelov
theory- by José Burgos Gil

Introduction
Main objects in Arakelov geometry are varieties defined over number fields. In
this talk, we will study the special case of a smooth projective variety defined
over Q.

Arakelov Gemetry studies several quantities associated to X :

● A model X of X defined over Z. Informally speaking, as X is projective
we just have to clear the denominators in the equations defining X in Pn

Q.
To be precise, as we have the open immersion Spec(Q) ↪ Spec(Z), we can
take the Zariski closure of X seen as a subscheme of Pn

Z.

● The complex points of X, namely X(C).

● Points at infinity in X correspond to archimedian norm. We have an
involution F∞ of X(C) acting on them, it defines a real structure on X.

The data of (X ,X(C), F∞) should behave like a complete variety over a
field. So all classical theorems in algebraic geometry such as Bezout’s theorem
should have an analog in Arakelov geometry. To construct this analog, we have
to rely classical algebraic geometry (on X ), and complex analysis (on X(C)).
In these notes we will be interested in the Grothendieck-Riemann-Roch formula

6.1 Geometric case
Let X be a smooth projective variety over C. We first need to define the main
ingredients of the theorem : vector bundles and algebraic cycles.

6.1.1 Grothendieck ring

Definition 6.1. Let BunX be the set of vector bundles on X. In the free
abelian group Z < BunX > we define the equivalence relation [E] ∼ [E′] + [E′′]
for any short exact sequence

0 E′ E E′′ 0

The quotient K0(X) ∶= Z[BunX]/∼ is called the Grothendieck group.

Obviously we have [E ⊕E′] = [E] + [E′].

Proposition 6.2. The tensor product ⊗ induces a ring structure on K0(X) via
[E] ⋅ [E′] = [E ⊗ E′]. It is even a λ-ring, which means that we have (anti)-
symmetric operators, and other Young operators from their definition in the
category of vector bundles.
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6.1.2 Algebraic cycles

Definition 6.3. Zp(X) is the free abelian group generated by closed irreducible
subvarieties Z ⊂ X of codimension p. Ratp(X) is the subgroup generated by
classes of the form div(f) for f a rational function on some (irreducible normal)
subvariety W ⊂X of codimension p− 1. Finally we define the p Chow group by

CHp(X) ∶= Zp(X)/Ratp(X)

and the total Chow group by CH∗(X) ∶= ⊕p≥0CH
p(X).

As in the K-theory world, we have a (non trivial) ring structure.

Theorem 6.4. As X is smooth projective, we can define a ring structure on
CH∗(X) via intersection theory.

6.1.3 Operators

For f ∶ X → Y of relative dimension e we want to define pushforward and pull-
back. In each theory one operator is easy to describe and the other is more
subtle.

Definition 6.5. We define the additive operator f∗ ∶ CHp(X) → CHp−e(Y ) by

f∗[Z] ∶= {
[K(Z) ∶K(f(Z))]f(Z) if dim(Z) = dim(f(Z)),
0 otherwise.

The operator f∗ is more difficult to define.

Proposition 6.6. There exist a pullback map f∗ compatible with the graduation
of CH∗(X) and the ring structure. When f is flat it is just f∗[Z] ∶= [f−1(Z)].

Once these operators are defined, we have all the usual formalism such as
the adjunction formula.

For the Grothendieck group, we can use the following definition.

Definition 6.7. the pullback operator is defined by f∗[E] = [f∗E]. It is a ring
morphism.
For the pushforward map, we define

f∗[E] ∶= ∑
i≥0
(−1)i[Rif∗E].

A priori Rif∗E is just a coherent sheaf, but we use the smoothness assump-
tion on X to replace Rif∗E by a finite resolution with vector bundles, so the
definition makes sense.

Again we have the usual formalism.
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Remark 6.8. As f∗ is easy to define in the theory of algebraic cycles and f∗

is hard, we can say that CH∗(X) is like an homological theory. On the other
hand K0(X) is similar to a cohomological theory for the opposite reason.

We now have two theories on X and we want to compare them. For this we
have to define Chern classes.

6.1.4 Characteristic classes

For [E] ∈ K0(X) we can define the Chern class ci(E) ∈ CHi(X). Up to
some flat base change, the definition of this class is essentially contained in the
following example.

Example 6.9. For L a line bundle, c1(L) = [div(s)] for any meromorphic
section s ; and higher Chern classes vanish.

The class of a sum and a product can be computed, but it is not the
sum/product of the classes. To have a nice morphism, we have to define a
new quantity which is the Chern character ch(E). Again the spirit of the
definition is contained in the following example.

Example 6.10. For a line bundle L, ch(L) = exp(c1(L)) ∈ CH∗(X)Q.

So the map ch is defined only after tensoring CH∗(X) with Q.

Proposition 6.11. This description of the Chern character gives a morphism
of ring

chQ ∶K0(X) → CH∗(X)Q,

and for any map f ∶X → Y , we have ch(f∗E) = f∗(ch(E)).

Theorem 6.12. After tensoring the initial ring with Q,

chQ ∶K0(X)Q → CH∗(X)Q,

is an isomorphism.

Question. Do we have ch(f∗E) = f∗(ch(E)) for any morphism f ?

The answer is no ! We have to modify the morphism.

In fact we must define a Todd Class Td(E) ∈ CH∗(X)Q such that : Td(E⊕
E′) = Td(E) ⋅ Td(E′). We thus have the following special case.

Example 6.13. For a line bundle L,

Td(L) = c1(L)
1 − exp(−c1(L))

= ∑
i≥0
(−1)i+1Bi

2i!
c1(L)2i ∈ CH∗(X)Q.

We now have the modified diagram :
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K0(X) K0(Y )

CH∗(X) CH∗(Y )

f∗

ch(⋅)Td(TX) ch(⋅)Td(TY )

f∗

where TX is the (algebraic) tangent bundle on X.

Theorem 6.14 (Grothendieck-Riemann-Roch). This diagram commute (with-
out assumption on f because we assume that X and Y are smooth).

When Y is a point we recover the usual Riemann-Roch theorem, and when
f is a finite morphism, we recover the Riemann-Hurwitz theorem (applied to
OX).

6.2 Arakelov case
We want to generalize the previous section in the context of Arakelov geometry.
The main idea is to put an hat everywhere ! We first have to define all the
objects : on X and on X(C). This new construction must take into account
the hermitian metric on holomorphic vector bundle.

6.2.1 Vector bundles

Let E be a vector bundle over X/Q. On X we just have to take E as a model
of E over X . (we need to shrink the model of X to have the existence of the
model of E).

Question. What should we do on X(C) ? In particular E(C) is equipped with
an hermitian metric ∣∣ ⋅ ∣∣, how can we take into account this additional data ?

Idea. K̂0(X) should be the group of pairs (E , ∣∣ ⋅ ∣∣) where E is a vector bundle
on X , equipped with a norm on E(C), and quotiented by short exact sequences.

In fact the definition will be more complicated. We begin by recalling stan-
dard facts in complex geometry.

Definition 6.15. Let X be a complex variety of dimension d. The data of a
complex manifold gives a complex structure on the tangent space. Which means
that we have an operator

J ∶ TX → TX

on the (differentiable)-vector bundle TX , such that J2 = −Id. So we can decom-
pose TX ⊗C in two subbundles corresponding to the eigenvalues i and −i,

TX ⊗C = T 1,0
X ⊕ T 0,1

X .

We can now define the sheaf of differentials forms

Ap,q
X ∶=

p

⋀T 1,0
X ⊗

q

⋀T 0,1
X
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Example 6.16. Locally a (p, q)-form can be written as

ω = ∑
∣I ∣=p,∣J ∣=q

fI,JdzI ∧ dzJ ,

where fI,J is an analytic map.

Notation. We note Am
X ∶= ⊕p+q=mAp,q

X , and A∗X ∶= ⊕mAm
X .

We have an operator dn ∶ An
X → An+1

X with a (1,0)-part ∂ and a (0,1)-part
∂. It is a differential map. The following computations are well-known.

Proposition 6.17. We have the following identifications

H∗(A∗X , d) =H∗dR(X,C),

and
H∗(Ap,∗

X , ∂) =H∗(X,Ωp
X).

Under the ∂∂- lemma (for instance if X is projective) we recover a part of
the Hodge decomposition

Hk(X,C) = ⊕
p+q=k

Hq(X,Ωp
X).

6.2.2 Chern classes

If E is a vector bundle with an hermitian metric ∣∣ ⋅ ∣∣ , ξ1,⋯, ξk a local frame,
the hessian matrix is H = (< ξi, ξj >)i,j .

Definition 6.18. The curvature is the following matrix of (1,1)-form

K = i

2π
∂(H−1∂(H)).

If we change the local frame by a matrix A, the new curvature will be related
to the old one by the following formula :

K ′ = A−1KA.

So for any polynom of matrices invariant under this action of conjugaison,
we can defined P (E, ∣∣ ⋅ ∣∣) and this quantity won’t depend on the choice of a
(local) frame. We apply this technic in the next definition.

Definition 6.19. ci(E, ∣∣ ⋅ ∣∣) = tri(K) is a closed (i, i)-differential form, where
tri(M) is the sum of all i-power of eigenvalues in M (with multiplicity).

Proposition 6.20. With the previous notation, the cohomological class of ci(E, ∣∣⋅
∣∣) (which is in Hi,i(X,C)) does not depend on the choice of the metric. We
denote this class by ci(E).
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When X is projective, this definition of ci(E) gives the same result as in
the previous section (once we have applied the realization map CHi(X) →
Hi,i(X)). Hence it is a nice analytic definition of the Chern classes. Furthermore
ci(E, ∣∣ ⋅ ∣∣) ∈ Ai,i

X is a refinement who keep track of the information on the metric.

Example 6.21. For L = (L, ∣∣ ⋅ ∣∣∣) a line bundle with a frame s, we find that the
curvature is

K = i

2π
∂∂(−log(∣∣s∣∣2))

Remark 6.22. In fact the curvature is more naturally associated to a con-
nection. Here we have used the Chern connection associated to the hermitian
bundle (E, ∣∣ ⋅ ∣∣). In the context of differential geometry, the same strategy with
Levi-Civita connection would have recovered the usual theory of curvature.

We can thus define an important space.

Definition 6.23.
Ã∗X ∶= ⊕p≥0Ap,p

X /Im(∂)+Im(∂)

is a ring containing the Chern classes ci(E, ∣∣ ⋅ ∣∣).

6.2.3 Arithmetic Grothendieck group

We have defined the Chern classes for the pair (E, ∣∣ ⋅ ∣∣). But unlike the classical
case, the relation to Chern character is more subtle.

For L a line bundle and ω,ω0 ∈ c1(L), ω−ω0 is 0 in de Rham cohomology, so
by ∂∂-lemma this difference is represented by i

2π
∂∂f . But for line bundles we

can recover the metric from the data of ω ; so in that case, choosing a represen-
tant of the Chern class changes the metric by e−f . So the choice of the metric
is quite canonic, and it is essentially the same to consider c1(L) or c1(L, ∣∣ ⋅ ∣∣)).
However it is not the case for vector bundles of higher rank.

In an exact sequence ξ

0 (E′, ∣∣ ⋅ ∣∣′) (E, ∣∣ ⋅ ∣∣) (E′′, ∣∣ ⋅ ∣∣′′) 0

we want to add an error term i
2π
∂∂ch(ξ) to the naive equation

ch(E) = ch(E′) + ch(E′′)

coming from the data of the metric.

Proposition 6.24. There is a class ch(ξ) ∈ Ã∗X associated to a short exact
sequence ξ such that

ch(E) = ch(E′) + ch(E′′) + ch(ξ)
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The class ch(ξ) is called the Bott-Chern character of the exact sequence,
and is functorial under pullback operator. It is unique up to the image of the
operators ∂ and ∂. We can now give the exact definition of the Grothendieck
group

Definition 6.25. The arithmetic Grothendieck group is defined by

K̂0(X) ∶= (Z<[E,∣∣⋅∣∣]>⊕Ã∗X)/∼

where the relation ∼ identifies for any exact sequence ξ

[E ′, ∣∣ ⋅ ∣∣′] + [E ′′, ∣∣ ⋅ ∣∣′′] = [E ′, ∣∣ ⋅ ∣∣] + ch(ξ).

We know a very special case where the error term is vanishing.

Proposition 6.26. If the hermitian short exact sequence is orthogonaly splitted,
then ch(ξ) = 0.

Finally we have a morphism ĉh ∶ K̂0(X) → Ã∗ sending [E, ∣∣ ⋅ ∣∣] to its usual
Chern class, and an element η ∈ Ã∗X to itself.

In particular if ω ∈ ch(E), then there is (E, ∣∣⋅∣∣, η) such that ĉh(E, ∣∣⋅∣∣, η) = ω.

6.2.4 Complex of currents

Now we want to study algebraic cycles on X, but mixed with the data of dif-
ferential forms. So we want to construct a complex of currents which contain
both these informations.

Definition 6.27. For X smooth projective of dim d on C, we define Dp,q(U)
as the topological dual of Ap,q

c (U) (where the topology is the natural one taking
into account the decreasing of partial derivatives).

Now let Dp,q(U) =Dd−p,d−q(U). It form a sheaf Dp,q (analog to the situation
with distribution).

The restriction to compactly support sections is essentially to obtain a sheaf.
We can now see how to inject the data of usual differential forms in this complex.

Definition 6.28. We construct a map Ap,q → Dp,q such that ω is sent to [ω],
where

[ω] ∶ η → ∫
X
ω ∧ η.

Then we can see how to add the information on algebraic cycles.

Definition 6.29. For Y ∈ Zp(X) we can associate δY ∈Dp,p(U) such that

δY ∶ η → ∫
Y
η.
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In both definition, the integral is well defined because η is compactly sup-
ported.

Notation.
Dm ∶= ⊕

m=p+q
Dp,q

and

D̃∗ ∶= ⊕pDp,p/Im(∂)+Im(∂)

To form a complex, we use the following definition.

Definition 6.30. We define a differential d ∶ Dn → Dn+1 by

dT (η) = (−1)n+1T (dη).

It can be decomposed as d = ∂ + ∂.

As in the usual Hodge theory, this complex can be use to compute some
useful cohomology groups.

Proposition 6.31. We have the following equalities

● Hn(D∗, d) =Hn
dR(X,C).

● Hq(Dp,∗, ∂) =Hq(X,Ωp).

Example 6.32. Let compute the differential of ω ∶= [ 1
2iπ

dz
z
] over X = P1. Due

to our conventions, dω applies to a function f and is value is

1

2iπ
∫
P1

dz

z
∧ df = − 1

2iπ
∫
P1−{0,∞}

d(f dz
z
)

By Stokes formula the quantity is equal to

lim
ϵ→0+

1

2iπ
∫
∂B(0,ϵ)

fdz/z − 1

2iπ
∫
∂B(0,1/ϵ)

fdz/z

In the local chart z = ϵeiθ we have dz/z = idθ. So the previous computation
gives f(0) − f(∞), hence dω is the Dirac operator δdiv(z) ( multiplicities in the
divisor give the coefficients in front of each Dirac term).

More generally we have the following result.

Proposition 6.33. If f is a rational function on X, d[ 1
2iπ

df
f
] = δdiv(f), where

δ is the Dirac operator.
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6.2.5 Green Current

Notation. dc ∶= i
4π
(∂ − ∂). We thus have ddc = i

2π
∂∂.

The following equation is useful to compute the Chern class of a line bundle.

Proposition 6.34 (Poincaré-Lelong formula). For L a line bundle, ∣∣⋅∣∣ a smooth
hermitian metric over L and s a rational section, we have

ddc(−log(∣∣s∣∣2)) = −δdiv(s) + c1(L, ∣∣ ⋅ ∣∣).

Definition 6.35. Let Z ∈ Zp(X). A green current for Z is a current g ∈ D̃p−1,p−1

such that

ω(g) ∶= ddc(g) + δZ ∈ Ãp,p
X

Example 6.36. By the Poincaré-Lelong formula, −log(∣∣s∣∣2) is a Green current
for div(s).
Remark 6.37. The Green current is only defined up to the image of ∂ and ∂.
In its class we can always find a representative form which is smooth over X −Z
and with log singularities along Z.

From now we have seen nice properties of the complex of currents, but unlike
the case of differential forms, some important properties are missing.

Theorem 6.38. D∗ can not been endowed with a nice ring structure. Similarly
we can not define f∗ in general.

However, a product law can be defined for some particular currents, and the
pullback can be defined for smooth morphisms, or under transversal intersection
assumption.

Definition 6.39. If Z and W are cycles with Green currents gZ and gW such
that codim(Z ∩W ) = codim(Z) + codim(W ), we can define

gZ ⋆ gW ∶= gZ ∧ ω(gW ) + δZ ∧ gW ∈ D̃p+q−1,p+q−1

This definition seems quite unnatural but still satisfies some good properties.

Proposition 6.40. Thus product is associative, commutative and it is a Green
current for Z ⋅W .

6.2.6 Arithmetic Chow group

We can now define an arithmetic analog to the usual Chow group.

Definition 6.41. Ẑp(X) is the free abelian group generated by classes (Z, gZ)
where gZ is a Green current for Z ∈ Zp(X). We can distinguish the subgroup of
rational cycles, R̂at

p
(X) generated by cycles of the form (div(f),−log(∣∣s∣∣2))

where f is a rational function on some (irreducible normal) subvariety W ⊂ X
of codimension p − 1. Finally, the arithmetic Chow group is

ĈH
p
(X) ∶= Ẑp(X)/R̂at

p(X).
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Unlike the classical case, the ring structure is not exactly well defined.

Proposition 6.42. ĈH(X)Q is a ring.

Remark 6.43. We don’t know how to define the intersection product over Z ;
in some sense, if we had a resolution of singularities it should be possible.

This product can be express concretely in some special cases.

Proposition 6.44. If Z and W intersect properly over C, then (Z, gZ)⋅(W,gW ) =
(Z ⋅W,gZ ⋆ gW )). This class is supported over Z ∩W .

We have an exact sequence

CHp,p−1(X) ˜Ap,p ĈH
p
(X) CHp(X) 0

Reg

Where the first term is related to higher (classical) K-theory. Notes that
the last surjectivity ensures that each cycle is equivalent to a cycle Z ′ which has
a Green current. In fact the existence of a Green current for Z can be proved
without the rational equivalence assumption.

Example 6.45. Over X = Spec(OK) (with K a number field) we have,

O∗X Rr1+r2 ĈH
1
(X) Cl(OK) 0

the class group is finite, and the quotient of Rr1+r2 by the image of Reg is a
cylinder. So we have an explicit description of this Chow group.

In particular over Spec(Z), the arithmetic Chow group is isomorphic to R
via the morphism d̂eg.

6.2.7 Pushforward

We have defined all the arithmetic analogs to K-theory and Chow groups, and
we have the formalism of Chern classes, so we know how to construct the char-
acters ĉh(E) and T̂ d(E). The last objective is to construct a pushforward map.
As in the geometrical case, it will be easy in the world of Chow group, and
difficult in K-theory.

Definition 6.46. For f ∶ X → Y proper and smooth of relative dimension e
over the complex points, we have a pushforward map f∗ such that

f∗(Z, gZ) ∶= (f∗Z,∫
f
gZ) .

Here ∫f means that we integrate along the fibers of f .

Example 6.47. For line bundle bundle we have

c1(L, ∣∣ ⋅ ∣∣) = (div(s),−log(∣∣s∣∣2))

To define f∗ in K-theory, we have to define a metric on the pushforward of
a vector bundle, but in general it is just a coherent sheaf, so this is complicated.
We will restrict to the case where f is smooth.
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Axiomatic approach For a coherent sheaf F and

0 E0 ⋯ En F 0

a smooth resolution, a metric on F should be a metric on each term. So for
E an hermitian bundle on X, we can define a metric on Tf and f∗E.

By the Grothendieck-Riemann-Roch in the geometric case, ch(f∗E)−f∗ (ch(E)Td(Tf))
is closed, hence by ddc lemma it can be written

ch(f∗E) − f∗ (ch(E)Td(Tf)) = ddcT (E,Tf , f∗E)

The emergence of this class T is similar to the existence of the Bott-Chern
class. Unlike the latter, the class T is not unique. Yet we can classify all the
solutions to this differential equation.

Proposition 6.48. If T (E,Tf , f∗E) and T ′(E,Tf , f∗E) are 2 solutions, there
exist an additive characteristic class S such that

T (E,Tf, f∗E) − T ′(E,Tf, f∗E) = f∗ (ch(E) ⋅ Td(Tf) ⋅ S(Tf))

It it a relation in the space of differential forms.

Notation.
fT∗ (E) = f∗E − T (E,Tf, f∗E).

We can now state the main result of these notes.

Theorem 6.49 (Grothendieck-Riemann-Roch-Arakelov). There is an unique
T0 such that the following diagram is commutative.

K̂0(X) K̂0(Y )

ĈH
∗
(X) ĈH

∗
(Y )

f
T0∗

ĉh(⋅)T̂ d(TX) ĉh(⋅)T̂ d(TY )

f∗

Furthermore, if TS is another solution we have

ĉh (fT
S

∗ (E)) = f∗ (ĉh(E)T̂ d(Tf) − S(Tf)Td(Tf)ch(E)) .

The first part of the theorem may seem useless because T0 is not explicit,
but the second part patch this problem.
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Concrete construction For a smooth proper map of complex varieties X →
Y , a metric on Tf induces a vertical Kähler form on the fibers Xy. To compute
f∗E in K-theory we have to compute all the bundles Rif∗E (this sheaf is indeed
a vector bundle due to the smoothness assumption), but locally the higher image
is computed as a cohomology group on fibers ! So we need to find a natural
metric on Hi(Xy,E) (the smoothness assumption ensure that all the fibers are
smooth and diffeomorphic).

Definition 6.50. For an holomorphic vector bundle E we can construct the
bundle A0,q

X (E) ∶= A
0,q
X ⊗E of (0, q)-differential forms with values in E.

For ξ1,⋯, ξr a local frame of E, local sections of A0,q
X (E) are

s = ∑
i

ηiξi,

for ηi a (0, q)-form on X.

In general we can not differentiate sections of E because we would have to
define a connection. Yet the operator ∂ is well defined. The following fact is
well-known.

Proposition 6.51. We can use the previous complex to compute the cohomology
of the sheaf E

Hq (Xy, (A0,∗(E), ∂)) =Hq(Xy,E).

But now the bundle A0,q(E) has a metric induced by the metric on E. More
precisely we set

< s, s′ >= ∫
Xy

∑
i,j

ηi ∧ ηj < ξi, ξj > ωe−q
Y

where the last term is the Kähler class on the fibers.

By Hodge theory we have the subspace of harmonic forms Hq ⊂ A0,q which
is isomorphic to Hq(Xy,E), so we find a natural metric on this space. However
we also have to consider the L2 metric, on the space of harmonic forms. The
last one is not continuous in y, so we have to correct it.

Proposition 6.52 (Bismut-Köhler). We can see the higher analytic torsion
as a correction to the L2 metric. Then we obtain the desired metric on the
cohomology of the fibers.

Explicitly, the analytic torsion corresponds to the class

R(L) ∶= ∑
m odd

(ζ ′(−m) + ζ(m)) (1 + 1

2
⋯ 1

m
) c1(L)

m

m!

Proposition 6.53. det(f∗E)y = ⊗q⋀topHq(Xy,E)⊗(−1)
q

.

Example 6.54. On a complex
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0 V1 ⋯ Vn−1 Vn 0

with a fixed norm on each term, we have det(V●) = det(H(V●)), but we want
to compute the metric.
Let d∗ be the adjoint of d and ∆ = dd∗ + d∗d. Recall that Ker(∆i) =∶ Hi ⊂ Vi is
isomorphic to Hi(V●), and it has an induced metric.

So to construct the true metric on det(V●) we have to correct the L2 metric
on det(H(V●)) by some kind of det(∆), but this is not trivial because ∆ is an
operator acting on infinite dimension space, so the definition of its determinant
is unclear.

In fact, if 0 ≤ λ1 ≤ λ2 ≤ ⋯ are the eigenvalues ∆, we can use the function

ζ(s) =
+∞
∑
i=0

1

λsi

which is holomorphic and can be continued to s = 0, to set det′(∆) ∶= ζ(0).
Finally the correct metric is the Quillen metric given by

∣∣ ⋅ ∣∣Q = ∣∣ ⋅ ∣∣L2∏
q

exp(det′(∆q))(−1)
q

q.
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7 Schemes, adic spaces, C-analytic spaces as an-
alytic stacks, GAGA, duality - by Ferdinand
Wagner

7.1 Schemes
We have a fully faithful functor from affine schemes to affine analytic stacks

F ∶ { AffSch↪ AffAnStacks
Spec(R) ↦ AnSpec(R)

where AnSpec(R) is endowed with the trivial analytic ring structure. We will
see that F extends to a fully faithful functor from schemes to analytic stacks as
in the following diagram

Sch AnStack

ShZar(Aff) Sh!(AffAnStack)
ϕ

(4)

where we recall that analytic stacks are sheaves over affine analytic stacks for
the !-topology. To construct the dashed arrow ϕ, we have to show that Zariski
covers are sent to !-covers.

Remark 7.1. The morphism AnSpec(R[ 1
f
]) ↪ AnSpec(R) is a closed immer-

sion but is usually not open.

Definition 7.2 (Open immersion). An open immersion is a monomorphism j
such that j∗ admits a fully faithful left adjoint j! and verifies the projection
formula.

Definition 7.3 (Closed immersion). A closed immersion is a proper morphism.

In particular, the morphism AnSpec(B) → AnSpec(A) is a closed immersion
if and only if:

1. B has the induced analytic ring structure from A,

2. the diagonal ∆ ∶ AnSpec(B) → AnSpec(B) ×AnSpec(A) AnSpec(B) is an
isomorphism.

Remark 7.4. The condition 2 is equivalent to B being idempotent over A, id
est B ⊗L

A B ≅ A.

Remark 7.5. As a consequence, closed immersions of schemes are not sent to
closed immersions of analytic stacks.
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But still if
n

⊔
i=1

Spec(R [ 1
fi
]) → Spec(R)

is a Zariski cover, then

n

⊔
i=1

AnSpec(R [ 1
fi
]) → AnSpec(R)

is a !-cover.

To see it, we need to check:

R ∈ ⟨im(D (R [ 1
fi
]) →D(R)) ∣ i = 1, . . . , n⟩

where we consider the category spanned by the image and closed under retracts,
limits, colimits and tensor product. But we have

R ≅ ( ⊕
1⩽i⩽n

R [ 1
fi
] → ⊕

1⩽i<j⩽n
R [ 1

fifj
] → ⋅ ⋅ ⋅ → R [ 1

f1 . . . fn
])

which concludes the proof.

Remark 7.6. We can replace ShZar by ω − fpqc in Diagram 4.

Remark 7.7. Every map between affine schemes (and more generally every
quasi-compact quasi-separated map of schemes) is sent to a proper map by the
functor from schemes to analytic stacks. In other words, if we have a map
f ∶ Spec(S) → Spec(R) of affine schemes, it is sent to a map of analytic stacks
f ∶ AnSpec(S) → AnSpec(R) and we have

f∗ = f! ∶D(S) →D(R)

whose right adjoint is f ! = RHom(S,−) ∶D(R) →D(S).

7.2 Adic spaces
Recall 7.8. Let M be in D(R) and f in the underlying set R(∗) of R. We
recall that PR is R[N ∪∞]/R[∞]. Let us recall a few definitions.

1. M is f -gaseous if the (1−f)-shift is an isomorphism of HomR(PR,M). In-
tuitively, it means that for every nullsequence (mn)n∈N, the sum∑∞n=1 fnmn

is well defined.

2. M is solid if 1-gaseous. Intuitively, it means that every nullsequence is
summable.

3. M is f -solid if it is solid and f -gaseous. Intuitively, it means that ∣f ∣ ⩽ 1.
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Recall 7.9. Spa(R,R+) is roughly the datum of the valuations ∣⋅∣ from R to an
ordered group Γ ∪ {0} modulo equivalences such that ∣⋅∣∣R+ ⩽ 1.

Definition 7.10. We define (R,R+)◻ to be the analytic ring such that (R,R+)▷◻
is the solidification of R at all f in R+ and whose analytic structure is given by

D((R,R+)◻) = {M ∈D(R) ∣ ∀f ∈ R+, M is f−solid}.

Remark 7.11. Thanks to Definition 7.10, we obtain a functor from adic sheafy
spaces to analytic stacks which sends Spa(R,R+) to AnSpec(R,R+)◻.

Remark 7.12. There are two functors

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Sch ⇉ adic Spaces
Spec(R) ↦ Spa(R,Z)
Spec(R) ↦ Spa(R,R)

from schemes to adic spaces which give two functors from schemes to analytic
stacks ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Sch → AnStack
X ↦ (X,Z)◻
X ↦ (X,X)◻ ∶=X◻

from schemes to analytic stacks, whereXalg is (X,Z)◻ =Xalg×AnSpec(Z)AnSpec(Z,Z)◻.

Remark 7.13. If

j ∶ AnSpec(R [ 1
f
] ,R [ 1

f
])
◻
→ AnSpec(R,R)◻

is an open immersion, we have

j∗ = ((−) [ 1
f
])

L◻ 1
f ≅ (−)[T ]

L◻T /(1 − fT ) = RHom(Z((T −1))/Z[T ],−)/(1 − fT )

where we write ◻f the solidification at f . We have

j! = ((Z((T −1))/Z[T ]) [−1] ⊗L R) /(1 − fT ) ⊗L
(R,R)◻ (−).

7.3 C-analytic spaces as analytic stacks
We want to describe the functor from Stein varieties to analytic stacks

X = ⋃
X⊂K compactStein

K
(−)an

ÐÐÐ→ ⋃
X⊂K compactStein

AnSpec(O(K)†)

where O(K)† = colimK⊂U O(U) is the ring of holomorphic overconvergent func-
tions on K and has an analytic strucure induced by Cgas.
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Example 7.14. Any

V (I) ⊂ Dn = {(z1, . . . , zn) ∈ Cn ∣ ∣zi∣ ⩽ 1}

is compact Stein. We have

O(Dn)†gas ≅ (O(D1)gas)
⊗Cgasn

and

O(D1)† = colimr>1 {
∞
∑
n=0

anT
n ∣ an ∈ C, ∣an∣rn

qexpÐÐ→ 0} = colimr>1Cgas [(
T̂

r
)]

where qexp means that the convergence is quasi-exponential.

If we set

O(S1)† = colimr>1 {
∞
∑

n=−∞
anT

n ∣ ∣a±n∣rn
qexpÐÐ→ 0}

we can construct the analytic stack P1,an
Cgas

by gluing two copies of AnSpec(O(D1)†gas)
along AnSpec(O(S1)†gas).

Theorem 7.15. The equality

P1,an
Cgas
≅ P1,alg

C ×AnSpec(C) AnSpec(Cgas)

holds.

More generally, we have GAGA:

Theorem 7.16. If X is a proper scheme over C, then the equality

Xan ≅Xalg
Cgas

holds.

Remark 7.17. In particular, we have

D(Xan) ≅D(Xalg
Cgas
)

which is GAGA for quasicoherent sheaves.

Remark 7.18. Classical GAGA can be deduced from this one but it is not
straightforward.

Proof. Let us do a sketch of proof for Theorem 7.15. We work over AnSpec(Cgas[T ]).
Let us define

O({∣T ∣ ≤ 1})† ∶= O(D1)†,

O({∣T ∣ = 1})† ∶= O(S1)†
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and

O({∣T ∣ ⩾ 1})† ∶= colimr>1 {
∞
∑

n=−m
anT

−n ∣ ∣an∣rn
qexpÐÐ→ 0}

where the last one can intuitively be seen as O({∣T −1∣ ⩽ 1})†[(T −1)−1].

Step 1 These are all idempotents algebras over Cgas[T ] and the equality

O({∣T ∣ ⩽ 1})† ⊗L
Cgas[T ] O({∣T ∣ ⩾ 1})

† = O({∣T ∣ = 1})†

holds.
Step 2 The morphism

AnSpec(O({∣T ∣ = 1})†) ⊔AnSpec(O({∣T ∣ ⩾ 1})†) → AnSpec(Cgas[T ])

is a !-cover. To show it, we need Cgas[T ] to be in < im(φ∗) > where φ ∶ Cgas[T ] →
O({∣T ∣ ⩽ 1}). It can be shown using Čech complex.
Steps 1+2 The equality

AnSpec(O({∣T ∣ ⩽ 1}))∪AnSpec(O({∣T ∣=1})†)AnSpec(O({∣T ∣ ⩾ 1})†) = AnSpec(Cgas[T ])

holds.

Now, let us give some ideas used in the proof of Theorem 7.16.

Lemma 7.19. If f ∶X → Y is a proper map of schemes, then the morphism

X◻
≅Ð→Xalg ×Y alg Y◻

is an isomorphism.

Proof. Let us give the proof of Lemma 7.19. Without loss of generality, we
suppose Y = Spec(R). Then it is true by valuative criterion of properness.

To obtain the result of Theorem 7.16, we should show that, for Spec(A) an
open in X, adic spaces glued from Spa(A,A) are exactly adic spaces glued
from Spa(A,R). The first ones are sent to X◻ and the latter are sent to
Xalg ×AnSpec(R) AnSpec(R,R)◻.

The general GAGA works similarly (see complex pdf lecture 6 of Clausen-
Scholze).

7.4 Duality
For simplicity, let us stick to the case of schemes.

Theorem 7.20. Let f ∶X → Y be a map of schemes.

1. If f is proper, then f ∶X◻ → Y◻ is proper.
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2. If f is smooth, then f ∶X◻ → Y◻ is !-able and f !OY = ωX/Y [d] where d is
the relative dimension dim(X/Y ) and ωX/Y is the canonical line bundle
⋀dΩ1

X/Y .

Corollary 7.21. Let f ∶ X → Y be a map of schemes which is proper and
smooth. We have

RHomY (f∗F,OY ) = RHomX(F,ωX/Y [d])

where f!F = f∗F .

Remark 7.22. We keep notation of Corollary 7.21. If Y = Spec(k), we can
apply H−i to get

Hi(X,F )∨ ≅ Extd−i(F,ωX/Y ).

Proof. Let us give a sketch of proof of Theorem 7.20.

1. It follows by base change theorem.

2. We can reduce to A1
Y → Y .
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8 Betti stacks and analytic Riemann-Hilbert - by
Adam Dauser

Recall:

1. X scheme ↦Xalg or (X,Z)◻ or (X,X)◻.

2. X adic space

3. X complex manifold, the associated analytic stack is build upon overcon-
vergent functions on compact Stein.

4. GAGA: for X a proper scheme, X ≅Xalg
Cgas

In this talk:

• {finite dim compact Hausdorff spaces} ↪ AnStack. Moreover, quasico-
herent sheaves will correspond to Betti sheaves. We embbed algebraic
topology of compact Hausdorff spaces inside analytic stacks.

• There will be a surprising map X →X(C)
Betti

• We will see how to characterize the maps to X(C)
Betti

.

Definition 8.1. A proper map f ∶ AnSpec(A) → AnSpec(B) is called descend-
able if

B ∈ ⟨imf⋆⟩finite limits, retracts, ⊗

We call f descendable of index ⩽m if for Fib(B → A) = F ,

F⊗Bm → A

is null-homotopic.

Remark 8.2. In practice, this is an easy condition to check, it will often come
from studying Čech resolutions.

Example 8.3. If f is split, then f is descendable of index ⩽ 1.

Proposition 8.4. Let gi<j ∶ Ai → Aj diagram of shape (N,⩽) in the category of
analytic rings. If fi ∶ A → Ai is a proper descendable map of index ⩽ m. Then
the induced map f ∶ A→ colimiAi is descendable of index ⩽ 2m.

Remark 8.5. In particular, if the maps A → Ai are split one can apply the
proposition.
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8.1 Betti stacks
Intuition from algebraic geometry, let k be a field:

• S finite set, Spec(∏s∈S k) = S.

• S profinite set, Spec(Cont(S, k)) = S where k has the discrete topology.

This induces a functor

Prof light → Sch→ AnStack

which maps a profinite S to AnSpec(Cont(S,Z)).
Claim: this map is compatible with the Grothendieck topologies ! It maps

covers to !-covers.

Proof. To check: if S → T is a surjective map of profinite sets, then

AnSpec(Cont(S,Z)) → AnSpec(Cont(T,Z))

is a !-cover. This assertion holds because the map can be written as a (N,⩽)-
limit of split maps.

Remark 8.6. AnSpec turns colimits in limits.

Corollary 8.7. We obtain (−)Betti ∶ Condlight → AnStack.

Proposition 8.8. Let S be a finite dimensional compact Hausdorff space and
f ∶ S′ → S a surjection from a light profinite set. Then Z → Rf⋆Z ∈ D(S,Z) is
descendable.

Remark 8.9.

i) We only defined descendability for maps between analytic rings, but the
notion makes sense in a more general context. In particular, it can be
applied to ring objects in D(S,Z).

ii) A compact Hausdorff space is said to be of finite dimension if it has fi-
nite cohomological dimension. This is the case for finite dimensional CW
complexes.

iii) D(S,Z) denotes the “usual” category of sheaves of (condensed) abelian
groups on S.

iv) The last proposition is an input from algebraic topology, its proof has
nothing to do with analytic rings.

Corollary 8.10. For S a finite dimensional compact Hausdorff space, we have

D(SBetti) ≅ D(S,Z).
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Proof. Let S be a light profinite, one has

QCohcond(Spec(Cont(S,Z))) ≅ D(S,Z).

To prove this, check that the amount of information to define both side is the
same. In fact this statement about light profinite sets is still true if one considers
only usual abelian groups and non condensed groups.

In general, choose a surjection f ∶ S0 → S with S0 light profinite and take
the Čech nerve Sn = S0 ×S ⋅ ⋅ ⋅ ×S S0. Then for each n,

D(SnBetti
) ≅ D(Sn,Z) ≅ModRfn⋆ZD(S,Z).

Hence

D(SBetti) = lim←Ð
n∈∆
D(SnBetti

) = lim
←Ð
n∈∆

ModRfn⋆ZD(S,Z) = D(S,Z),

where the first equality comes from the !-cover, and the last comes from de-
scendability of

Z→ Rf⋆Z.

The following theorem will be useful to construct maps to Betti stacks

Theorem 8.11 (Tannakian reconstruction of Betti stacks). Let S be a finite
dimension compact Hausdorff space. For analytic stack X, there is an isomor-
phism

{Maps X → SBetti} ≅ {
Collections of idempotent algebras AZ∈D(X) for every closed subset Z⊂S

such that A∩i∈IZi
=colimAZi

and such that ∃{Xi→X} by affine analytic stacks and
f⋆i AZ is connective+ for any finite union Z=∪Zi,AZ is computed via the Čech complex of AZi

}

Example 8.12.

i) Let X be a complex analytic manifold, the map X →X(C)
Betti

is defined
by the association

K compact Stein ↦ O†(K) ∈ D(X).

ii) The map arg ∶ Galg
m,C → S1

Betti is given by sending a closed interval I to

{f ∈ O(SI) ∣ f has polynomial growth at infinity and at 0},

where SI is the preimage of I by arg ∶ C⋆ → S1.

Lemma 8.13. X →X(C)
Betti

is a !-cover.

We will now wonder what equivalence relation on X gives rise to X(C)Betti
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Definition 8.14. Consider the overconvergent neighbourhood of the diagonal
O†(∆) ⊂ X ×X as an equivalence relation. The quotient of X by the above
equivalence relation is denoted Xan−dR.

Theorem 8.15 (Analytic Riemann-Hilbert). The map X → X(C)
Betti

factors
through Xan−dR and gives rise to an isomorphism.

Proof. We need to compute X ×XBetti
X → X × X. This identifies with the

overconvergent neighbourhood of the diagonal:
Let Z ⊂X be a compact Stein. The equality

(Z ×X)† =X ×X(C)
Betti

ZBetti

follows by definition from Tannakian reconstruction.

8.2 Riemann–Hilbert
Let X be a smooth complex variety. The functor

ModrhDX
→ Perv(X)

sends differential equations to the sheaf of solutions.
Perv(X) is a subcategory of D(X(C),C). For example, one can consider

the differential equation of the logarithm.

Theorem 8.16. ModDX
QCoh(X) = QCoh(XdR), where XdR is the de Rham

stack, given by X/ ∼ .

In any case D(Xan−dR) ⊂ ModDX
D(X) where one cuts out by growth con-

dition.

Corollary 8.17. D(Xan−dR) ≅ D(X,Cgas)

Caveat: this equivalence does not involve regular holonomic D-modules nor
perverse sheaves. One can retreive the usual equivalence up to some fudging,
but it is nontrivial.
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9 A-schemes, formal-analytic surfaces and θ-invariants
- by François Charles

9.1 Introduction
This lecture is divided in two parts : the first part aims to define objects obtained
by gluing together arithmetic and analytic data, namely the A-schemes, and
studying their relevance in diophantine geometry. The second part will develop
a cohomological theory of quasi-coherent sheaves on them through the study of
euclidean lattices, possibly of infinite rank, and give them an extra structure
(nuclear Frechet spaces), as well as giving some applications.

9.1.1 Goals

The theory of A-schemes has multiple objectives :

• We would like to have a setting letting us do Arakelov geometry that is
as flexible as scheme theory, allowing for example non-reduced or singular
objects.

• We want to allow the use of singular metrics.

• It gives a setting to derive some classical algebraization theorems ; for
instance (Borel, Pólya-Szegö, André, Bost, ...) give a criterion for a power
series with integral coefficients to be an algebraic function.

• It allows us to bound the solution sets for algebraic differential equations
(some efficient holonomy bounds were obtained by Calegari-Dimitrov-
Tang in 2021)

• It helps to understand the set of integral points of an affine scheme over
Spec(Z) that lie in a given compact subset.

• It allows to study the positivity of hermitian line bundles via the geometry
of their total space.

9.1.2 Open questions

Some questions remain unanswered, for instance :

• This theory has some connections with the theory of analytic stacks ; how
exactly are they related ?

• How can we study the positivity of vector bundles in Arakelov geometry
?

• What is its relationship with arithmetic intersection theory, with Riemann-
Roch theorem ? (See the work of Dorian Ni for some elements of answer)

• Can we work out part of intersection theory on Shimura varieties via these
methods ?
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9.1.3 References

This talk uses as a reference for theta functions (Banaszczyk 80’), (J.B Bost
2015), (J.B Bost & F. Charles 2022, Quasi-projective and formal analytic arith-
metic surfaces) and (J.B Bost & F. Charles 2024, Infinite Dimensional Geometry
of Numbers : Hermitian Quasi-coherent Sheaves and Theta Finiteness).

9.2 Formal-analytic arithmetic surfaces and A-schemes

9.2.1 Geometric analogy

First of all, we give an analogy to understand the context of this lecture :
suppose S is a complex analytic surface, take C a compact Riemann surface
lying inside S (i.e. a closed subscheme of codimension 1). Then we can construct
the normal bundle NCS, which is a line bundle over C. There are two important
cases :

• if deg(NCS) < 0, then the complex curve C can be contracted on a single
point in S, and in this case there are many holomorphic functions defined
in a neighborhood of C in S.

• if deg(NCS) > 0, i.e. the line bundle NCS is ample, then the situation is
algebraic (by this we mean that every function defined in a neighborhood
of C in S is algebraic).

We would like to do a similar observation for another type of surface. This is
where the formal-analytic arithmetic surfaces come into play : the idea is to
replace C by the scheme Spec(OK) for K a number field.

9.2.2 Formal-analytic arithmetic surfaces

Definition 9.1. A formal-analytic arithmetic surface over OK is a pair Ṽ =
(V̂, (Vσ, Pσ, ισ)σ∶K↪C) with V̂ a formal scheme of dimension 2 over OK , V̂ →
Spec(OK) smooth, and ∣V̂ ∣→̃Spec(OK) as topological spaces (locally, Spf(OK[[X]]) →
Spec(OK)) ; and for every embedding σ ∶ K ↪ C, Vσ is a compact Riemann
surface with a smooth non-empty boundary, Pσ a point in the interior of Vσ,
and ισ ∶ V̂ ×K,σ Spec(C)→̃(Vσ )̂Pσ (the completion at Pσ), with compatibility
conditions with respect to the complex conjugation.

One way to construct such a formal-analytic arithmetic surface Ṽ is to com-
plete an arithmetic surface along an integral point (by choosing an integral point,
taking an universal cover and possibly removing some points, then gluing). We
can define vector bundles and hermitian vector bundles on Ṽ :

Definition 9.2. An hermitian vector bundle on Ṽ is a pair Ẽ = (Ê , (Eσ, φσ, ∣∣ ⋅
∣∣σ)σ∶K↪C) with Ê a vector bundle on V̂, Eσ a vector bundle on Vσ, ∣∣ ⋅ ∣∣σ an her-
mitian metric and φσ an isomorphism on V̂ such that φσ ∶ Ê ×K,σSpec(C)→̃ι∗σEσ,
compatible with the complex conjugation.
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Definition 9.3. We define the global sections of Ẽ on Ṽ as Γ(Ṽ, Ẽ) = {(ŝ, (sσ)σ∶K↪C}
with ŝ a global section of Ê and sσ ∈ Γ(Vσ,Eσ) extended holomorphically from
ŝ with an overconvergent condition, compatible with φσ.

Remark 9.4. If we suppose E has a metric, in a way Γ(Ṽ,E) comes from a more
complicated object π∗Ẽ = (Γ(V̂, Ê),∏σ Γ(Vσ,Eσ) with compatibility conditions),
a pro-hermitian vector bundle.

9.2.3 The case where OK = Z

If we suppose OK = Z, then V̂ = Spf(Z[[X]]). So we have Ṽ = (V̂, (V,P, ι)) and
the completion V̂P = Spf(C[[z]]). It gives

ι ∶ Spf(C[[X]])→̃Spf(C[[z]])
ψ = ι∗z ↦z.

In this special case it is enough to study ψ ∈ R[[X]] such that ψ(0) = 0
and ψ′(0) ≠ 0. We may consider O(Ṽ) = Γ(Ṽ,OṼ) = {(α̂ ∈ Z[[X]], αan ∈
O(V )) such that αan = α̂ ○ φ}.
Example 9.5. Ṽ = (Spf(Z[[X]], (D̄(0,1), P = 0, ψ = X

r
)) ≃ (Spf(Z[[X]]), (D̄(0, r), P =

0, ψ =X)
We also have meromorphic functions on Ṽ, whose set is denoted as Ω(Ṽ).

For a specific example, consider Ṽ = B̃(r) ∶= (Spf(Z[[X]], (D̄(0, r), P = 0, can.)),
where can. designates the canonical isomorphism. Then :

Theorem 9.6. We have O(B̃(r)) = Z[X] if r ≥ 1. Otherwise, O(B̃(r)) is
much bigger.

There is a better result :

Theorem 9.7 (Borel). If r ≥ 1, then Ω(B̃(r)) = Z(X).
More generally, given a power series ψ ∈ R[[X]] with ψ(0) = 0 and ψ′(0) ≠ 0,

there exists a formal-analytic arithmetic surface Ṽ = Ṽ(ψ) ∶= (Spf(Z[[X]], (D̄(0,1), P =
0, ψ)). With these notations, if ∣ψ′(0)∣ > 1, then O(Ṽ(ψ)) is very large ; and if
∣ψ′(0)∣ ≤ 1 (we say that ψ is generic), then O(Ṽ(ψ)) = Z.

9.2.4 Back to the general case

Let Ṽ = (V̂, (Vσ, Pσ, ισ)σ∶K↪C) be a formal-analytic arithmetic surface over OK .
Associated to it, there is a normal bundle N̄P Ṽ, it is an hermitian line bundle
on Spec(OK), roughly giving the size of Ṽ "from the perspective of P". This
hermitian line bundle has an Arakelov degree ; the main result is the following
:

Theorem 9.8. If ˆdegN̄P Ṽ > 0, then O(Ṽ) is a Z-algebra of finite type and of
transcendence degree ≤ 1. Moreover, any map from Ṽ to a projective scheme has
an algebraic image.

This result finds applications in relation with fundamental groups, and irra-
tionality results via holonomy bounds.
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10 The gaseous base stack and the stack of norms
- by Ferdinand Wagner

In today’s talk we present an analytic stack mixing archimedean and non-
archimedean geometry: the hope is that this becomes an important object in
the theory of Arakelov geometry.

10.1 Norms on analytic stacks
When we hear norm, we probably think of a map ∣ ⋅ ∣ ∶ A → R≥0. In the con-
text of analytic stacks, this is not the right intuition to have. Instead, we
should think of the notion of "disks of radius r" D

†(r) ⊂ A1
A for every r ∈ R≥0.

These disks will be closed and automatically overconvergent, as the notation
suggests. In particular, norms in this sense can be pulled back along morphisms
AnSpec(B) → AnSpec(A), contrarily to usual norms.

Let A be an analytic ring. We set P1
A ∶= P

1,alg
Z ×AnSpec(Z)AnSpec(A). A norm

on A is a morphism N ∶ P1
A → [0,∞]Betti satisfying certain conditions. These

conditions will contain the informations that, in a sense, we have "N(0) = 0",
"N(x−1) = N(x)−1", "N(x⋅y) = N(x)⋅N(y)". To make these conditions precise,
we use the following

Remark 10.1. Every f ∈ A identifies with a splitting f ∶ AnSpec(A) → P1
A

of the map P1
A → AnSpec(A). By composing it with N ∶ P1

A → [0,∞]Betti, we
obtain a morphism of analytic stacks AnSpec(A) → [0,∞]Betti, that we call
N(f).

Definition 10.2. Let A be an analytic ring. A norm on A is a morphism
N ∶ P1

A → [0,∞]Betti such that the following conditions hold

1. ("N(0) = 0") The morphism N(0) ∶ AnSpec(A) → [0,∞]Betti factors
through {0}Betti.

2. ("N(x−1) = N(x)−1") We have the following commutative diagram

P1
A [0,∞]Betti

P1
A [0,∞]Betti.

N

(T↦T−1) (−)−1

N

3. ("N(x ⋅ y) = N(x) ⋅N(y)") We set A1,an
A ∶= N−1([0,∞)). Let us consider

the morphism

µ ∶ A1,an
A ×A1,an

A → A1
A, (T1, T2) ↦ T1 ⋅ T2,
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which factors through A1,an
A by conditions 1 and 2. We have a commutative

diagram

A1,an
A ×A1,an

A [0,∞)Betti × [0,∞)Betti

A1,an [0,∞)Betti.

N×N

µ mult.

N

4. Let DA ∶= AnSpec(A[T̂ ]) with the induced analytic ring structure, which
has a canonical map φ ∶ DA → P1

A. Then we have a factorisation

DA P1
A [0,∞]Betti

[0,1]Betti

φ N

Moreover, φ is an isomorphism over [0,1)Betti.

Here are remarks/explanations about this definition.

Remark 10.3. Conditions 1 and 2 imply that we have "N(∞) = ∞" and
"N(1) = 1". In particular, the morphism µ in condition 3 factors through A1,an

A .

Remark 10.4. Condition 3 implicitly uses the fact that we have A1,an
A ⊆ A1

A.
Indeed, by the condition "N(∞) = ∞", we obtain that the structure sheaf of
the divisor at ∞, i.e. O∞⊂P1

A
∶= OP1

A
∣T−1 , is an algebra over ON−1({∞}). Thus we

have O∞⊂P1
A
∣A1,an

A
= 0. This implies that T −1 is invertible on A1,an

A , and thus we

have A1,an
A ⊆ A1

A.

Remark 10.5. In the conditions we just presented we have commutative di-
agrams, which in the higher-categorical setting would translate in higher co-
herency additional data. Fortunately, mapping spaces from an analytic stack
to Betti stacks are just sets. Thus commutativity of those diagrams are just
properties, and not extra data.

Remark 10.6. Condition 4 tells us that DA sits between the open and the
closed unit disk,

Remark 10.7. We have no triangular inequality condition, i.e. no condition
"N(x + y) ≤ N(x) +N(x)".

More generally, we can define what a norm on an analytic stack is by glueing
from the affine case.

Definition 10.8. Let N be the universal normal analytic stack, i.e. such that
we have

{norms on A} ≃ {maps AnSpec(A) →N}.

N is called the stack of norms.
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Remark 10.9. N exists by definition. Indeed, we can define a sheaf on affine
analytic stacks exactly in this way, by N(A) ∶= {norms on A} and then check
that it satisfies descent.

Definition 10.10. We define the anima of norms on an analytic stack X as
HomAnStack(X,N).

10.2 How to construct norms
We recall that if S is locally compact Hausdorff of finite cohomological dimension
and X is an analytic stack, we have an isomorphism

{maps X → SBetti} ≃
⎧⎪⎪⎪⎨⎪⎪⎪⎩

collection of idempotents AZ ∈ D(X) for all closed Z ⊆ S
+ compatibility condition for intersections and finite unions

+ connectivity condition

⎫⎪⎪⎪⎬⎪⎪⎪⎭

If we have f ∶X → SBetti, under this identification we have AZ ∶= Of−1(Z).

In particular, to construct a norm N ∶ P1
A → [0,∞]Betti it suffices to specify

idempotents O({∣T ∣ ≤ r})† ∶= ON−1([0,r]) for all r ∈ R≥0. All the other idem-
potent algebras are determined by the compatibility conditions with union, in-
tersection, plus condition 2 of Definition 10.2. Moreover, the conditions 1 to 4
of Definition 10.2 can be restated in terms of these idempotent algebras. For
example, condition 3 tells us that we have a morphism O({∣T ∣ ≤ r1 ⋅ r2})† →
O({∣T ∣ ≤ r1}) ⊗A O({∣T ∣ ≤ r2}) sending T to T1 ⊗ T2.

Remark 10.11 (Overconvergency is necessary). We have

Z[0,r] ≃ colim
r′>r

Z[0,r′],

hence we must have

ON−1([0,r]) ≃ colim
r′>r

ON−1([0,r′]).

Thus O({∣T ∣ ≤ r})† ∶= ON−1([0,r]) is automatically a ring of overconvergent func-
tions. This means that whatever notion of closed disk we choose , the "regular
functions" on it must be overconvergent. For example, over Qp◻, the Tate
algebras are idempotent but they do not define a norm, since they are not com-
patible with taking limits. We should instead consider an overconvergent version
of them.

Corollary 10.12. There exist norms on Qp◻, Rgas, Cgas such that O({∣T ∣ ≤
r})† is the usual overconvergent algebra.

Corollary 10.13. For every λ ∈ (0,1) there is a unique norm on Z[q̂±1]gas such
that we have "N(q) = λ". Moreover, these norms combine to a unique norm on
AnSpec(Z[q̂±1]gas) × (0,1).
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Proof sketch. Replace Z[q̂±1]gas by A ∶= Z[q̂±1]gas[q
1
n ∣n ≥ 1]. For the existence,

we define
O({∣T ∣ ≤ r})† ∶= colim

α∈Q s.t.
λα>r

A[q̂−αT ].

For the uniqueness, we suppose that we have a norm on Z[q̂±1]gas such that
"N(q) = λ". We fix r and consider α ∈ Q such that λα > r. By hypothesis, we
have "N(q−α) = λ−α", thus we have the following commutative diagram

AnSpec(A) ×AnSpec(O({∣T ∣ ≤ r})† {λ−α} × [0, r]

A1,an
A ×A1,an

A [0, λ−αr]

A1,an
A [0,∞].

N×N

q−α×incl. mult.

µ

N

Since we have λ−αr < 1, the morphism AnSpec(A) × AnSpec(O({∣T ∣ ≤ r}) →
[0,∞] coming from this diagram factors through [0,1). By condition 4 of Def-
inition 10.2, the composition DA = AnSpec(A[q̂−αT ]) → A1,an

A → [0,∞] factors
over [0,1] and becomes an isomorphism over [0,1). Consequently, the map
AnSpec(A)×AnSpec(O({∣T ∣ ≤ r})†) → A1,an

A factors over DA, and we get a map

A[q̂−αT ] → O({∣T ∣ ≤ r})†.

We pass to the colimit and we get a map

colim
α∈Q s.t.
λα>r

A[q̂−αT ] → O({∣T ∣ ≤ r})†.

To show that it is an isomorphism, we use the fact that

O({∣T ∣ ≤ r})† ⊗L
A[T ] O({∣T ∣ ≤ r

′})† = 0 if r′ > r

and that the colimit in the left-hand side is determined by this property (i.e.
that tensoring it with O({∣T ∣ ≤ r′})† for r′ > r gives 0).

For the original analytic ring Z[q̂±1]gas the argument is quite the same but
with some more difficulties.

This unique norm gives a map AnSpec(Z[q̂±1]gas) × (0,1) →N.

Lemma 10.14. Let A be any normed analytic ring and λ ∈ (0,1). Then there
exists a !-cover AnSpec(B) → AnSpec(A) such that there exists q ∈ B(∗) with
"N(q) = λ". In particular, the morphism AnSpec(Z[q̂±1]gas) × {λ} → N is a
!-cover.
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Proof sketch. We will show that O({∣T ∣ = λ})† ∶= ON−1({λ}) receives a map from
A which is a !-cover. Since the analytic ring structure on ON−1({λ}) is the
induced one, the morphism A→ ON−1({λ}) is proper. Thus it is enough to show
that we have

A ∈ ⟨im(D(O({∣T ∣ = λ})†) → D(A)⟩fin. limits, retracts, ⊗.

Let us consider π∗ ∶ D(P1
A) → D(A). We have the following pullback diagram in

D(P1
A)

OP1
A

ON−1([λ,∞])

ON−1([0,λ]) ON−1({λ})

⌟

In stable∞-categories, pullbacks are also pushouts, so when we apply π∗ we get
a pushout diagram in D(A)

A π∗ON−1([λ,∞])

π∗ON−1([0,λ]) O({∣T ∣ = λ})†.
⌜

We now show thanks to this pushout diagram, that we have an induced map
O({∣T ∣ = λ})† → A. To do this, we observe that we have maps

ON−1([0,λ]) → O0⊂P1
A
, ON−1([λ,∞]) → O∞⊂P1

A

Applying π∗ gives the desired morphisms

π∗ON−1([0,λ]) → A, π∗ON−1([λ,∞]) → A,

inducing by pushout the map O({∣T ∣ = λ})† → A.

Theorem 10.15. For any analytic ring A we have

{(norm N on A, q ∈ A(∗)) s.t.“N(q) ⊆ (0,1)”} ≃ {maps AnSpec(A) → AnSpec(Z[q̂±1]gas) × (0,1)}

Proof sketch. • Given (N,a), we consider the map

(a,N(a)) ∶ AnSpec(A) → AnSpec(Z[q̂±1]gas) × (0,1).

Here a ∶ AnSpec(A) → AnSpec(Z[q̂±1]gas) is induced by q ↦ a.

• Given a map AnSpec(A) → AnSpec(Z[q̂±1]gas) × (0,1), we associate to
it the couple (N,a), where N is the pullback of the universal norm on
AnSpec(Z[q̂±1]gas) × (0,1) and a is the image of q in A(∗).
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Figure 1: M(Z), the Berkovich spectrum of Z.

10.3 What does N look like?

The main tool is to cover it with the !-cover Z[q̂±1]gas × (0,1) → N we just
constructed.

Theorem 10.16. The morphism

∏
n∈N

N(n) ∶N→ ∏
n∈N
[0,∞]

surjects onto the extended Berkovich spectrum of Z.

Definition 10.17 (Berkovich spectrum). • A Banach ring is a commuta-
tive ring with unit A together with a map ∣ ⋅ ∣A ∶ A→ R such that

1. ∣0∣A = 0 and ∣ ± 1∣A = 1 (or A = 0) ;
2. ∣x + y∣A ≤ ∣x∣A + ∣y∣A;
3. ∣xy∣A ≤ ∣x∣A ⋅ ∣y∣A;
4. A is complete with respect to ∣ ⋅ ∣A.

• If A is a Banach ring, we define its Berkovich spectrum as

M(A) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∣ ⋅ ∣ ∶ A→ R≥0 s.t.

a) ∣ ⋅ ∣ ≤ ∣ ⋅ ∣A
b) 1 and 2 hold
c) ∣x ⋅ y∣ = ∣x∣∣y∣

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⊆ ∏

f∈A
[0,∞]
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Figure 2: M(Z)ext, the extended Berkovich spectrum of Z.

endowed with the subspace topology.

For Z endowed with its usual absolute value norm ∣ ⋅ ∣∞, the elements of the
Berkovich spectrum are the following.

• the p-adic branch: for every prime p, we have the pullback of the trivial
norm on Fp along Z→ Fp, we call it ∣ ⋅ ∣∞,p. Moreover, we have the p-adic
norm ∣ ⋅ ∣p and its powers ∣ ⋅ ∣αp for all α ∈ (0,∞).

• the archimedean branch: we have the archimedean norm ∣ ⋅ ∣∞ and its
powers ∣ ⋅ ∣α∞, with α ∈ (0,1].

• the central vertex, corresponding to the trivial norm ∣ ⋅ ∣0.

Theorem 10.16 states that N → ∏n∈Z[0,∞] almost factors through M(Z):
indeed it factors over M(Z)ext, the extended Berkovich spectrum. This object
is obtained fromM(Z) by adding the segment (1,∞], which corresponds to the
powers ∣ ⋅ ∣α∞ with α ∈ (1,∞) and a point corresponding to α = ∞. This can be
represented as in Figure 2.

The dotted part of the image corresponds to archimedean "norms" where
the triangular inequality fails.

Proof sketch. Pick a prime p and consider N(p) ∶N→ [0,∞].

• Let us study the locus where N(p) ⊆ (0,1) (i.e. N(p)−1((0,1))). By
Theorem 10.15, for every analytic ring A we have

{(N,p) s.t. N(p) ⊆ (0,1)} ≃ {maps AnSpec(A) → AnSpec(Z[q̂±1]gas/(q−p))×(0,1)}.
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Since their functor of points coincide on affine analytic stacks, the locus
where N(p) ⊆ (0,1) is the analytic stack

AnSpec(Z[q̂±1]gas/(q − p)) × (0,1) = AnSpec(Qp,gas) × (0,1).

• Let us study now the locus where N(p) ⊆ (1,∞) (i.e. N(p)−1((1,∞))).
Again by Theorem 10.15, this locus is the analytic stack

AnSpec(Z[q̂±1]gas/(pq − 1)) × (0,1) = AnSpec(Rgas) × (0,1).

Remark 10.18. In particular, the preimage of the non-archimedean norm
∣ − ∣∞ corresponds to 1

p
∈ AnSpec(Rgas) × (0,1), because ∣ − ∣∞ is such that

∣ 1
p
∣∞ = 1

p
.

We still need to analyse the loci where N(p) = 0, N(p) = 1 and N(p) = ∞.
Apriori, we should study also the loci relative to other primes q, but actually
the norm of p determines the norm of the other primes in almost all the cases.
Indeed, we have the following

Lemma 10.19 (Triangle inequality). Let A be a normed analytic ring and let
p be a prime.

1. If N(p) ⊆ [0,1], then we have "N(x + y) ≤max{N(x),N(y)}".

2. If N(p) ⊆ [0, p], then we have "N(x + y) ≤ N(x) +N(y)".

3. If N(p) ⊆ [0,∞), then there is a constant c such that "N(x + y) ≤ c ⋅
(N(x) +N(y))".

Idea of proof. To prove this, we should use Lemma 10.14 and reduce everything
to computations in AnSpec(Z[q̂±1]gas).

In particular, this implies the following facts:

• by part 3, if there exists a prime for which N(p) = ∞, then we have
N(l) = ∞ for every other prime l. Every norm satisfying this property is
mapped to the limit point of the archimedean branch inM(Z)ext.

• by part 1, there exists at most one prime p for which we have N(p) = 0
(otherwise, writing 1 as a linear combination of such two different primes
p and l, we would get N(1) = 0). Any such norm is mapped to the limit
point of the p-adic branch.

• by part 1, if N(p) ⊆ (0,1), then N(l) = 1 for all l ≠ p and such norms are
mapped to the interior of the p-adic branch;

• by parts 2 and 3, if N(p) ⊆ (1,∞) for some p, then such norms are mapped
to the interior of the extended archimedean branch (the classical one if
N(p) ⊆ (1, p], the dotted one if N(p) ⊆ (p,∞)).
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Figure 3: N, the stack of norms.

This shows that the image of N → ∏n∈Z[0,∞] is contained in M(Z)ext. To
show the equality, the only thing left to show is that the limit points have a
preimage:

• there is a norm on the analytic ring Q((q)) such thatN(p) = 1 for all primes
p. Thus AnSpec(Q((q))) maps to the preimage of the central vertex.

• for all prime p, there is a norm on the analytic ring Fp((q)) such that
N(p) = 0 and N(l) = 1 for all l ≠ p. Thus AnSpec(Fp((q))) maps to the
preimage of the limit point of the p-adic branch.

• there is an analytic ring together with a norm N such that N(p) = ∞ for
all prime p (quite mysterious). This analytic ring maps to the preimage
of the limit point of the archimedean branch.

We have the following description of N. It is an analytic stack which lives
over M(Z)ext, and we can describe (almost) all fibers. The preimage of any
open branch is quite simple to describe, as it really looks like the space (0,1).
However, the preimage of the central vertex and of the limit points are quite
unclear. We can say that the preimage of the central vertex receives a map from
AnSpec(Q((q))) and that the preimage of the limit point of the p-adic branch
receives a map from AnSpec(Fp((q))).
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10.4 More from the discussion session
During the discussion session, some topics from this talk have been addressed
in more detail. We present the most relevant comments in this section.

10.4.1 More on condition 4

Let A be an analytic ring and let N ∶ P1
A → [0,∞] be a norm. By condition 4 of

Definition 10.2 we have a factorisation

AnSpec(A[T̂ ]) = DA P1
A [0,∞]

[0,1]

φ N

Moreover, the map φ is an isomorphism over [0,1). However, it is not an
immerson.

Intuitively, we have

A[T̂ ] = {
∞
∑
n=0

anT
n ∣ for all M ∈ModA and all (mn) ⊆M null-sequence, we have

∞
∑
n=0

anmn ∈M}.

We have maps
O({∣T ∣ ≤ 1})† → A[T̂ ] → O({∣T ∣ < 1}).

The fact that φ becomes an isomorphism over [0,1) means that we have

A[T̂ ] ⊗L
A[T ] O({∣T ∣ < r})

† = O({∣T ∣ ≤ r})† ∀r < 1.

As an example, take A = Qp and consider the norm defined by overconvergent
Tate algebras. In this case we have

A[T̂ ] = ZpJT K [1
p
] ,

i.e. bounded functions in a unit disk.

10.4.2 Analytic Berkovich spectra

Let (A, ∣ ⋅ ∣A) be a Banach ring. We define an analytic stack

AnSpecBerk(A) ⊆ AnSpec(A) ×N

which is called analytic Berkovich spectrum of (A, ∣⋅∣A). To do it, we first observe
that a map AnSpec(B) → AnSpec(A) ×N is given by a couple (φ,N) where
φ ∶ A→ B is a morphism of analytic rings and N is a norm on B. Once we have
this, we can define a map

∏
f∈A

N(φ(f)) ∶ AnSpec(B) → ∏
f∈A
[0,∞].
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To make the notation lighter, we denote this map just by ∏f∈AN(f). Now we
define AnSpecBerk(A) as follows. For every analytic ring B, we set

HomAnStack(AnSpec(B),AnSpecBerk(A)) ∶= { maps AnSpec(B) → AnSpec(A) ×N
s.t. ∏f∈AN(f) factors throughM(A)Betti

}

Remark 10.20. The condition that ∏f∈AN(f) factors throughM(A) ensures
that we have N(f) ⊆ [0, ∣f ∣A] for all f ∈ A.

One can prove that this defines an analytic stack AnSpecBerk(A) which has
a canonical map

AnSpecBerk(A) →M(A)Betti.

One can globalise this construction. One can also see that if X is a complex
analytic variety, the map

X →X(C)Betti

presented in Talk 8 fits in this framework. Indeed, one can show that X(C)
coincides with the Berkovich spectrumM(X) by using Gelfand-Mazur theorem.

10.4.3 More examples of open and closed immersions

These examples show the flexibility of working with analytic stacks, where we
are able to detect a lot of open and closed subspaces.

Example 10.21. If R is a finite type Z-algebra and f ∈ R, we have morphisms

R◻ → (R [
1

f
] ,R)◻ → R [ 1

f
]
◻
,

where the first one is an idempotent localisation.

• AnSpec((R [ 1
f
] ,R)◻) is closed in AnSpec(R◻). Its open complement is

an infinitesimal open neighbourhood of f = 0, i.e. the (non-affine) analytic
stack

colim
n∈N

AnSpec((R/Lfn,R)◻).

This is an analytic stack whose quasi-coherent sheaves are f -adically com-
plete R-modules.

• AnSpec(R [ 1
f
]
◻
) is open in AnSpec(R◻) and it is a bit smaller than

AnSpec((R [ 1
f
] ,R)◻). Its closed compleement is the (affine) analytic

stack
AnSpec((R∧f ,R)◻).

This is an analytic stack whose quasi-coherent sheaves are modules over
the f -adic completion of R.

76



Remark 10.22. In the context of the previous remark,

AnSpec((R∧f ,R)◻) ⊔AnSpec((R [ 1
f
] ,R)◻)

forms a !-cover of AnSpec(R◻) (use 5.12). Since we have !-descent of quasi-
coherent sheaves, this recovers (a form of) the Beauville-Laszlo theorem.

Example 10.23. We already saw that an example of open immersion is

j ∶ AnSpec(Z[T ]◻) → AnSpec((Z[T ],Z)◻),

where the complementary closed is associated to the idempotent algebra Z((T −1)).
To visualise it, it is better to base change this morphism to Qp,◻. Then we get
the open immersion

D→ A1,alg
Qp,◻ ,

where D is a closed affinoid disk. Here the complementary open is the analytic
stack

AnSpec(Zp((T −1)) [
1

p
]),

which intuitively is an open disk of radius 1 at ∞.
Since we constructed norms, we can give more examples of open immersions.

If we endow Qp,◻ with the norm given by overconvergent Tate algebras, we can
define A1,an

Qp,◻ as N−1([0,∞)). Thus we have the following commutative diagram

A1,an
Qp,◻

A1,alg
Qp,◻ D.

open

open

The map A1,an
Qp,◻ → A1,alg

Qp,◻ is an open immersion, where the complementary open
is the affine analytic stack

AnSpec({germs of meromorphic functions at ∞}).

10.4.4 The gaseous base stack

One can show that R>0,Betti acts on N. The quotient by this action contracts
the "open branches" to points. These open points of N/R>0 are AnSpec(Qp,gas)
for each p and AnSpec(Rgas).

Definition 10.24. The gaseous base stack is the quotient N/R>0.

The map N→M(Z)ext induces a map N/R>0 →M(Z)ext/R>0.
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11 Infinite-dimensional Arakelov geometry - by
François Charles

11.1 Warm up: analytic pairs and coherent sheaves
Definition 11.1. An analytic pair (X,K) is the datum of a complex space and
a compact K in X.

Remark 11.2. Intuition X should be thought of as a generic fiber and K as
the points with good reduction in X(C).

If F is a coherent OX -module, we get a morphism

H0(X,F) →H0(K,F)

where H0(X,F) is a nuclear Fréchet space and we define H0(K,F) to be
colimK⊂U H

0(U,K) which is the dual of a nuclear Fréchet space.

Definition 11.3. Let (X,K) be an analytic pair and F a coherent OX -module.
We define H0(X,K,F) to be the datum of H0(X,F) endowed with the bornol-
ogy coming from H0(K,F). These elements form a category with well defined
kernels, cokernels and strict maps.

Definition 11.4. A morphism of schemes f ∶X → Y is said to be a strict map
if cokerf = coimf.

Definition 11.5. The category described in Definition 11.3 is not abelian but
quasi-abelian.

Remark 11.6. Let us do a few recollections.

1. Open mapping theorem: For Fréchet spaces or dual of Fréchet spaces,
morphisms with finite cokernels are strict.

2. Stein spaces and their modifications have cohomological definitions.

Fact 11.7. A complex space is Stein if one of the following equivalent conditions
holds:

1. For all coherent OX -modules F the equality

∀i > 0, Hi(X,F) = 0

holds.

2. For all epimorphism of coherent OX -modules F ↠ G, the morphism
H0(X,F) →H0(X,G) is a (strict) surjection.

Definition 11.8. A modification ν ∶X → Y i s a holomorphic map such that:

1. the map ν is proper,
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2. there exists a finite subset F ⊂ Y such that ν induces an isomorphism
ν ∶X ∖ ν−1(F ) ∼Ð→ Y ∖ F ,

3. the equality ν∗OX = OY holds.

Fact 11.9. Let X be a connected complex space. The following are equivalent:

1. the space X is a modification of a Stein space.

2. For all coherent OX -modules F and for all positive integers i, the group
Hi(X,F) is finite-dimensional.

3. All surjections of coherent OX -modules F ↠ G are (strict) with finite-
dimensional cokernel.

Remark 11.10. Strictness of morphisms is somewhat subtle.

Example 11.11. Let F ↪ G and K ↪ X. Then the morphism H0(K,F) ↪
H0(K,G) is strict.

Example 11.12. Let F ↠ G and K ↪ X. The morphism H0(K,F) →
H0(K,G) is not strict in general.

Example 11.13. Let ε > 0. We set X = C2 and K = {(z1, z2) ∈ D2, ∣z1∣ ⩽
ε or ∣z2∣ ⩾ 1 − ε}. Any holomorphic function on K extends to D2. Hence the
morphism

H0(D2,OC2) =H0(K,OC2) →H0(K,OC×{0})

has dense image and is not strict.

Definition 11.14. Let X be Stein, K ↪ X compact. We define H0(X,K,F)
to be the datum of H0(X,F) endowed with bornology coming from H0(K,F).

Definition 11.15. We keep notation of Definition 11.14. We define

K̂ ∶= {x ∈X ∣ ∀f ∈ OX(X) such that ∣∣f ∣∣∞K ⩽ 1, ∣f(x)∣ ⩽ 1}

the holomorphic convex hull of K in X.
If K equals K̂, we say that K is holomorphically convex in X.

Exercise 11.16. Let us keep notation of Definition 11.14. Let x in X. The
morphism

H0(X,K,OX) →H0(X,K,O{x})

is strict if and only if x is in K or in X ∖ K̂.

Definition 11.17. Let (X,K) be an analytic pair. We say that (X,K) is Stein
(respectively mod-Stein) if for all epimorphisms of coherentOX -modules F ↠ G,
the morphism H0(X,K,F) → H0(X,K,G) is a strict surjection (respectively
strict with finite-dimensional cokernel).

Theorem 11.18 (Structure theorem). 1. An analytic pair (X,K) is Stein
if and only if X is Stein and K is holomorphically convex in X.
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2. An analytic pair (X,K) is mod-Stein if and only if X is mod-Stein, the
compact K contains all the positive dimensional subvarieties of X and
K = K̂.

Example 11.19. Let X be proper and L be a Hermitian bundle on X. We
may look at

V(L) = (Spec(Sym●L),K = {x,φ ∈ L∨x, ∣∣φ∣∣ ⩽ 1})

where Spec(Sym●L) is the total space of L∨.

Theorem 11.20. We keep notation of Example 11.19. The Hermitian bundle
L is ample if and only if V(L) is mod-Stein.

11.2 Back to arithmetic
Recall 11.21. An A-scheme is a pair (X,K) withX a separated scheme of finite
type over Z and K ⊂X(C) is compact and invariant by complex conjugation.

Remark 11.22. Relative arguments in A-schemes work well by mixing alge-
braic geometry and arguments on analytic pairs.

Definition 11.23. We may define relatively affine (respectively mod-affine)
A-schemes by X is affine (respectively mod-affine) and (Xan,K) is Stein (re-
spectively mod-Stein).

Definition 11.24. Given a Hermitian line bundle L on X proper, we may
define V(L).

Definition 11.25. Let F be a coherent OX -module. Let us define the notion
of a Hermitian coherent sheaf as a pair

V(F) = (Spec(Sym●F ), T )

where T is compact and C×-invariant.

Definition 11.26. Let us consider (Spec(Z),{∗}), an A-scheme (X,K) and F
coherent. We define H0(X,K,F) to be the datum of H0(X,F) endowed with
the bornology coming from the countable Z-module H0(K,F).

Remark 11.27. To study global aspects of A-schemes, we want to study "ge-
ometry of numbers" for these lattices and the bornology. There are two issues.

1. We work with bornology instead of norms.

Example 11.28. Considering V(L), the equalityH0(V(L),O) = ⊕d⩾0H
0(X,L⊗d)

holds.

2. We need infinite-dimensional theory.
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11.3 θ-invariants

Let us consider E = (E = Zn, ∣∣⋅∣∣) a euclidean lattice.

Definition 11.29. We define

h0θ(E) = log(∑
v∈E

e−π∣∣v∣∣
2

) and h1θ(E) = h0θ(E
∨)

which are non-negative real numbers.

Remark 11.30. These numbers should be thought of as a dimension verifying
the Serre duality, even though we have not defined any H0

θ or H1
θ .

Definition/Proposition 11.31 (Poisson formula). The equality

h0θ(E) − h1θ(E) = degE ∶= − log(vol(ER/E))

holds.

Proposition 11.32 (Functoriality). Let us suppose that we have a short exact
sequence of euclidean lattices

0→ E → F → G→ 0

id est it is a short exact sequence of abelian groups which is orthogonal for the
metric. Then the inequalities

h0θ(E) + h0θ(G) − h1θ(E) ⩽ h0θ(F ) ⩽ h0θ(E) + h0θ(G)

hold.

Definition 11.33. Consider a morphism of euclidean lattices E
φÐ→ F . Let us

define
rk1θ(φ) = h1θ(F ) − h1θ(F /φ(E))

which we call the rank of φ.

Remark 11.34. The rank of a morphism φ ∶ E → F should be thought of as
sort of rk(H1

θ (φ)) even though we have not defined any H1
θ (φ).

Proposition 11.35. Let φ and ψ be composable morphisms of euclidean lat-
tices. The following inequality

rk1θ(φ ○ ψ) ⩽min(rk1θ(φ), rk
1
θ(ψ))

holds.

Now, we want to understand how it extends to the general setting.

Proposition 11.36. In the infinite-dimensional setting:

1. The number h0θ extends in [0,∞].
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2. The case of h1θ is more complicated, we get invariants by approximation
(by quotients and subscheaves).

Remark 11.37. To get theorems from geometry of numbers, we replace the
rank by the trace. Start with (E, ∣∣⋅∣∣) = E. θ-invariants of E control the geom-
etry of E

′ ∶= (E, ∣∣⋅∣∣′) where ∣∣⋅∣∣′ ⩽ ∣∣⋅∣∣ in terms of Tr ∣∣⋅∣∣
′2

∣∣⋅∣∣2 .

Example 11.38 (Minkowski’s first theorem). We consider E, E
′

and δ > 0.
Let us denote inf{∣∣v∣∣, v ≠ 0} by λ1(E, ∣∣⋅∣∣).
The contrapositive of Minkowski’s first theorem states:

λ1(E, ∣∣⋅∣∣) ⩾ 1⇒ h0θ(E, eδ ∣∣⋅∣∣) ⩽ log(1 −
1

2
(Tr ∣∣⋅∣∣

′2

∣∣⋅∣∣2
) e−2δ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0

.

A variant is the following statement: the number h1θ controls the covering radius.

11.4 Back to diophantine geometry
Let us consider (X,K) an A-scheme relatively (mod) affine.

Definition 11.39. We say that (X,K) is mod-affine if h1θ(X,K,F) < ∞ for all
coherent OX -modules F .

Theorem 11.40. Let (X,K) be mod-affine. Then, there exists a subscheme
Z ↪X such that:

1. the scheme Z is proper over Z and purely positive dimensional.

2. Z(C) ↪K is maximal.

Remark 11.41. All h1θ "come from Z".

Remark 11.42. We keep notation of Theorem 11.40. Concretely, if X is affine:

1. there are finitely many integral points in X(C).

2. these points are the only obstruction to approximating relative functions
in K by OX(X).

Example 11.43. Let X be proper. A Hermitian line bundle L on X proper is
ample if and only if V(L) is mod-affine.

Example 11.44. Let X be proper. Let D ↪ X be a divisor with an ample
normal bundle

K ↪ (X ∖D)(C).

Then, (X ∖D,K) is mod-affine.
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12 Final questions

At the end, some questions (without answer for the moment) were raised. Their
goal is to understand the relationship between Arakelov geometry (and in par-
ticular the objects introduced in Talks 9 and 11) and the theory of analytic
stacks. The idea is that objects from Arakelov geometry should be interpreted
by means of analytic stacks living over the gaseous base stack N/R>0.

We recall that the gaseous base stack N/R>0 (see Definition 10.24) lives over
M(Z)ext/R>0. We recall that the archimedean branch in M(Z)ext consists in
the open interval corresponding to archimedean "norms" and a mysterious limit
point at∞: in what follows, we call Z the image of this branch alongM(Z)ext →
M(Z)ext/R>0. Hence in Z we have the "open" point (whose preimage in N/R>0
is the archimedean norm on AnSpec(Rgas)) and a mysterious limit point. A
similar description can be given for other branches, with a p-adic norm on
AnSpec(Qp,gas) taking the role of the archimedean norm on AnSpec(Rgas).

1. (Analytic pairs) Let X be a complex analytic manifold. Then the ana-
lytic stack Xan lives over the gaseous base stack N/R>0. Indeed, we have
morphisms of analytic stacks

Xan → AnSpec(Cgas) ↪N/R>0,

where the last morphism is an open immersion. The question is the
following: what is the condition on X so that Xan has a model over
N/R>0 ×M(Z)ext/R>0 Z? More precisely, is there a relation between this
condition and X having a Kähler structure?

This guess is justified by the following two facts

(a) when X is a complex proper smooth analytic variety, endowed with a
Kähler structure, one has the degeneration of the Hodge to de Rham
spectral sequence, provided by Hodge theory.

(b) For an algebraic variety X over Qp of dimension d < p, the same
degeneration holds whenever there is a model X of X over Zp by
results of Deligne–Illusie.

Having a model over
N/R>0 ×M(Z)ext/R>0 Z

could give tools for proving the degeneration of the Hodge-de Rham spec-
tral sequence, as an archimedean analog of Deligne–Illusie.

2. (Formal analytic arithmetic surface) Let V be an arithmetic surface and
let p ∶ Spec(Z) ↪ V be an integral point. We saw that completing V along
this integral point gives a formal-analytic arithmetic surface (V∧p,K),
where K is a compact Riemann surface.
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Let now V be the analytic stack associated to V . By base-changing it to
N/R>0 we obtain V×N/R>0, an analytic stack living over the gaseous base
stack. Any integral point p ∶ Spec(Z) ↪ V give rise to a section

p ∶N/R>0 → V ×N/R>0.

The question is the following: how is (V∧p,K) related to a closed neigh-
bourhood of p in V ×N/R>0?
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